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A CLASS OF INTEGRABLE
POLYNOMIAL VECTOR FIELDS

Abstract. We study the integrability of two-dimensional autonomous
systems in the plane of the form ẋ = −y + Xs(x, y), ẏ = x + Ys(x, y), where
Xs(x, y) and Ys(x, y) are homogeneous polynomials of degree s with s ≥ 2.
First, we give a method for finding polynomial particular solutions and next
we characterize a class of integrable systems which have a null divergence
factor given by a quadratic polynomial in the variable (x2 + y2)s/2−1 with
coefficients being functions of tan−1(y/x).

1. Introduction. We consider two-dimensional autonomous systems
of differential equations of the form

(1.1) ẋ = −y + Xs(x, y), ẏ = x + Ys(x, y),

where

Xs(x, y) =
s∑

k=0

akxkys−k, Ys(x, y) =
s∑

k=0

bkxkys−k

are homogeneous polynomials of degree s, with s ≥ 2, and with ak and bk,
k = 0, 1, . . . , s, being arbitrary real coefficients. Recently, these systems
have been studied by several authors (see for instance [1], [3], [5], [6] and
[8]), especially in order to obtain information about the number of small
amplitude limit cycles and to determine the cyclicity of the origin (see for
instance [4] and [7]). In this paper we study their integrability.

Our aim is to find solutions W (x, y) = 0 of system (1.1), where W (x, y)
is a null divergence factor (this notion will be defined below). In Theorem 1
we give an explicit method for obtaining such a factor, which is used in
Theorem 2 to construct a particular class of integrable fields.
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We can write system (1.1) (see [2]) in polar coordinates x = r cos ϕ and
y = r sinϕ as

(1.2) ṙ = Ps(ϕ)rs, ϕ̇ = 1 + Qs(ϕ)rs−1,

where Ps(ϕ) and Qs(ϕ) are trigonometric polynomials of the form

Ps(ϕ) = Rs+1 cos((s + 1)ϕ + ϕs+1) + Rs−1 cos((s− 1)ϕ + ϕs−1)

+ . . . +
{

R1 cos(ϕ + ϕ1) if s is even,
R0 if s is odd,

Qs(ϕ) = −Rs+1 sin((s + 1)ϕ + ϕs+1) + Rs−1 sin((s− 1)ϕ + ϕs−1)

+ . . . +
{

R1 sin(ϕ + ϕ1) if s is even,
R0 if s odd,

where Ri, Ri, ϕi and ϕi are real constants.
If we make the change of variable R = rs−1, then system (1.2) becomes

(1.3) Ṙ = (s− 1)Ps(ϕ)R2, ϕ̇ = 1 + Qs(ϕ)R.

In the study and determination of the first integrals for quadratic systems
and homogeneous cubic systems (see [2]), we used a technique consisting in
the research of polynomial particular solutions of system (1.3) of the form

(1.4) V (R,ϕ) = 1 + V1(ϕ)R + V2(ϕ)R2 + . . . + Vp(ϕ)Rp = 0,

where Vk(ϕ), k = 1, . . . , p, are homogeneous trigonometric polynomials of
degree k(s − 1) in the variables cos ϕ and sinϕ. The main results are the
following.

A function W (x, y) will be called a null divergence factor for system (1.1)
if W (x, y) = 0 is a particular solution for this system and the divergence of
the vector field

C =
(
−y + Xs(x, y)

W (x, y)
,
x + Ys(x, y)

W (x, y)

)
defined on R2 \ {(x, y) : W (x, y) = 0} is zero.

We notice that if the divergence of a vector field is zero then system (1.1)
defined for this vector field is integrable. In particular, if system (1.1) has
a null divergence factor then this system is integrable and the origin is a
center.

By using the functions xi, i = 1, . . . , p, defined implicitly by

(1.5) V1 =
p∑

j=1

xj , V2 =
p∑

j,k=1
j<k

xjxk, . . . , Vp = x1x2 . . . xp,

the function (1.4) can be written as V (R,ϕ) =
∏p

i=1(1 + xi(ϕ)R).
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Theorem 1. If

(V (R,ϕ))α =
( p∏

i=1

(1 + xi(ϕ)R)
)α

is a null divergence factor for system (1.1) with α a real number , then the
functions xi(ϕ), i = 1, . . . , p, satisfy the following system of differential
equations:

(1.6)
dxi

dz
=

xi

z − xi

s + 1
s− 1

+ α

p∑
j=1

xj

z − xj

, i = 1, . . . , p,

where z = Qs(ϕ).

For p = 2 it is possible to find the general solution for system (1.6) and
therefore to determine a null divergence factor for system (1.1). In this case,
we have

Theorem 2. For s ∈ N with s ≥ 2, and arbitrary k1, k2, ϕ0 ∈ R, the
system of the form (1.2) with

(1.7)

Ps(ϕ) = 2(−k1 coss−2(ϕ + ϕ0) sin3(ϕ + ϕ0)

+ k2 sins−2(ϕ + ϕ0) cos3(ϕ + ϕ0)),

Qs(ϕ) = (k1 coss−1(ϕ + ϕ0)− k2 sins−1(ϕ + ϕ0)) cos 2(ϕ + ϕ0),

is integrable.

In cartesian coordinates x = r cos(ϕ+ϕ0) and y = r sin(ϕ+ϕ0), we can
write system (1.7) in the form

(1.8)
ẋ = − y − k1x

s−1y + k2y
s−2(2x2 − y2),

ẏ = x + k1x
s−2(x2 − 2y2) + k2xys−1,

with s ∈ N and s ≥ 2. We notice that the origin is a center for system (1.8).
In Section 2 we give a method of obtaining particular solutions of sys-

tem (1.1). Theorem 1 is proved in Section 3. Finally, Theorem 2 is proved
in Section 4.

2. Particular solutions

Proposition 1. The function (1.4) is a particular solution of system
(1.3) if the homogeneous trigonometric polynomials Vk(ϕ), k = 1, . . . , p,
satisfy the following differential system:

(2.1)
V ′

k+1 + V ′
kQs + k(s− 1)VkPs = VkV ′

1 , k = 1, . . . , p− 1,

V ′
pQs + p(s− 1)VpPs = VpV

′
1 .

where ′ = d/dϕ.
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P r o o f. If we force V (R,ϕ) = 0 to be a particular solution of sys-
tem (1.3), then it must satisfy

(2.2) V̇ (R,ϕ) = λ(R,ϕ)V (R,ϕ)

= λ(R,ϕ)(1 + V1(ϕ)R + V2(ϕ)R2 + . . . + Vp(ϕ)Rp).

Differentiating V (R,ϕ) with respect to t we get

V̇ (R,ϕ) =
∂V

∂R
((s− 1)Ps(ϕ)R) +

∂V

∂ϕ
(1 + Qs(ϕ)R2)(2.3)

= (V1(ϕ) + 2V2(ϕ)R + . . . + pVp(ϕ)Rp−1)((s− 1)Ps(ϕ)R2)
+ (V ′

1(ϕ)R + V ′
2(ϕ)R2 + . . . + V ′

p(ϕ)Rp)(1 + Qs(ϕ)R)

= V ′
1(ϕ)R +

p−1∑
k=1

(V ′
k+1(ϕ)

+ V ′
k(ϕ)Qs(ϕ) + k(s− 1)Vk(ϕ)Ps(ϕ))Rk+1

+ (V ′
p(ϕ)Qs(ϕ) + p(s− 1)Vp(ϕ)Ps(ϕ))Rp+1,

and if we equate the terms on the right-hand side of (2.2) and (2.3) it results
first in λ(R,ϕ) = V ′

1(ϕ)R, and considering this relationship we obtain (2.1).
We notice that V (R,ϕ) satisfies V̇ = (V ′

1(ϕ)R)V .

Proposition 2. In order to find a particular solution of system (1.1) of
the form (1.4) it is sufficient to find p different solutions of the differential
equation

(x−Qs(ϕ))
dx

dϕ
= (s− 1)Ps(ϕ)x

so that the functions Vk(ϕ), k = 1, . . . , p, obtained from relations (1.6) be
homogeneous trigonometric polynomials of degree k(s− 1).

P r o o f. By using the functions xi introduced in (1.5) we define

(2.4) V i
0 = 1, V i

1 =
p∑

j=1
j 6=i

xj , V i
2 =

p∑
j,k=1
j<k

j,k 6=i

xjxk, . . .

. . . , V i
p−1 = x1x2 . . . xi−1xi+1 . . . xp,

for i = 1, . . . , p. From (1.5) and (2.4) we get

Vk =
1
k

p∑
i=1

V i
k−1xi, V ′

k =
p∑

i=1

V i
k−1x

′
i,
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where k = 1, . . . , p. Then we can write system (1.5) as
p∑

i=1

V i
kx′i+

( p∑
i=1

V i
k−1x

′
i

)
Qs + (s− 1)

( p∑
i=1

V i
k−1xi

)
Ps = Vk

( p∑
i=1

x′i

)
,

( p∑
i=1

V i
p−1x

′
i

)
Qs + (s− 1)

( p∑
i=1

V i
p−1xi

)
Ps = Vp

( p∑
i=1

x′i

)
,

where k = 1, . . . , p− 1. On the other hand, from the equalities

Vk

p∑
i=1

x′i −
p∑

i=1

V i
kx′i =

p∑
i=1

(Vk − V i
k )x′i =

p∑
i=1

V i
k−1xix

′
i, k = 1, . . . , p− 1,

Vp

p∑
i=1

x′i =
p∑

i=1

Vpx
′
i =

p∑
i=1

V i
p−1xix

′
i,

system (2.4) can be written as

(2.5)

p∑
i=1

V i
k−1(x

′
iQs + (s− 1)xiPs − xix

′
i) = 0, k = 1, . . . , p− 1,

p∑
i=1

V i
p−1(x

′
iQs + (s− 1)xiPs − xix

′
i) = 0.

If we set Xi = x′iQs + (s− 1)xiPs −xix
′
i, i = 1, . . . , p, system (2.5) becomes

(2.6)
p∑

i=1

V i
k−1Xi = 0, k = 1, . . . , p.

This is a linear system of p equations in the variables X1, . . . , Xp. The
matrix A of system (2.6) is given by

A =


1 1 . . . 1

V 1
1 V 2

1 . . . V p
1

. . . . . . . . . . . .
V 1

p−1 V 2
p−1 . . . V p

p−1

 ,

and a straightforward computation shows that

det A =
p∏

i,j=1
i<j

(xi − xj).

If we assume that the variables x1, x2, . . . , xp are pairwise different, then
det A 6= 0. Therefore, the only possible solution of the linear system (2.6) is
Xi = 0 for i = 1, . . . , p, that is,

x′iQs + (s− 1)xiPs − xix
′
i = 0, i = 1, . . . , p.

This completes the proof.
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We note that system (1.3) and the system of Proposition 2 are equivalent
if we make the change of variable R = −1/x.

3. Null divergence factors. If system (1.1) is written in polar coor-
dinates (see (1.2)), then the function (V (R,ϕ))α is a null divergence factor
for system (1.1) if

(3.1)
1
r

∂

∂r

(
Ps(ϕ)rs+1

(V (R,ϕ))α

)
+

∂

∂ϕ

(
1 + Qs(ϕ)rs−1

(V (R,ϕ))α

)
= 0.

Now assume that the function V (R,ϕ) is of the form given in (1.4) with
R = rs−1. Then if we develop the expression (3.1) with respect to the
powers of R, we have

(3.2)
(s + 1)Ps + Q′

s − αV ′
1 = 0,

V ′
k+1 + V ′

kQs + k(s− 1)VkPs = VkV ′
1 , k = 1, . . . , p− 1,

V ′
pQs + p(s− 1)VpPs = VpV

′
1 .

System (3.2) coincides with system (1.5) except that the value of V1 in
system (3.2) is determined as a function of Ps(ϕ), Q′

s(ϕ) and α.

P r o o f o f T h e o r e m 1. From (1.6), Proposition 2 and (2.5), sys-
tem (3.2) takes the form

(3.3) x′i =
(s− 1)Psxi

xi −Qs
, i = 1, . . . , p,

with the condition

(3.4) (s + 1)Ps + Q′
s − α

p∑
i=1

x′i = 0.

If we take z = Qs as independent variable instead of ϕ, then we have

dxi

dϕ
=

dxi

dQs

dQs

dϕ
, i = 1, . . . , p,

and (3.4) goes over to

(s + 1)Ps + Q′
s − αQ′

s

p∑
i=1

dxi

dz
= 0,

which gives

(3.5) Ps =
1

s + 1

(
α

p∑
i=1

dxi

dz
− 1

)
Q′

s.

By inserting the expression (3.5) in system (3.3), and considering the change
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of variable z = Qs we can write

dxi

dz
=

s− 1
s + 1

·

α

p∑
j=1

dxj

dz
− 1

xi − z
xi, i = 1, . . . , p.

Then, isolating dxi/dz, i = 1, . . . , p, in the above system we get

dxi

dz
=

p∏
j=1
j 6=i

(z − xj)

s + 1
s− 1

p∏
j=1

(z − xj) + α

p∑
j=1

( p∏
k=1
k 6=j

(z − xk)
)
xj

xi, i = 1, . . . , p.

If we divide the numerator and denominator of this fraction by the prod-
uct

∏p
j=1(z − xj), we obtain system (1.6).

Note that system (1.6) is symmetric with respect to the variables xi,
i = 1, . . . , p.

We want to find functions of the form

(3.6) U(x1, . . . , xp, z) ≡ H(x1, . . . , xp) + zG(x1, . . . , xp)

so that, for system (1.6), dU/dz = 0.

Proposition 3. In order to find functions of the form (3.6) for system
(1.6) it is sufficient to find solutions of the partial differential system

∂H

∂xi
+ xi

∂G

∂xi
+ αG = 0, i = 1, . . . , p,

(3.7)
p∑

i=1

xi
∂G

∂xi
+

s + 1
s− 1

G = 0.

P r o o f. If we differentiate (3.6) with respect to z, we have

dU

dz
=

p∑
i=1

∂H

∂xi

dxi

dz
+ z

p∑
i=1

∂G

dxi

dxi

dz
+ G = 0.

By replacing the value of dxi/dz, i = 1, . . . , p, given in (1.6) in the previous
expression it becomes

p∑
i=1

∂H

∂xi

xi

z − xi
+ z

p∑
i=1

∂G

∂xi

xi

z − xi
+

(
s + 1
s− 1

+ α

p∑
i=1

xi

z − xi

)
G = 0,

or
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p∑
i=1

∂H

∂xi

xi

z − xi
+

p∑
i=1

∂G

∂xi

(
xi +

x2
i

z − xi

)
+

(
s + 1
s− 1

+ α

p∑
i=1

xi

z − xi

)
G

=
p∑

i=1

xi
∂H

∂xi
+ x2

i

∂G

∂xi
+ αxiG

z − xi
+

p∑
i=1

xi
∂G

∂xi
+

s + 1
s− 1

G = 0.

In order that this last expression be null it is sufficient that conditions
(3.7) hold. Notice that these conditions are not necessary in order that the
previous expression be null.

4. Quadratic null divergence factors. We now consider the case
p = 2, that is to say,

V (R,ϕ) = 1 + V1(ϕ)R + V2(ϕ)R2.

In this case, system (3.2) takes the form

(s + 1)Ps + Q′
s − αV ′

1 = 0,

V ′
2 + V ′

1Qs + (s− 1)V1Ps = V1V
′
1 ,

V ′
2Qs + 2(s− 1)V2Ps = V2V

′
1 ,

where V1 = x1 + x2, V2 = x1x2, and system (1.7) goes over to

(4.1)

dx1

dz
=

x1

z − x1

a + α

(
x1

z − x1
+

x2

z − x2

) ,

dx2

dz
=

x2

z − x2

a + α

(
x1

z − x1
+

x2

z − x2

) ,

with a = (s + 1)/(s− 1).
In this case, we want to obtain functions of the form

(4.2) U(x1, x2, z) = H(x1, x2) + zG(x1, x2)

so that, for system (4.1), dU/dz = 0.
By applying Proposition 3, the functions H(x1, x2) and G(x1, x2) have

to satisfy the system

(4.3)

∂H

∂x1
+ x1

∂G

∂x1
+ αG = 0,

∂H

∂x2
+ x2

∂G

∂x2
+ αG = 0,

x1
∂G

∂x1
+ x2

∂G

∂x2
+ aG = 0.
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If we make the change of variable u = x2/x1 and we take the functions G
and H as follows:

G(x1, x2) = x−a
1 g(u), H(x1, x2) = x1−a

1 h(u),

then the third equation of system (4.3) is satisfied identically, and the system
takes the form

αg + u
dg

du
+

dh

du
= 0,

(4.4)

(1− a)h = [(a− α)− αu]g + u(1− u)
dg

du
.

If we differentiate the second equation of (4.4) with respect to u, we have

(1− a)
dh

du
= −αg + [(a− α + 1)− (α + 2)u]

dg

du
+ u(1− u)

d2g

du2
.

By replacing the value of dh/du obtained from the first equation of system
(4.4) in the previous expression, we find

(4.5) u(1− u)
d2g

du2
+ [(1 + a− α)− (1 + α + a)u]

dg

du
− aαg = 0.

The relation (4.5) is a hypergeometric second order linear differential
equation. We will study it for the particular case a−α = 1/2. This relation
is satisfied by certain integrable systems (1.1) in the quadratic case s = 2.

Since a− α = 1/2, the equation (4.5) can be written as

u(1− u)
d2g

du2
+

(
3
2
−

(
2a +

1
2

)
u

)
dg

du
− a

(
a− 1

2

)
g = 0.

The general solution of this equation is given by

g(u) = u−1/2[C1(1 +
√

u)2(1−a) + C2(1−
√

u)2(1−a)],

where C1 and C2 are arbitrary constants. For this g(u) we have

h(u) = C1(1 +
√

u)2(1−a) − C2(1−
√

u)2(1−a).

By going back through the change of variables it is easy to see that

G(x1, x2) = (x1x2)−1/2(C1(
√

x1 +
√

x2)2(1−a) + C2(
√

x1 −
√

x2)2(1−a)),

H(x1, x2) = C1(
√

x1 +
√

x2)2(1−a) − C2(
√

x1 −
√

x2)2(1−a).

Therefore

U1(x1, x2, z) = (
√

x1 +
√

x2)2(1−a)(1 + z/
√

x1x2),

U2(x1, x2, z) = (
√

x1 −
√

x2)2(1−a)(1− z/
√

x1x2)
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are two independent functions of the form (4.2) for system (4.1), which we
can write in the form

U1(x1, x2, z) = (x1 + x2 + 2
√

x1x2)1−a(1 + z/
√

x1x2),

U2(x1, x2, z) = (x1 + x2 − 2
√

x1x2)1−a(1− z/
√

x1x2).

As V1 = x1 + x2, V2 = x1x2, z = Qs and a = (s + 1)/(s− 1) we can write

U1(V1, V2, z) = (V1 + 2
√

V2)−2/(s−1)(1 + Qs/
√

V2),

U2(V1, V2, z) = (V1 − 2
√

V2)−2/(s−1)(1−Qs/
√

V2),

that is,

(4.5)
(V1 + 2

√
V2)−2(s−1)(1 + Qs/

√
V2) = K1,

(V1 − 2
√

V2)−2/(s−1)(1−Qs/
√

V2) = K2,

where K1 and K2 are arbitrary constants.

P r o o f o f T h e o r e m 2. We can write system (4.5) as

(4.6)
V1 + 2

√
V2 = K1(1 + Qs/

√
V2)(s−1)/2,

V1 − 2
√

V2 = K2(1−Qs/
√

V2)(s−1)/2.

By multiplying the two equations, we have

(4.7) V 2
1 − 4V2 = K1K2(1−Q2

s/V2)(s−1)/2.

As V1 and V2 are homogeneous trigonometric polynomials of degrees s− 1
and 2(s− 1) respectively, the left-hand side of (4.7) is a trigonometric poly-
nomial of degree 2(s − 1). So the right-hand side of (4.7) must have the
same degree. In particular, V2 is a divisor of Q2

s. On the other hand, if we
square the first equation of (4.6), and we develop the right-hand side of that
equation according to the Newton binomial, and group the terms with or
without the factors

√
V2, we see that

√
V2 is a homogeneous trigonometric

polynomial of degree s − 1, and a divisor of Qs. Hence X2 = Qs/
√

V2 is a
homogeneous trigonometric polynomial of degree (s + 1)− (s− 1) = 2, and
we can write system (4.6) as

(4.8)
V1 + 2

√
V2 = K1(1 + X2)(s−1)/2,

V1 − 2
√

V2 = K2(1−X2)(s−1)/2.

By subtracting both equations of system (4.8), we have

4
√

V2 = K1(1 + X2)(s−1)/2 −K2(1−X2)(s−1)/2,

and then

Qs = X2

√
V2 =

1
4
X2(K1(1 + X2)(s−1)/2 −K2(1−X2)(s−1)/2).
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If s is even, the trigonometric polynomials 1 + X2 and 1 −X2 must be
the squares of first degree homogeneous trigonometric polynomials in order
to satisfy system (4.8). In the case where s is odd, this condition is not
necessary, but we can also impose it. We can easily prove that

X2(ϕ) = cos 2(ϕ + ϕ0) = cos 2ω,

where ϕ0 is arbitrary; it follows that

(4.9) 1 + X2 = 2 cos2 ω, 1−X2 = 2 sin2 ω,

and
Qs(ϕ) = (k1 coss−1 ω − k2 sins−1 ω) cos 2ω,

where k1 = 1
4K12(s−1)/2, k2 = 1

4K22(s−1)/2. By inserting the values ob-
tained in (4.9) into system (4.8) we have

V1 + 2
√

V2 = 4k1 coss−1 ω, V1 − 2
√

V2 = 4k2 sins−1 ω.

Therefore we obtain

V1 = 2(k1 coss−1 ω + k2 sins−1 ω), V2 = (k1 coss−1 ω − k2 sins−1 ω)2.

Finally, Ps is obtained from the first equation of (3.2):

Ps =
1

s + 1
(−Q′

s + αV ′
1) =

1
s + 1

(
−Q′

s +
s + 3

2(s− 1)
V ′

1

)
= 2(−k1 coss−2 ω sin3 ω + k2 sins−2 ω cos3 ω).

This completes the proof of the theorem.
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[8] H. Żo  l a̧dek, On a certain generalization of Bautin’s Theorem, preprint, Institute of
Mathematics, University of Warsaw, 1991.

JAVIER CHAVARRIGA

DEPARTAMENT DE MATEMÀTICA
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