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GROWTH AND ACCRETION OF MASS
IN AN ASTROPHYSICAL MODEL, II

Abstract. Radially symmetric solutions of a nonlocal Fokker–Planck
equation describing the evolution of self-attracting particles in a bounded
container are studied. Conditions ensuring either global-in-time existence
of solutions or their finite time blow up are given.

1. Introduction. In the second part of [1] we continue the study of
radially symmetric solutions to the parabolic-elliptic system considered in
[3–5], [10]:

(1) ut = ∆u +∇ · (u∇ϕ),
(2) ∆ϕ = u.

Among physical interpretations of the system (1)–(2) we cite the evolution
version of the Chandrasekhar equation from the theory of gravitating stars.
For a discussion of other motivations leading to the nonlocal parabolic equa-
tion (1) of Fokker–Planck type we refer the reader to the introductions in
[5], [10] and [11–12]. A related system of two parabolic equations modelling
a biological phenomenon of chemotaxis has been studied in [7].

When the system (1)–(2) is considered in a bounded domain Ω ⊂ Rn,
the nonlinear no-flux condition for the density of particles u,

(3)
∂u

∂ν
+ u

∂ϕ

∂ν
= 0 on ∂Ω,

is a natural one, since it guarantees the conservation of the total mass M =∫
Ω

u(x, t) dx.
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We assume for the gravitational potential ϕ generated by u either the
Dirichlet condition

(4.1) ϕ = 0 on ∂Ω,

or

(4.2) ϕ = En ∗ u,

with En being the fundamental solution of the n-dimensional Laplacian.
The solvability of the system (1)–(4) with the initial condition

(5) u(x, 0) = u0(x) ≥ 0

has been studied in [5]. For instance, u0 ∈ Lp(Ω) with some p > n/2
gives the existence of a local-in-time weak solution which becomes instanta-
neously regular: u ∈ L∞loc((0, T );L∞(Ω)) thanks to the parabolic character
of (1). When Ω is star-shaped and u0 is big enough (e.g. when either
M =

∫
Ω

u0(x) dx = |u0|1 or the concentration of u0 is sufficiently large),
solutions cannot be global in time (see [5, Th. 2(v)], [3]); we say that gravi-
tational collapse occurs. For the Cauchy problem (1)–(2), (4.2), (5) consid-
ered in the whole space Rn, (nearly optimal) conditions for the existence of
local-and global-in-time solutions are reported in the paper [2] (Theorems
1, 2). Finite time blow up of solutions is proved in [2, Proposition 1]; for
the radially symmetric case see also [1, Theorem (i)] and [10, Th. 4].

In the case when Ω is the ball B(0, R) ⊂ Rn and u is radially symmetric
the nonlocal problem (1)–(4) can be reformulated as the parabolic equation

(6) Qt = Qrr − (n− 1)r−1Qr + σ−1
n r1−nQQr,

with the boundary conditions

(7) Q(0, t) = 0, Q(R, t) = M.

Here Q(r, t) =
∫

B(0,r)
u(x, t) dx is the integrated density, σn is the area of

the unit sphere in Rn, ∂
∂r Q(r, t) = σnrn−1u(r, t) (see [4, (6)–(7)]). The

initial condition

(8) Q(r, 0) = Q0(r), 0 ≤ r ≤ R,

is a positive nondecreasing function, and the obvious compatibility condition
is

Q0(0) = 0, Q0(R) = M.

Such a formulation allows us to consider singular densitites u(r, t) =
σ−1

n r1−n ∂
∂r Q(r, t) (for instance: for n ≥ 3 the Chandrasekhar stationary

solution

(9) ũ(x) = 2(n− 2)|x|−2
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or u0(x) = const · ũ(x), and for n = 2, a measure u0), which are not
necessarily smoothed out for t > 0 (see [4, Th. 2], [1, Theorem (i)], [2, Th.
2, Prop. 3]).

Keeping in mind scaling properties of (6), we may assume without loss
of generality that R = 1. Indeed, the function R2−nQ(Rr, R2t), together
with Q(r, t), is a solution of (6). The problem (6)–(8) can be transformed,
using a new independent variable y = rn (see [4, (12)], [1, (15)]) into

(10) Qt = n2y2−2/nQyy + nσ−1
n QQy,

(11) Q(0, t) = 0, Q(1, t) = M, Q(y, 0) = Q0(y).

As we have noted in [1, proof of Theorem], the parabolic comparison
principle for solutions of (10)–(11) holds, and this can be proved using stan-
dard approximation techniques ([6], [9]; cf. [4, Th. 2]).

We will give in this note some results on global-in-time existence of so-
lutions (Theorem 1) corresponding to bounded densities. We remark that
Theorem 2 in [4] deals with Q which are classical solutions of (10)–(11) in
(0, 1)×(0,∞), and may correspond to unbounded u, while here Q will be
smooth in [0, 1]× (0,∞). Moreover, we will prove finite time blow up of
solutions for certain Q0 (Theorem 2), a phenomenon described by an un-
bounded growth of the derivative ∂

∂y Q, i.e. quenching for (10). This gives an
insight into the mechanism of formation of singularities leading to nonglobal
existence of radial solutions proved in [4, Th. 3]. We will consider in the
last section a related model which can be interpreted as a description of the
evolution of a cloud of particles surrounding a fixed mass. The stationary
version of this problem has been mentioned in [11, Lemma 4.5].

As in [1], the techniques used in this paper are based on the maximum
principle, comparison of solutions to parabolic equations and variants of the
Hopf lemma. The idea of constructing suitable super- and subsolutions was
suggested by the form of stationary solutions in [4, Sec. 4], by (9) written as

Q̃(r) = 2σnrn−2 or Q̃(y) = 2σny1−2/n,

and by the proof of Theorem (b) in [7].

Acknowledgements. The first named author is grateful to Willi Jäger
for an interesting discussion during a meeting at the Banach Center in War-
saw, November 1994. We thank Piotr Dudra and Agnieszka Mormul for
their assistance in numerical experiments.

2. Global existence. Our main result in this section is the global-
in-time existence of classical solutions under suitable assumptions on Q0.
Unlike the result in [4, Th. 2], here we suppose that Q0 is differentiable
and d

dy Q0 is bounded, and we get as a part of the conclusion that ∂
∂y Q is

bounded.
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Theorem 1. (i) If n = 2, Q0(1) = M < 8π and d
dy Q0(0) < ∞, then

there exists a global-in-time solution Q of (10)–(11) which is classical in
(0, 1)× (0,∞) and continuous up to the boundary.

(ii) If n = 2, d
dy Q0(y) ≤ AB(y + B)−2 for some A < 8π, B > 0 such

that B(8−A/π) ≥ 16, and Q0(y) ≥ Myk for some k ≥ 1, then there exists
a solution Q of (10)–(11) defined globally in time, with uniformly bounded
space derivative ∂

∂y Q.

(iii) If n ≥ 3 and Q0(y) ≤ Ay(y2/n + B)−1 for some A ≤ 2σn and
B > 0, then there exists a solution Q of (10)–(11) which is classical in
(0, 1)× (0,∞).

(iv) If n ≥ 5, d
dy Q0(y) ≤ A((1 − 2/n)y2/n + B)(y2/n + B)−2 for some

A ≤ 2((n− 4)/(n− 2))σn, B > 0, and Q0(y) ≥ Myk for some k ≥ 1, then
the conclusion of (ii) holds true.

R e m a r k s . (i)–(ii) For n = 2 and |u0|1 = M < 8π we proved in [5, Th.
2(iv)] that global weak solutions of (1)–(3), (4.1), (5) in arbitrary domains
Ω ⊂ R2 do exist. The proof is much more subtle than that below.

(iii) We stress the fact that solutions of (10)–(11) can be obtained under
the sole assumption Q0(y) ≤ 2σny1−2/n, but we are unable to show any
estimate for its derivative. An approximating sequence has been constructed
in [4, Th. 2], but even if Q0 is regular, no bound for ∂

∂y Q near y = 0 is
available when we work with the family of supersolutions to (10)–(11) in the
proof below.

(iv) We recall that for n ≥ 5, Q0 ∈ C1−2/n(0, 1), d
dy Q0(1) < ∞ and

d
dy Q0(y) ≤ 2((n−4)/n)σny−2/n (hence Q0(y) ≤ 2((n−4)/(n−2))σny1−2/n),
we considered in [4, Th. 2] global solutions of (10)–(11) which are classical
in (0, 1) × (0,∞), i.e. in the interior of their domain of definition. These
solutions converge to the unique stationary solution as t tends to +∞ (see
[4, Th. 2] and [1, Prop. 2]).

The convergence of solutions as t → +∞ in Theorem 1(ii), (iv) can be
obtained by using a similar argument involving Lyapunov functions intro-
duced in [4–5].

P r o o f o f T h e o r e m 1. Let us begin with some calculations which
will be useful also in the proof of Theorem 2. Define a nonlinear differential
operator

(12) Lq = n2y2−2/nqyy + nσ−1
n qqy − qt

and consider a function

(13) q(y, t) =
Ay

y2/n + B(t)
,



Growth and accretion of mass, II 355

where A > 0 is a constant and B(t) ≥ 0 is a (monotone) function of t. With
these definitions we have

(14)

qt(y, t) = −AyB′(t)(y2/n + B(t))−2, ′ = d/dt,

qy(y, t) = A((1− 2/n)y2/n + B(t))(y2/n + B(t))−2,

qyy(y, t) = − 2
n

Ay2/n−1((1− 2/n)y2/n

+ (1 + 2/n)B(t))(y2/n + B(t))−3,

qyyy(y, t) =
2
n

Ay2/n−2((1− 2/n)(1 + 2/n)(y4/n + B2(t))

+ 2(1 + 8/n2)y2/nB(t))(y2/n + B(t))−4,

qyt(y, t) = −AB′(t)((1− 4/n)y2/n + B(t))(y2/n + B(t))−3,

and consequently we obtain

Lq = A(y2/n + B(t))−3{y2/n(n− 2)(Aσ−1
n − 2)(15)

+ B(t)(nAσ−1
n − 2(n + 2)) + B′(t)(y2/n + B(t))}.

If Q solves (10), then the derivative P = ∂
∂y Q satisfies the equation L1P = 0,

where
(16) L1p = n2y2−2/npyy + 2n(n− 1)y1−2/npy + nσ−1

n p2 + nσ−1
n Qpy − pt.

Thus we will also need for p = ∂
∂y q the identity

(17) L1p = A(y2/n + B(t))−4{y4/n((1− 2/n)((n− 2)Aσ−1
n

− 2(n− 4)) + (1− 4/n)B′(t)) + 2y2/nB(t)((n− 2)Aσ−1
n

− 2(n− 4)(1 + 2/n) + (1− 4/n)B′(t))

+ B2(t)(nAσ−1
n − 2(n + 2) + B′(t))}+ nσ−1

n Qpy.

The idea of the proof is the following: we approximate (10) by uniformly
parabolic equations for Q = Qε, ε > 0,

Qt = n2(y + ε)2−2/nQyy + nσ−1
n QQy

in [0, 1] × [0, T ], T > 0 arbitrary. The functions q(y, t) of the form (13)
with suitably chosen A, B, and y replaced by y + ε are supersolutions of
the above regularized equation, and the comparison principle holds for these
equations. Finally, we pass to the limit ε → 0 on [δ, 1]× [0, T ] for each δ > 0.
Similarly we work with the equation for the derivative ∂

∂y Q of a solution Q

to (10)–(11). Since this construction is standard in the theory of parabolic
equations ([6], [9]; for similar considerations see the proof of Theorem 2 in
[4]), we restrict ourselves to the verification that (13) are supersolutions to
(10)–(11), and that the derivatives p = ∂

∂y q of suitable q’s satisfy L1p ≤ 0
in (16).
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(i) Now if n = 2 and A ≤ 4σ2 = 8π, then (15) implies that Lq ≤ 0,
so q is a supersolution of the equation (10) whenever B′(t) ≤ 0, e.g. when
B(t) ≡ B > 0. On the other hand, if d

dy Q0(0) < ∞, M = Q0(1) < 8π, then
Q0(y) ≤ min(Ky,M) for some K > 0, hence Q0(y) ≤ Ay(y + B)−1 ≡ q(y),
e.g. for B = (8π −M)/(2K), A = supy∈[0,1] Q0(y)(1 + B/y) < 8π.

(ii) Observe that under the assumption on d
dy Q0 we have Q0(y) ≤

Ay(y + B)−1 ≡ q(y), so (i) applies. If M ≤ 8π/12, then there exist many
Q0’s satisfying all the hypotheses in (ii). In fact, Q0(y) = Myk with 1 ≤ k ≤
8π/(12M) is such an initial condition since kMyk−1 ≤ kM ≤ AB(1 + B)−2

= qy(1) ≤ qy(y) for A/π = 8− 16/B, B = 5 and each y ∈ [0, 1].
Concerning the equation for the derivative of the solution Q(y, t) to

(10)–(11), it is easy to see from (17) that p = d
dy q is a supersolution of this

equation if B(8−A/π) ≥ 16 (note that Qpy ≤ 0).
Next we see that q, being a supersolution of the problem (10)–(11) such

that q(0) = Q(0, t), satisfies ∂
∂y Q(0, t) ≤ d

dy q(0) = p(0). Similarly, Q(y) =
Myk is a subsolution of (10)–(11), Q(1) = Q(1, t), so ∂

∂y Q(1, t) ≤ d
dy Q(1) =

kM ≤ p(1). This means that p is a supersolution of the equation L1Qy = 0
with the above initial and boundary conditions.

(iii) If n ≥ 3, A ≤ 2σn < 2(n + 2)σn/n and B′(t) ≤ 0, then (15) implies
that q is a supersolution of (10)–(11) provided that Ay(y2/n + B(0))−1 ≥
Q0(y), y ∈ [0, 1]. Moreover, even if A < 2(n+2)σn/n, then taking B(t) ≡ B
large enough we can assure that q is a supersolution of the problem (10)–(11)
(note that y ≤ 1) for suitable Q0’s.

(iv) First we note that the condition on d
dy Q0 implies

Q0(y) ≤ Ay(y2/n + B)−1 ≡ q(y),

hence (iii) applies to such initial data. If M < 2((n − 4)/n)σn, then there
exist many Q0’s satisfying all the assumptions in (iv), for instance Q0(y) =
Myk with 1 ≤ k < 2((n− 4)/n)σnM−1. Indeed, we have kMyk−1 ≤ kM ≤
A(1−2/n+B)(1+B)−2 = qy(1) ≤ qy(y) for some A ≤ 2((n−4)/(n−2))σn,
suitably small B > 0 and each y ∈ [0, 1].

Applying the operator L1 in (16) to p = d
dy q we deduce from (17) that

if n ≥ 5 and

Aσ−1
n ≤ 2

n− 4
n− 2

< 2
n− 4
n− 2

· n + 2
n

< 2 < 2
n + 2

n
,

then p is a supersolution of the equation L1Qy = 0. Note that if Aσ−1
n <

2(n + 2)/n and B > 0 is sufficiently large, then p is also a supersolution of
L1Qy = 0 even if n = 3 or n = 4 (remember that y ≤ 1). However, in this
case conditions for p(y) ≥ d

dy Q0(y) are not as simple to express explicitly as
before.
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Clearly, Q(y) = Myk is a subsolution of the problem (10)–(11), Q(1) =
Q(1, t), and the inequality Q(y) ≤ Q(y, t) implies ∂

∂y Q(1, t) ≤ d
dy Q(1) =

kM ≤ p(1). Therefore the function p is a supersolution of the problem
L1Qy = 0 with the initial condition d

dy Q0 and the boundary conditions
∂
∂y Q(0, t) ≤ d

dy q(0) = p(0), ∂
∂y Q(1, t) ≤ p(1).

The remaining part of the proof is a standard consequence of the com-
parison principle for parabolic equations (cf. [6], [9]).

3. Blow up of solutions. As was already mentioned in the introduc-
tion, large initial data u0 lead to nonglobal solutions, i.e. ones that cease
to exist after a finite time. The proofs of explosion of solutions published
in [2, Prop. 1], [5, Th. 2(v)], [4, Th. 3] and [3] are based on the so-called
virial method, that is, moment functionals of u are considered. These proofs
are indirect; they do not explain how the solutions blow up. In Theorem 2
below we will use another technique to prove the gravitational collapse: we
construct some blowing up subsolutions for suitably large initial data Q0.
They show that the phenomenon of quenching is possible for the problem
(10)–(11), i.e. ∂

∂y Q(y, t) becomes unbounded (together with u(y, t)) when
t → T−. On the other hand, Theorems (ii), (iii) in [1] show that if the blow
up is accompanied by concentration of u near y = 0, then this concentra-
tion must be sufficiently large. Together with Theorem 2 below this gives
bounds for threshold values of the concentration of initial data leading to
global existence versus those with finite time explosion.

Theorem 2. (i) If n = 2 and Q0(1) = M > 8π, then the solution Q of
(10)–(11) cannot be defined globally in time.

(ii) If n ≥ 3 and Q0(y) ≥ Ay(y2/n + b)−1 + εy for some b, ε > 0 and
A > 2(n+2)σn/n, then Q solving the problem (10)–(11) cannot be continued
for all t ≥ 0.

R e m a r k s. (i) The sufficient condition for the blow up of solutions in
the two-dimensional situation coincides with that in [4, Th. 3].

(ii) Sufficient conditions for the blow up in higher-dimensional radial
situation are more subtle than that (Q0(1) = M > 2nσn) given in [4, Th.
3], and incomparable with that in [3, Th. 1]. In particular, for n ≥ 3
solutions with 2(n + 2)σn/n < M ≤ 2nσn can blow up provided that their
initial distributions are highly concentrated near y = 0.

P r o o f o f T h e o r e m 2. The idea of the proof is similar to that of
Theorem 1. We consider approximating equations and use systematically
the comparison principle. Of course, here we will construct subsolutions
that have unbounded space derivatives.
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(i) Consider Q(y, t) = q(y, t)+εy with q defined in (13), B(t) = (b− ct)2

and 0 ≤ t ≤ T = b/c, where the parameters b, c, ε will be determined later.
Using the formulas (14), (15) we arrive at

LQ ≥ Ay(y + B(t))−3{−2c(b− ct)(y + B(t))

+ (A/π − 8)B(t) + επ−1(y + B(t))2}
≥ Ay(y + B(t))−3{−cB(t)− cy2 − 2cB3/2(t)

+ (A/π − 8)B(t) + επ−1(y2 + B2(t))}.
Therefore, for each b > 0, A > 8π, ε > 0 there exists c > 0 such that
LQ ≥ 0 for all t ∈ [0, T ], y ∈ [0, 1]. Clearly, if Q0(1) = M > 8π and
d
dy Q0(0) > 0, then there exist A > 8π, b large enough and ε > 0 such that
Q(y, 0) = Ay(y+b2)−1 +εy ≤ Q0(y) for all y ∈ [0, 1] and Q(1, t) ≤ M for all
t ∈ [0, T ]. Finally, shifting the initial data Q0 to any time level t0 > 0 we can
assume, without loss of generality, that d

dy Q0(0) > 0. This is a consequence
of the Hopf lemma mentioned in [10, Remark 4] which gives ∂

∂y Q(0, t0) > 0.
Consequently, we get for each δ > 0,

lim
t→T−

sup
y<δ

Q(y, t) ≥ A,

and this shows that Q cannot be defined for t = T as a smooth function.
Indeed, the derivative ∂

∂y Q(0, T ) should be infinite by the comparison with
the subsolution Q: Q ≥ Q. Since ∂

∂y Q = n−1σnu, this means that u(0, T )
would become infinite together with ∂

∂y Q(0, T ).
Incidentally, note that if a finite time blow up is accompanied by the

concentration of mass near the origin, this mass is at least 4π ([1, Theorem
(ii)]).

(ii) We construct a subsolution of the form Q = q(y, t) + εy as in (i).
Now the action of the operator L on Q gives

LQ ≥ Ay(y2/n + B(t))−3{−2c(b− ct)(y2/n + B(t))

+ (n− 2)(Aσ−1
n − 2)y2/n + (nAσ−1

n − 2(n + 2))B(t)

+ εnσ−1
n (y2/n + B(t))2}

≥ Ay(y2/n + B(t))−3{−cB(t)− cy4/n − 2cB3/2(t)

+ (n− 2)(Aσ−1
n − 2)y2/n + (nAσ−1

n − 2(n + 2))B(t)

+ εnσ−1
n y4/n + εnσ−1

n B2(t)}.
Hence, for each A > 2(n + 2)σn/n > 2σn, b > 0, ε > 0, there exists c > 0
such that LQ ≥ 0. Therefore, if Q(y, 0) = Ay(y2/n + b2)−1 + εy ≤ Q0(y),
then Q is a subsolution of the problem (10)–(11). The asymptotic behavior
of Q as t → T−, T = b/c, shows that Q(y, t) ≥ Ay1−2/n as t → T−, so
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∂
∂y Q(0, T ) becomes infinite. This contradicts the global-in-time existence
of the classical solution Q. As before, the density u blows up in L∞ when
t → T−.

The high concentration assumption on Q0 in (ii) is slightly more difficult
to interpret than (i) for n = 2. Nevertheless, if Q0(y) ≥ (2(n + 2)σn/n
+δ)y1−2/n for y ∈ [y0, 1] with some y0 > 0, δ > 0, and Q0(y) ≥ (2(n+2)σn/n
+2δ)y for y ∈ [0, y0], then Q blows up in a finite time. Such a Q0 corresponds
to the density u0(x) ≈ (n−2)(2(n+2)+δ)n−1|x|−2, |x| ≥ |x0| > 0, but u0(x)
can be chosen bounded near x = 0. This is a weaker condition ensuring blow
up than that in [4, Th. 3]. Of course, a sufficient condition for the blow up
(Q0(r) > 2σnrn−2 for each r > 0) for the problem in the whole space in [1,
Theorem (i)] is more transparent.

4. A modified problem. Here we apply methods developed in [4] and
in the preceding sections to analyze solutions to a related problem mentioned
in [11, Lemma 4.5]. Consider a star of mass M∗ > 0 fixed at an interior
point x0 of a domain Ω ⊂ Rn and surrounded by a cloud of particles. The
evolution of the density u of particles is now described by a modification of
the system (1)–(2) where (2) is replaced by the equation ∆ϕ = u + M∗δx0

with δx0 the Dirac measure at x0.
Assuming that Ω is the ball B(0, R), x0 = 0 and u is radially symmetric,

we obtain

(18) Qt = Qrr − (n− 1)r−1Qr + σ−1
n r1−n(Q + M∗)Qr

as the counterpart of (6) for this modified problem, with the initial and
boundary conditions (7)–(8). Likewise, (10) (after the rescaling of M∗ to
R2−nM∗) becomes

(19) Qt = n2y2−2/nQyy + nσ−1
n (Q + M∗)Qy

with the conditions (11) as before.
The author of [11] has observed in Lemma 4.5 that for n = 2 stationary

solutions of (18) exist if and only if M +2M∗ < 8π. Indeed, in our notation
we get

Q(y) = M(1 + c)yγ(yγ + c)−1

with M∗ ∈ (0, 4π), γ = 1 −M∗/(4π) ∈ (0, 1), c = (8π − 2M∗)/M − 1 > 0
and

(20) M + 2M∗ < 8π,

since the stationary version of (19) is an integrable equation; for related
calculations see [4, Sec. 4]. Note that these steady states have unbounded
derivatives d

dy Q(y) when y → 0. We prove below that (20) is a crucial
condition in order that a counterpart of Theorem 1(i) hold true. Moreover,
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local-in-time solutions to (19), (11) cannot be continued to global ones when
M+2M∗ > 8π. Thus, the critical total mass for the gravitational collapse in
(19) is 8π−M∗, so it is strictly less than 8π as was for the original problem
(10)–(11).

Theorem 3. Let n = 2 in the problem (19) with the conditions (11).

(i) If M + 2M∗ < 8π, d
dy Q0(0) < ∞, then there exists a global solution

Q, classical in (0, 1)× (0,∞).
(ii) If M +2M∗ > 8π, then solutions cannot be defined globally in time.

P r o o f. (i) Since the idea of the proof resembles that of Theorem 1(i)
we only mention the main technical tools. Of course, we do not expect any
result similar to that in Theorem 1(ii), because even the stationary solutions
have unbounded derivatives.

A counterpart of the function (13),

(21) q(y) =
Ayγ

yγ + B
,

with γ = 1−M∗/(4π) and B > 0, is a supersolution of (19) provided that
A ≤ 8π − 2M∗. The condition d

dy Q0(0) < ∞ guarantees that a suitably
small B > 0 can be chosen so that q(y) ≥ Q0(y). This means that q is a
supersolution of the problem (19), (11).

(ii) We apply the idea of the proof of Theorem 3 in [4]. Integrating (19)
on [0, 1] we obtain

d

dt

( 1∫
0

Qdy
)

= 4yQy|10 − 4
1∫

0

Qy dy +
1
2π

1∫
0

(Q2)y dy +
1
π

1∫
0

M∗Qy dy,

hence

(22)
d

dt

( 1∫
0

Qdy
)
≥ −4M +

M2

2π
+

MM∗

π
=

M

2π
(M + 2M∗ − 8π).

It is clear that under the condition M + 2M∗ > 8π positive nondecreasing
solutions of (19), (11) cannot be global in time because (22) implies an
unbounded growth of the integral

∫ 1

0
Q, while

∫ 1

0
Q ≤ M must hold.

Note that multiplying (18) by r and integrating on [0, R], we obtain the
condition M + 2M∗ > 2nσnRn−2 as a generalization of the condition in (ii)
for the finite time blow up in the n-dimensional problem (cf. [4, Th. 3] for
M∗ = 0).

Another proof of (ii) (in the spirit of that of Theorem 2(i)) can be given
under a mild supplementary assumption on the behavior of Q0 near y = 0.
Namely, if M + 2M∗ > 8π, then Q(y, t) = Ayγ(yγ + (b− ct)2)−1 + εy, with
an A > M and suitable b, c, ε > 0, is a subsolution of the problem (19), (11).



Growth and accretion of mass, II 361

R e m a r k. It is of interest to note that for n = 2 local-in-time solutions
to (19), (11) can be defined only if M∗ < 4π. Indeed, positive nondecreasing
solutions to (19), (11) are solutions of the linear parabolic equation qt =
4yqyy + π−1(M∗ + Q)qy. The standard theory of diffusion processes shows
that this equation can have a solution satisfying the boundary conditions
q(0, t) = 0, q(1, t) = M only if M∗ < 4π (see e.g. [8, Ch. 15, Sec. 6,
Example 6, p. 238, or Elementary Problem 28, p. 381]).
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