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The equation x+ y = 1 in finitely generated groups

by

F. Beukers (Utrecht) and H. P. Schlickewei (Ulm)

1. Introduction. Let H be a finitely generated subgroup of rank r in
(C∗)2. Denote by G the Q-closure of H, i.e. the subgroup of (C∗)2 consisting
of all pairs a = (a1, a2) ∈ (C∗)2 such that aN = (aN1 , a

N
2 ) ∈ H for some

N ∈ N. We are interested in an upper bound for the number of solutions
(x, y) ∈ G of the equation

(1) x+ y = 1.

A special case of (1) is obtained if we restrict x and y to the group of so-called
S-units in an algebraic number field K. Here S is assumed to be a finite set of
places of K including all infinite ones. Supposing that d = [K : Q], s = #S
and letting a, b ∈ K∗ be fixed, J. H. Evertse [3, Theorem 1] showed that

(2) ax+ by = 1

has not more than 3 ·7d+2s solutions. Since s ≥ d/2 this implies that (2) has
at most 3 · 74s solutions. We can apply this result to equation (1). However,
the estimate will depend on the degree of the field containing H, and on s,
the number of places for which the elements of H have non-trivial valuation.
Note that for fixed r the number s may have arbitrarily large values.

We shall be interested in bounds which depend only on r. The first such
uniform result for a general subgroup G of (C∗)2 was given in [5]. There
the bound 2226+36r2

was derived for the number of solutions of equation (1).
This was improved in [6] to 213r+63rr.

In this paper we obtain

Theorem 1.1. Let G be the Q-closure of a finitely generated subgroup of
(C∗)2 of rank r. Then the equation

x+ y = 1, (x, y) ∈ G,
has not more than 28r+8 solutions.

Note that this bound, apart from the numerical constants, has the same
shape as Evertse’s upper bound.

[189]
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It is well known that a particular application of Theorem 1.1 deals with
the multiplicity of binary recurrences. Let {um}m∈Z be a sequence of com-
plex numbers satisfying the recurrence relation

um+2 = ν1um+1 + ν0um

with ν0, ν1 ∈ C, ν0 6= 0. Suppose that we have initial values (u0, u1) 6= (0, 0).
Write f(z) = z2 − ν1z − ν0. Let α, β be its zeros. Note that ν0 6= 0 implies
α, β 6= 0. Let us assume that α 6= β. Then there exist a, b ∈ C such that

um = aαm + bβm.

Given c ∈ C we are interested in the number of solutions m ∈ Z of um = c.
Note that the cases a, b or c equal to zero are uninteresting since they have
either at most one solution or infinitely many trivial ones. So we assume
they are non-zero. Divide on both sides by c, and from now on we shall be
interested in the equation

(3) λαx + µβx = 1 in x ∈ Z,
where λµαβ 6= 0. We shall also assume that α, β are not both roots of unity.

As a fine point we add that if α, β are roots of unity, then the set

{(αx, βx) : x solution of (3)}
consists of at most two elements. This is a consequence of the fact that there
exist precisely two triangles in the complex plane two of whose sides have
lengths |λ|, |µ|, whose third side is the segment [0, 1] and such that the side
of length |λ| ends in 0.

Straightforward application of Theorem 1.1 with the group H generated
by (λ, µ) and (α, β) shows that (3) has not more than 224 solutions. However,
one can do much better:

Theorem 1.2. Under the assumptions just mentioned the equation

λαx + µβx = 1 in x ∈ Z
has at most 61 solutions.

As a curiosity we mention that the equation with the largest number of
solutions known is

θ2 − θ3

θ2 − θ1

(
θ1

θ3

)x
+
θ1 − θ3

θ1 − θ2

(
θ2

θ3

)x
= 1

where the θi are the zeros of X3 − 2X2 + 4X − 4. The solutions are x =
0, 1, 4, 6, 13, 52. It would be interesting to have examples with more than 6
solutions, if they exist.

The first result in the situation of Theorem 1.2 with a universal bound
was derived in [4] with the bound 2223

.
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The improvements we give in the current paper in comparison with [4]–
[6] depend upon two ingredients. First we use an explicit version of Thue’s
method via hypergeometric polynomials as given in [1], whereas the previous
papers are based on a quantitative version of Roth’s Theorem. To get bounds
that do not depend upon degrees of number fields involved, previously a
result from [7] was used on lower bounds for heights of solutions of equations.
Here we apply the strongly improved bound given in Corollary 2.4 of [2].

2. Lemmas on algebraic numbers. First we fix our notations con-
cerning heights. Let K be an algebraic number field of degree d over Q. For
any valuation v we write dv = [Kv : Qv], where Kv,Qv are the completions
of K,Q with respect to v. For archimedean v we normalise the valuation by
|x|v = |x|dv/d where | · | is the ordinary complex absolute value. When v is
non-archimedean we take |p|v = p−dv/d where p is the unique rational prime
such that |p|v < 1. The height of an algebraic number α ∈ K∗ is defined by

H(α) =
∏
v

max(1, |x|v).

Because of our normalisation H(α) does not depend on the choice of the
field K in which α is contained. More generally, for any (n + 1)-tuple
(x0, x1, . . . , xn) ∈ Kn with not all xi zero we define

H(x0, . . . , xn) =
∏
v

max(|x0|v, . . . , |xn|v).

Note that by the product formula we have H(λx0, . . . , λxn) = H(x0, . . . , xn)
for any λ ∈ K∗, so we can view this height as a height on the K-rational
points of the projective space Pn. In particular, we have H(α) = H(1, α).

We start with an easy lemma.

Lemma 2.1. Let a, a′, b, b′, A,B ∈ Q∗ and c, c′ ∈ Q be such that ab′ 6= a′b
and

aA+ bB = c, a′A+ b′B = c′.

Then H(A,B, 1) ≤ 2H(a, b, c)H(a′, b′, c′).

P r o o f. Fix a number field K in which all numbers involved are con-
tained. For each infinite valuation v let rv = 2dv/d and let rv = 1 if v is
finite. Notice that

∏
v rv = 2.

One easily finds that

A =
bc′ − b′c

∆
, B =

a′c− ac′
∆
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where ∆ = a′b− ab′. Hence

H(A,B, 1) = H(bc′ − b′c, a′c− ac′, ba′ − ab′)
=
∏
v

max(|bc′ − b′c|v, |a′c− ac′|v, |ba′ − ab′|v)

≤
∏
v

rv max(|a|v, |b|v, |c|v) max(|a′|v, |b′|v, |c′|v)

= 2H(a, b, c)H(a′, b′, c′).

As a corollary we get

Corollary 2.2. Let a, b, A,B ∈ Q∗ be such that a 6= b and

A+B = 1, aA+ bB = 1.

Then H(A,B, 1) ≤ 2H(a, b, 1).

The next lemma follows from an explicit version of Thue’s method using
hypergeometric polynomials.

Lemma 2.3. Let a, b, A,B ∈ Q∗ and % ∈ N be such that

A+B = 1, aA2% + bB2% = 1.

Then H(A,B, 1) ≤ 21/%cH(a, b, 1)1/%, where c = 6
√

3.

P r o o f. We infer from Lemma 6 of [1] that there exist three polynomials
P%, Q%, R% of degree ≤ % such that

z2%P%(z) + (1− z)2%Q%(z) = R%(z), ∀z ∈ C,
bP%(A) 6= aQ%(A),

H(P%(A), Q%(A), R%(A)) ≤ (6
√

3)%H(A)%.

Substitute z = A in the polynomial identity. Application of the previ-
ous lemma with A2%, B2% instead of A,B and c = 1, a′ = P%(A), b′ =
Q%(A), c′ = R%(A) yields

H(A,B, 1)2% ≤ 2H(a, b, 1)H(P%(A), Q%(A), R%(A))

≤ 2c%H(a, b, 1)H(A)% ≤ 2c%H(a, b, 1)H(A,B, 1)%.

Divide on both sides by H(A,B, 1)% and take %th roots to obtain our
lemma.

The following lemma is due to an improvement of [7] by Corollary 2.4
in [2].

Lemma 2.4. Let λ, µ ∈ Q∗ and suppose that λ + µ = 1. Let (pi, qi), i =
1, 2, be two solutions in Q of λp+µq = 1 such that the pairs (p1, q1), (p2, q2)
and (1, 1) are all distinct. Then

H(p1, q1, 1)H(p2, q2, 1) ≥ 1.0942711 . . .
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By application of this lemma with λ = x0, µ = y0 and pi = xi/x0, qi =
yi/y0 we obtain

Corollary 2.5. Let (x0, y0), (x1, y1), (x2, y2) be three distinct solutions
of x+ y = 1 in x, y ∈ Q∗. Then

max
i=1,2

(max(H(xi/x0),H(yi/y0))) ≥ 1.022777 . . .

3. Normed vector spaces. Let m ∈ N. For any subgroup H ⊂ (Q∗)m
we let the Q-closure of H be the set of all a ∈ (Q∗)m such that aN ∈ H
for some N ∈ N. Let G be the Q-closure of a finitely generated subgroup of
(Q∗)m of rank r. Let T be the torsion subgroup of G. Then G/T = G⊗Z Q
has the natural structure of a Q-vector space of dimension r. Consider the
logarithmic height function h(x) = logH(x). The function

‖(x1, . . . , xm)‖ = max
i=1,...,m

h(xi)

provides a natural norm on G⊗ZQ as Q-vector space. By continuity we can
extend this norm to the real vector space VG = G⊗Z R.

Lemma 3.1. The (semi)-norm ‖ · ‖ is positive definite on VG.

P r o o f. Let us write down the semi-norm ‖·‖ in an explicit way. Suppose
the Q-generators of G are given by

ai = (ai1, . . . , aim), i = 1, . . . , r.

Any element of G can be written, modulo roots of unity, in the form x =
(x1, . . . , xm) =

∏r
i=1(ai1, . . . , aim)ei for some ei ∈ Q. Hence, using h(a) =

(1/2)
∑
v |log(|a|v)|,

‖x‖ = max
j=1,...,m

h
( r∏

i=1

aeiij

)
= max
j=1,...,m

(1/2)
∑
v

∣∣∣
r∑

i=1

ei log(|aij |v)
∣∣∣.

Extending ‖ · ‖ to the reals is now straightforward, simply extend ei to R.
We also remark that if we take the ei integral, the components of x all
lie in the same number field, hence the non-trivial elements of the group
generated (over Z) by the ai have a norm uniformly bounded below by a
positive constant, γ, say.

We now prove positive definiteness of ‖ · ‖. Suppose there exists y ∈ VG,
non-zero, such that ‖y‖ = 0. This implies that there exist ei ∈ R, not all
zero, such that |∑r

i=1 ei log(|aij |v)| = 0 for all valuations v and all j. Using
Dirichlet’s box principle we can then show that for any ε > 0 there exist
integers mi, not all zero, such that |∑r

i=1mi log(|aij |v)| < ε for all v and j.
This contradicts the existence of the uniform lower bound γ. Hence ‖y‖ = 0
implies that ei = 0 for all i, as desired.
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From now on we suppose that G ⊂ (Q∗)2. We want to bound the number
of solutions of the equation

(M) x+ y = 1, (x, y) ∈ G.
Consider the natural projection p : G→ VG.

Lemma 3.2. Let (x0, y0), (x1, y1), (x2, y2) be three distinct solutions of
(M). Then their images under p cannot be all equal.

P r o o f. If all three images were the same then xi/x0 and yi/y0 would be
roots of unity for i = 1, 2. But this is impossible in view of Corollary 2.5.

LetM be the image under p of the solution set of (M). Then the number
of solutions to (M) is bounded by 2(#M).

We now restate the lemmas of the previous section in terms of the
set M ⊂ VG. In the derivations we use the fact that max(H(a),H(b)) ≤
H(a, b, 1) ≤ max(H(a),H(b))2.

Corollary 2.2 becomes

Lemma 3.3. Let w1,w2 be distinct points of M. Then

‖w1‖ ≤ log 2 + 2‖w2 −w1‖.
Lemma 2.3 becomes

Lemma 3.4. Let w1,w2 be distinct points of M and % ∈ N. Then

‖w1‖ ≤ log c+
1
%

(log 2 + 2‖w2 − 2%w1‖).

Corollary 2.5 becomes

Lemma 3.5. Let w0,w1,w2 be distinct points of M. Then

max(‖w1 −w0‖, ‖w2 −w0‖) ≥ 0.022522 . . .

It will turn out that the cardinality of any set satisfying the inequalities
in the above three lemmas can be bounded in terms of the dimension of VG.

We need some additional lemmas on coverings of convex bodies. The first
is straightforward.

Lemma 3.6. Let V be an m-dimensional normed real vector space with
norm ‖·‖. Let R > δ > 0. Consider the ball B of radius R around the origin
and suppose it contains a set U such that ‖u1−u2‖ ≥ δ for any two distinct
u1,u2 ∈ U . Then #U ≤ (1 + 2R/δ)m.

P r o o f. Let V0 be the volume of the unit ball {x : ‖x‖ < 1}. Around
any point u ∈ U we consider the open ball Bu = {x : ‖x−u‖ < δ/2}. Since
these balls are disjoint their union fills up a region of volume (#U)(δ/2)mV0

in the ball of radius R + δ/2. The latter ball has volume (R + δ/2)mV0.
Hence (#U)(δ/2)m ≤ (R+ δ/2)m and our lemma follows.
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Lemma 3.7. Let Ψ be a convex symmetric body in Rr. By λΨ we denote
the convex body obtained by multiplying the points of Ψ by λ. Then, for any
λ > 1, the set λΨ can be covered by (4 + 2λ)r translated copies of Ψ .

The proof of this lemma can be found in [6, Lemma 7.2]. However, we
really need the following corollary.

Corollary 3.8. Let V be an r-dimensional normed real vector space
with norm ‖ · ‖. Let ε > 0. Then there is a finite set E ⊂ V of unit vectors
such that every v ∈ V can be written as v = ‖v‖e + v′ with e ∈ E and
‖v′‖ ≤ ε‖v‖. Moreover , E can be chosen such that #E < (4 + 4/ε)r.

P r o o f. Let B be the unit ball with respect to ‖ · ‖. According to Lemma
3.7 the ball B can be covered by (4 + 4/ε)r translates of (ε/2)B. Consider
such a covering and let ∆ be the subset of (ε/2)-balls which have non-trivial
intersection with the boundary of B. Clearly the balls in ∆ give a covering
of the boundary of B. For the set E we take the unit vectors c/‖c‖ where
c runs over the centers of the (ε/2)-balls in ∆.

Now let v ∈ Rr be arbitrary. Let c be the center of the (ε/2)-ball in ∆
which contains v/‖v‖ and let e = c/‖c‖. Notice that ‖c− e‖ = |1−‖c‖ | ≤
ε/2. Hence,

∥∥∥∥
v
‖v‖ − e

∥∥∥∥ ≤
∥∥∥∥

v
‖v‖ − c

∥∥∥∥+ ‖c− e‖ ≤ ε/2 + ε/2 = ε.

Thus we find ‖v − ‖v‖e‖ ≤ ε‖v‖, e ∈ E and our corollary follows.

4. Proof of Theorem 1.1. Let Σ be a subset of a normed vector space
V satisfying

1. ‖w1‖ ≤ log 2 + 2‖w2 −w1‖ for any two distinct w1,w2 ∈ Σ.
2. There exists c1 such that ‖w1‖ ≤ c1 + (1/%)(log 2 + 2‖w2 − 2%w1‖)

for any two distinct w1,w2 ∈ Σ and any % ∈ N.
3. There exists c0 > 0 such that max(‖w1 − w0‖, ‖w2 − w0‖) ≥ c0 for

any three distinct w0,w1,w2 ∈ Σ.

Proposition 4.1. Let c2 = max(2 log 2, c1 + (log 2)/20). Then

#Σ ≤ 1
2

(
44 + 2

c2
c0

)r+1

where r is the dimension of V.

P r o o f. Let ε be a real number such that 0 < ε < 0.1. Let e be a unit
vector in V and consider the cone

Ce = {v ∈ V : v = ‖v‖e + v′, ‖v′‖ ≤ ε‖v‖}.
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Let

c3(ε) =
c2

1− 10ε
.

We will show that for any two w1,w2 ∈ Σ ∩ Ce with c3(ε) < ‖w1‖ ≤ ‖w2‖
we have

(4) (5/4)‖w1‖ ≤ ‖w2‖ ≤ (1 + 4/ε)‖w1‖.
Suppose first w1,w2 ∈ Σ ∩ Ce and ‖w1‖ ≤ ‖w2‖ < (5/4)‖w1‖. Write
wi = ‖wi‖e + w′i. Then, from the first inequality on Σ, we infer

‖w1‖ ≤ log 2 + 2‖(‖w2‖ − ‖w1‖)e + w′2 −w′1‖
≤ log 2 + 2(‖w2‖ − ‖w1‖) + 2ε(‖w2‖+ ‖w1‖)
≤ log 2 + 2(1/4)‖w1‖+ 2ε(9/4)‖w1‖.

We obtain

‖w1‖ ≤ 2 log 2
1− 9ε

≤ c3(ε).

Suppose next that w1,w2 ∈ Σ ∩Ce and ‖w2‖ > (1 + 4/ε)‖w1‖. Choose
% ∈ N such that ‖w2‖ = (2% + δ)‖w1‖ with |δ| ≤ 1. Notice that % ≥ 2/ε.
From the second inequality on Σ it follows that

‖w1‖ ≤ c1 +
1
%

(log 2 + 2‖δ‖w1‖e + w′2 − 2%w′1‖)

≤ c1 + (log 2)/20 +
2
%

(‖w1‖+ ε(‖w2‖+ 2%‖w1‖))

≤ c2 +
2
%
‖w1‖+ ε(8 + 4/%)‖w1‖

≤ c2 + ε‖w1‖+ 9ε‖w1‖.
We get

‖w1‖ ≤ c2
1− 10ε

≤ c3(ε).

We now put the above considerations together. Let N be the small-
est integer such that (5/4)N−1 > 1 + 4/ε. Suppose Ce contains N points
w1, . . . ,wN larger than c3(ε). Suppose they are ordered by size. Then, for
each i, ‖wi+1‖/‖wi‖ ≥ 5/4. This implies ‖wN‖/‖w1‖ > (5/4)N−1 > 1+4/ε,
which is impossible by inequality (4). Hence any cone Ce contains at most
N − 1 elements from Σ of norm ≥ c3(ε). According to Lemma 3.8 the space
V can be covered by (4+4/ε)r such cones and so the total number of points
of Σ larger than c3(ε) can be estimated by (N − 1)(4 + 4/ε)r. Since ε < 0.1
it is not hard to see that N − 1 < 2/ε. Hence the number of large points is
bounded by (2/ε)(4 + 4/ε)r.

It remains to count the elements of Σ with norm at most c3(ε). By the
third inequality on Σ a ball of radius c0 around a point of Σ contains at
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most one other element from Σ. Consider a subset Σ′ of Σ such that a ball
of radius c0 around any point of Σ′ contains no other point of Σ′. We can
do this in such a way that |Σ| ≤ 2|Σ′|. According to Lemma 3.6 the number
of points in Σ′ can be bounded from above by (1 + 2c3(ε)/c0)r. Thus we
conclude

|Σ| ≤ 2
ε

(
4 +

4
ε

)r
+ 2
(

2c3(ε)
c0

+ 1
)r
.

Now we choose ε such that 4/ε = 2c3(ε)/c0, i.e. ε = (10 + 0.5c2/c0)−1.
Our proposition then follows immediately.

P r o o f o f T h e o r e m 1.1. By a specialisation argument as in [5] we
may assume that G ⊂ (Q∗)2. We now complete the line of argument started
in Section 3. There we had the set M. This set satisfies the conditions of
Proposition 4.1 for the values c0 = 0.022522 . . . , c1 = log(6

√
3) = 2.3410 . . .

Hence the cardinality of M is bounded by 1
2 · 256r+1. Since the number of

solutions of (M) is bounded by 2#M our theorem follows.

5. Proof of Theorem 1.2. We first need a lemma

Lemma 5.1. Consider the equation λαx + µβx = 1 in x ∈ Z where
λ, µ, α, β are as in the introduction and assumed to be algebraic numbers.
Suppose we have the solutions x = 0, r, s, t. Suppose that t ≥ 14s. Then

s− 8.4r ≤ 9.1
logH(α, β, 1)

.

P r o o f. Application of Corollary 2.2 with A = λ, B = µ yields

H(λ, µ, 1) ≤ 2H(α, β, 1)r.

Apply Lemma 2.3 with A = λαs, B = µβs and % such that t = 2s% + δ,
with 0 ≤ δ < 2s. Note that % ≥ 7. We obtain

H(λαs, µβs, 1) ≤ 21/%cH(αδλ1−2%, βδµ1−2%)1/%

≤ 21/%cH(α, β, 1)δ/%H(λ−1, µ−1, 1)2−1/%.

Notice that
H(α, β, 1)s ≤ H(λ−1, µ−1, 1)H(λαs, µβs, 1)

≤ 21/%cH(α, β, 1)δ/%H(λ−1, µ−1, 1)3−1/%

and use H(λ−1, µ−1, 1) ≤ H(λ, µ, 1)2 ≤ 4H(α, β, 1)2r to obtain

H(α, β, 1)s−δ/% ≤ 21/%c26−2/%H(α, β, 1)6r < 64cH(α, β, 1)6r.

Taking log’s and using log(64c) ≤ 6.5 yields

s− δ/%− 6r ≤ 6.5/ logH(α, β, 1)

from which our lemma is immediate via δ/% ≤ 2s/7.
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P r o o f o f T h e o r e m 1.2. By Theorem 2 of [1] we may assume that
α, β, λ, ν ∈ Q. Without loss of generality we can also assume that

H(α, β, 1) ≤ H(α−1, β−1, 1).

Let q be the length of the shortest closed interval containing three solu-
tions. Let n, n+ p, n+ q be such three solutions. Application of Lemma 2.4
to the equation λαn+pX + µβn+pY = 1 yields

H(α, β, 1)q−pH(α−1, β−1, 1)p ≥ c4,
where c4 = 1.0942711 . . . Hence H(α−1, β−1, 1)q ≥ c4.

Define γ = log 8/ log c4 and note that γ < 23.1.
Now let k < l < m < n be any four solutions. First of all application of

Corollary 2.2 with A = λαk, B = µβk yields

(5) H(λαk, µβk, 1) ≤ 2H(α, β, 1)l−k.

In a similar way application of Corollary 2.2 with A = λαn, B = µβn yields

(6) H(λαn, µβn, 1) ≤ 2H(α−1, β−1, 1)n−m.

Application of Lemma 2.1 with A = αk−n, B = βk−n yields

H(αk−n, βk−n, 1) ≤ 2H(λαn, µβn, 1)H(λαn−k+l, µβn−k+l, 1)

≤ 2H(λαn, µβn, 1)2H(αl−k, βl−k, 1).

With (6) and H(α, β, 1) ≤ H(α−1, β−1, 1) we get

H(α−1, β−1, 1)n−k ≤ 8H(α−1, β−1, 1)2(n−m)+l−k.

Using our lower bound H(α−1, β−1, 1) ≥ c1/q4 we find that

n− 2m+ l ≥ −γq hence n− l − γq ≥ 2(m− l − γq).
Denote the smallest solution by n0 and the second smallest by n1. Applica-
tion of the inequality with k = n0, l = n1 yields

(7) n− n1 − γq ≥ 2(m− n1 − γq)
for any two solutions m,n with n1 < m < n. We divide our solutions into
three intervals,

• I1 = [n0, n1 + (0.9 + γ)q[,
• I2 = [n1 + (0.9 + γ)q, n1 + (230 + γ)q[,
• I3 = [n1 + (230 + γ)q,∞[.

Since any interval of length < q contains at most two solutions, the
interval I1 contains at most 1 + 2([γ + 0.9] + 1) ≤ 49 solutions. Because of
(7) the interval I2 contains at most 8 solutions.

We finally show that I3 contains at most 4 solutions. Suppose I3 contains
5 solutions, the largest being denoted by N , the smallest by M . Furthermore,
we let k be a solution such that there exists another solution l such that
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k < l < k + q. Because of (7) we find k < n1 + (1 + γ)q. Since there exists
at least one closed interval of length q containing three solutions such a
k exists and we may moreover assume that k ≥ n1. From (7) it follows
that (N − n1 − γq) ≥ 16(M − n1 − γq). Since k ≥ n1 this implies (N −
k − γq) ≥ 16(M − k − γq) and since N − k > M − k > 229q we get
N − k ≥ (16 − 15γ/229)(M − k) > 14(M − k). Application of Lemma 5.1
to the equation λαkαx + µβkβx = 1 with r = l − k, s = M − k, t = N − k
yields

M − k − 8.4(l − k) ≤ 9.1
logH(α, β, 1)

.

Using the lower boundH(α, β, 1) ≥ c1/(2q)4 and l−k < q we getM−k < 211q,
contradicting M − k > 229q.

So we conclude that I3 contains at most 4 solutions, which leaves us with
a total of at most 49 + 8 + 4 = 61 solutions.
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