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Abstract. The paper contains the estimates from above of the principal curvatures of the
solution to some curvature equations. A correction of the author’s previous argument is pre-
sented.

1. Introduction. The natural domain of definition of curvature operators is the set
of C2-smooth n-dimensional surfaces imbedded in Rn+1, n ≥ 2. Indeed, we assign to any
Γ ⊂ Rn+1 the vector-operator k[Γ] = (k1, . . . , kn)[Γ] whose components are the principal
curvatures of Γ. Then a curvature operator F takes the form

(1) F [Γ] = f(k[Γ]) = f(k)[Γ]

with some known function f defined in Rn. In order to circumvent the problem of global
numbering of the principal curvatures over Γ we always assume f to be a symmetric
function in Rn.

Denote by D(F ) the subset of surfaces satisfying

(2)
∂f

∂ki
[Γ] > 0, i = 1, . . . , n,

(3)
n∑

i,j=1

∂2f

∂ki∂kj
[Γ]ξiξj ≤ 0, |ξ| = 1.

We assume here D(F ) 6= ∅.
The simplest examples of curvature operators are the operators of m-curvature:

µm[Γ] =
Sm(k[Γ])(

n
m

) , m = 1, . . . , n,

where Sm is the mth elementary symmetric function. The set D(µm) admits the following
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description [4]:

D(µm) = {Γ ⊂ Rn+1: µi[Γ] > 0, i = 1, . . . ,m}.
In the case of complete bounded surfaces it suffices to require only µm[Γ] > 0. The set
D(µn) consists of all convex surfaces. We use the term “m-convex surface” introduced in
[10] for surfaces from D(µm), m = 1, . . . , n.

Any n-dimensional surface smoothly imbedded in Rn+1 may be interpreted locally as
the graph of some smooth function u, i.e.

Γloc = {x ∈ Rn : |x| < ε, xn+1 = u(x)}.

Then the operator (1) can be viewed as a second-order differential operator on C2(Bε),
Bε ⊂ Rn. We then write

(4) F [u] = f(k[u]) = f(k)[u],

where the components of k[u] are the eigenvalues of the following extremal problem:

(5) uxxτi = wkiGτi, i = 1, . . . , n,

uxx = (uij), uij =
∂2u

∂xi∂xj
, w =

√
1 + u2

x, G = δij + uiuj .

The symmetry of f permits us to rewrite the operator (4) in some neighbourhood of
a fixed point x0 as

(6) f [u] = F (wu(xx)),

where u(xx) = (u(ij)),

(7) v(i1...ip) =
∂pv

∂xj1 . . . ∂xjp
τ j1i1 . . . τ

jp
ip

= vj1...jpτ
j1
i1
. . . τ

jp
ip

and {τi : i = 1, . . . , n} is any system of vector fields satisfying

(8) (Gτi, τj) = δij .

From now on the summation over repeated indices is assumed unless otherwise stated.
In notations (6)–(8), inequalities (2), (3) become

(9)
∂F (u(xx)w)
∂u(ij)

ξiξj > 0, |ξ| = 1,

(10)
∂2F

∂u(ij)∂u(kl)
ξijξkl ≤ 0, ξij = ξji.

If we do not want to use explicitly the vector fields (8), we have to express the operator
(4) in the general form

(11) F [u] = F (ux, uxx),

assuming the invariance of the function F under rotations of the vector X = (x, u) in
Rn+1. To give a sample of representation (11) we write out the operators µm:

µm[u] =
1
wm

∑
i,j=1

i1<...<im

u[
i1...im

j1...jm

] − uiuj
w2

u[
i1...im−1i

j1...jm−1j

]
 .
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Here

u[
i1...im

j1...jm

]
is the m-minor of u(xx) with rows and columns numbered by i1 < . . . < im and j1 <

. . . < jm. Conditions (2), (3) transformed to the form (11) look like (9), (10) with indices
without brackets.

The curvature equations contain by definition the curvature operator and read

(12) F [u] = g[u],

where g is a differential operator of order at most one. In view of (11) equation (12) may
be considered as a fully nonlinear differential equation of second order. On the set D(F )
it becomes of elliptic type.

The program of investigation of curvature equations follows one for equations con-
taining the eigenvalues of the Hesse matrix instead of curvatures [1, 4, 5]. However, the
analysis of curvature equations requires far more complicated techniques [2, 3, 6, 7, 9].
Two different approaches were developed to the problem of calculations in the curvature
case. The authors of [2, 3, 9] exploited the rotation invariance of the operator (11) and
chose a suitable cartesian coordinate system. Then equation (12) was directly differenti-
ated in that system. In [6] all the difficulties were accumulated when differentiating the
principal curvatures in some local cartesian system. However, this procedure is incorrect
in general, which was pointed out to the author by Prof. N. S. Trudinger during a Session
of Banach Semester, Warsaw, October 93.

The present paper contains a correction to the relevant reasoning in [6] as well as
some new results of geometrical nature. Samples of them are:

Proposition 1. Let a convex C4-surface Γ be of constant Gauss curvature. Then the
maximal value of its principal curvatures is attained at the boundary ∂Γ.

Proposition 1 seems to be known in differential geometry, though the author failed
to find references. Anyway, the fact that a complete convex surface of constant Gauss
curvature has to be a sphere, a fact following from Proposition 1, is well known.

The case of Gauss curvature corresponds to µn (see (4)) and the assertion of Propo-
sition 1 cannot be extended to other µm. However, some analogue is valid for any m for
surfaces Γ which are graphs over some domain Ω ⊂ Rn. Denote k̃i = wki, i = 1, . . . , n
(see (5)).

Proposition 2. Let an m-convex C4-surface Γ be of constant m-curvature. Then the
function k̃0 = maxi k̃i attains its maximal value over Ω at the boundary ∂Ω.

2. Some preliminary notes. One of the objectives when analyzing curvature equa-
tions is to bound from above the values of the principal curvatures of an unknown surface,
that is, to bound from above the values of the function

(13) k0(X) = max
i=1,...,n

ki(X), X ∈ Γ.
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The continuous function (13) attains its maximum at some point X0 ∈ Γ. We now
consider the case X0 ∈ Γ\∂Γ. By inequality (2) the application of the classical maximum
principle for second order elliptic differential equations looks reasonable. The technical
problem we are facing is to find an auxiliary function W such that

(i) W is at least C4-smooth in some neighbourhood of X0;
(ii) W attains its maximum at X0 = (x0, u(x0)) and

k0(X0) ≤ cW (x0),

where c is some constant under control;
(iii) there exists a positive matrix A = (Aij) such that in some local cartesian system

the inequality
(AijWij)(x0) > 0

holds if W (x0)� 1.

The cartesian system involved in the definition of W depends on X0. We call it a
primary system if the matrix (G1/2uxxG

1/2)(x0) is diagonal.
The function W will be composed of functions u(ij) = uklτ

k
i τ

l
j , i = 1, . . . , n. The

vectors τi, i = 1, . . . , n, are always supposed to satisfy (8). This type of auxiliary function
was introduced in [8], devoted to the Monge-Ampère equation. As an advantage of
calculating in the primary system we always have

(14) u(ii)(x0) = wki(X0), i = 1, . . . , n.

We emphasize that relations (14) fail in general in the neighbourhood of x0.
Let {ηi} be the dual system to {τi}, i.e.

(15) ηikτ
k
j = δij , ηki τ

j
k = δji .

The following relations are helpful:

(ηi, ηj) = (G)ij = δij + uiuj ,(16)

(τ i, τ j) = (G−1)ij = δij − uiuj
w2

.(17)

The simplest choice of τi, ηi, i = 1, . . . , n, is τi = τ̂i, ηi = η̂i, where

τ̂ki = (G−1/2)ki = δki −
ukui

w(1 + w)
,(18)

η̂ki = (G1/2)ki = δki −
ukui
1 + w

.(19)

Since we are to differentiate u(ii) it is convenient to introduce

(20) cijk = ηil(τ
l
j)(k) = (Gτi, (τj)(k)).

For any vector fields (15)–(17), in the neighbourhood of x0 the following identities are
true:

(21) cij,k + cji,k = −(G(k)τi, τj),

(22) u(ij),(k) = u(ijk) + u(ip)c
p
(jk) + u(jp)c

p
i,k, i, j, k = 1, . . . , n.

Formula (22) holds since

(23) upr = u(ij)η
i
pη
j
r , p, r = 1, . . . , n.
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At x0 relation (22) turns out to be equivalent to

(24) u(ij),(k) = u(ijk) + (u(jj) − u(ii))c
j
ik − u(ii)(G(k)τi, τj).

Formula (24) reveals the peculiarity of the case u(ii)(x0) = u(jj)(x0).
Finally, we write out cij,k explicitly for the vector fields (18), (19):

(25) ĉijk = −
u(ik)u(j) + u(jk)ui

1 + w
.

Note that the relations of this section are true for sufficiently smooth vectors {τi}. Further
on we keep at least C2-smoothness for any choice of {τi}.

3. The equation of prescribed Gauss curvature (1). We consider the set of
n-dimensional C4-surfaces imbedded in Rn+1 and a function h ∈ C2(Rn+1), and rewrite
equation (4) with m = n in geometrical terms as follows:

(26) µn[Γ](X) = hn(X).

Here hn acquires the sense of a prescribed Gauss curvature of Γ. The set D(µn) consists
of all strictly convex C4-surfaces.

We choose some point X0 ∈ Γ and a cartesian coordinate system about it requiring
the vector (0, . . . , 1) to be normal to Γ. There exists a neighbourhood Bε(X0) such that

Γ ∩Bε(X0) = {|x| < ε, xn+1 = u(x)},

where the function u is as smooth as Γ. We also require this cartesian system to be
primary at x0. For {τi} we take the system (18) and rewrite equation (26) as

(27) det1/n
(
u(xx)

w

)
= h(x, u).

It follows from (5) that the principal curvatures of Γ are the eigenvalues of the matrix
u(xx)/w in the neighbourhood of x0. From the choice of the cartesian system, at x0 we
have

(28) uxx = u(xx) = (δijk
j).

The crucial point of the further reasoning is the formula

(29)
((

u(ii)

w

)
(jj)

−
(
u(jj)

w

)
(ii)

)
(x0)

= (u2
(jj)u(ii) − u2

(ii)u(jj))(x0) = (kjki(kj − ki))[Γ](X0).

This follows from ux(x0) = 0, which leads to ĉijk(x0) = 0 (see (20)).

Theorem 3. Let Γ be a convex C4-solution to equation (26). Then either k0[Γ] attains
its maximum at the boundary ∂Γ or

(30) k0[Γ] < 2 max
BR

(√
Λ−(hXX) + |hX |2

h
· h(X)

21/n

)
,

(1) The content of Section 3 was worked out with F. Tomi during the author’s stay at
Heidelberg University, February, 1993.
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where BR is a ball containing Γ, Λ(hXX) is the minimal negative eigenvalue of hXX and
zero if hXX ≥ 0, and Λ− = |Λ|.

P r o o f. Let X0 be a point where the maximal value of k0 is attained (see (13)).
Denote

u〈xx〉 = (u〈ij〉), u〈i〉 =
u(i)√
w
,

where the indices correspond to the above described cartesian system and the vector
fields (18). By (28),

(31) k0(X0) = max
i=1,...,n

max
|x|<ε

u〈ii〉(x).

Denote by γ the index which realizes the maximum (31), i.e.

u〈γγ〉(x0) = k0(X0).

Then

(32)
( n∑
i=1

∂F (u〈xx〉)
∂u〈ii〉

u〈γγ〉,〈ii〉

)
(x0) ≤ 0

with F (u〈xx〉) = det1/nu〈xx〉.
On the other hand, differentiating twice equation (28) we get

(33)
n∑

i,j=1

∂F (u〈xx〉)
∂u〈ii〉

u〈ii〉,〈γγ〉 = h〈γγ〉 −
n∑

i,j,k,l=1

∂2F (u〈xx〉)
∂u〈ij〉∂u〈kl〉

u〈ij〉,〈γ〉u〈kl〉,〈γ〉

in the neighbourhood of x0. By the properties of the primary coordinate system and
concavity of F over positive matrices, relation (32), when combined with (33) and (29),
yields

(34)
(
∂F (u〈xx〉)
∂u〈ii〉

kik0(k0 − ki)
)

(x0)− Λ−(hXX) + |hX |k0(X0) ≤ 0.

Since (
∂F (u〈xx〉)
∂u〈ii〉

ki
)

(x0) =
1
n
h(X0), i = 1, . . . , n,

we are facing the alternative: either ki(X0) ≤ 1
2k0(X0) at least for one index i, which

implies

k0[Γ] < 2 max
BR

√
Λ−(hXX) + |hX |2

h
,

or ki(X0) ≥ 1
2k0(X0), and then

k0[Γ] < 2(n−1)/n max
BR

h(X).

In both the cases estimate (30) is valid.
For those who do not like vector fields we write out the function W , which was the

subject of estimations in Theorem 3, without any conventions in the primary system:

W =
1
w
uij

(
δiγ −

uiuj
w(1 + w)

)(
δij −

ujuj
w(1 + w)

)
.
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Inequalities (32)–(34) in terms of W may be summarized as follows:

0 ≥
( n∑
i,j=1

∂F (ux, uxx)
∂uij

Wij

)
(x0)

≥
(∑

i

∂F (ux, uxx)
∂uii

uiiW (W − uii)− Λ−(hXX) + |hX |W
)

(x0),

where F (ux, uxx) = (detuxx/wn+2)1/n.
Proposition 1 is close to being Theorem 3 with constant h but more subtle. In order

to prove the pure maximum principle stated in Proposition 1 we note that in the case of
constant h relation (34) becomes

n∑
i=1

(k0 − ki)[Γ](X0) ≤ 0.

The latter is only possible for ki(X0) = k0(X0), which implies our surface is part of the
sphere. Then k0[Γ] = const and certainly it attains its maximum at the boundary.

The analysis of relations (29), (33), (34) shows that the presented sample of reasoning
admits some widening of the class of curvature operators, provided we keep the convex-
ity of Γ. On the other hand, this approach fails for non-convex surfaces, because it is
impossible to control the sign of the commutator (29).

4. The description of auxiliary vector fields in the general case. It is easy to
check that the assumption w(x0) = 0 leads in the primary system to the identities

Jij = (u(ii),(jj) − u(jj),(ii))(x0) = 0, i, j = 1, . . . , n,

and it looks natural to try the maximum principle for W = u(γγ). However, an attempt
to fix w(x0) = 1 presupposes the rotation invariance of the problem in Rn+1, which does
not hold. Indeed, equation (12) in the neighbourhood of some X0 ∈ Γ takes the form

(35) F (u(xx)/w) = h.

The latter is invariant under rotations of Rn only. Moreover, the points which supply the
maximum value to k0[Γ] and u(γγ) may be different because of the factor 1/w.

We have to omit the requirement w(x0) = 1. Therefore the invariance of the curvature
operators in Rn is only available, and here the condition for Γ to be the graph of some
function u in Ω ⊂ Rn enters. We also require F to be homogeneous, say of the first order,
and rewrite equation (35) in the form

(36) F (u(xx)) = wh, x ∈ Ω.

In order to choose vector fields (15)–(17) properly we point out the degrees of freedom.
Represent the matrix G in the form

(37) G = C ′C, C = BG1/2, BT = B−1.

Any vector field defined by the formulae

(38) ηij = (C)ij , τ ij = (C−1)ij , i, j = 1, . . . , n,
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satisfies (15)–(17) in Ω, and equation (12) has the form (36) for every cartesian system
in Rn. Consider the primary system about x0 ∈ Ω and assume

(39) B(x0) = I.

The freedom in constructing vector fields (38) is in the choice of B(x) while keeping (39).
Our aim is to obtain if possible the equalities

(40) u(ij),(k)(x0) = 0, i 6= j.

Without loss of generality suppose x0 = 0 and introduce numbers βij,k by the formulas

(41) βijk = β̂ijpη̂
p
k(0), i, j, k = 1, . . . , n,

where

(42) β̂jip =
(
u(ijp) + u(ii)ĉ

i
jp + u(jj)ĉ

j
ip

u(ii) − u(jj)

)
(0)

when u(ii)(0) 6= u(jj)(0), and

(43) β̂ijp = 0

otherwise.
The numbers (41) are antisymmetric in i, j and therefore the matrix

(44) B = (bij) = exp(βijkx
k)

is orthogonal.

Lemma 4. Assume the vector fields (38) are constructed on the base of (44), i.e.

(45) ηij = bipη̂
p
j , τ ij = τ̂ ipb

j
p.

Then relations (40) hold if u(ii)(x0) 6= u(jj)(x0), and

(46) cijk(x0) = ĉijk(x0)

otherwise.

P r o o f. Write out (20) at x0 for the vector fields (45):

(47) cijk = ĉijk + β̂jik.

Relation (22) at x0 reads

u(ij),(k) = u(ijk) + u(ii)ĉ
i
jk + u(jj)ĉ

j
i,k + β̂jiku(ii) + β̂ijku(jj).

By antisymmetry and the choice (42) of βijk the latter is equivalent to (40) if u(ii)(x0) 6=
u(jj)(x0). In the other case (47), (43) obviously lead to (46).

5. Some geometrical relations. The principal concern of this section is to handle
the commutators Jij , i, j = 1, . . . , n (see the first lines of Section 4). To begin with we
represent the derivative u(ii),(kk) in a special form.

Lemma 5. For any vector fields (14)–(17) the following formulas hold at x0:

u(ii),(kk) = u(iikk) + 4cjiku(ij),(k) + 2(u(ii) − u(jj))(c
j
i,k)2 − u(ii)(G(kk)τi, τi),

i, k = 1, . . . , n, where notation (7) is used.
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P r o o f. Formulas (48) result from the following calculations:

u(ii),(kk)(x0) = (u(iikk) + 4u(ijk)c
j
ik + 2u(jj)(c

j
ik)2 + 2u(ii)η

i
p(τ

p
i )(kk))(x0), i = 1, . . . , n,

u(ijk)(x0) = (u(ij),(k) + (u(ii) − u(jj))c
j
ik + u(ii)(G(k)τi, τj))(x0),

ηip(τ
p
i )(kk) = (Gτi, (τi)(kk)) = − 1

2 ((G(kk)τi, τi) + 2(G(τi)(k), (τi)(k))

+ 4(G(k)τi, (τi)(k))), i = 1, . . . , n,

(G(τi)(k), (τi)(k)) =
n∑
j=1

(cjik)2, (G(k)τi, (τi)(k)) = (G(k)τi, τj)c
j
ik.

We further consider the term cjiku(ij),(k) in (48). In the author’s paper [6] the vector
fields {τi : i=1, . . . , n} were supposed to be the eigenvectors of the matrixG−1/2uxxG

−1/2

in the whole neighbourhood of x0. This construction implied the identities u(ij),(k) = 0,
i, j = 1, . . . , n. However, such choice of vector fields is only possible when all principal
curvatures are different at X0. The correction presented below covers the case of equal
curvatures.

We introduce the following ordering: u(11)(x0) < . . . < u(γγ)(x0), γ ≤ n. Then
u(ii)(x0) ≤ u(γγ)(x0), i = 1, . . . , n. Split {1, . . . , n} into subsets Ip, p = 1, . . . , γ, where
Ip = {1 ≤ i ≤ n : u(ii)(x0) = u(pp)(x0)}.

Lemma 6. For any nonnegative numbers ap, p = 1, . . . , γ, and r, 1 ≤ r ≤ γ, the
following relation holds at x0:

γ∑
p=1

ap
∑
k∈Ir

∑
i,j∈Ip

cjiku(ij),(k) = ar
∑

i,j,k∈Ir

cjiku(ij),(k)(49)

=
γ∑
p=1

ap
∑
i∈Ip

∑
k,j∈Ir

cjkiu(kj),(i).

P r o o f. By (46) (see (25)),

cijk(x0) =
(
δiku(j) + δikui

1 + w
u(kk)

)
(x0), i, j ∈ Ip, p = 1, . . . , γ.

These equalities mean that actually the summation on both sides of (49) is over i, j, k ∈ Ir,
p = r.

Lemma 7. Let ai, i = 1, . . . , n, be nonnegative. Then for any vector fields (14)–(17),
k ∈ Iγ , the following equality holds at x0:

(50)
∑

u(ii)≥u(jj)

ai(u(ii) − u(jj))((c
j
ik)2 − (cijk)2) = ak

n∑
j=1

(u(kk) − u(jj))((c
j
kk)2 − (ckjk)2).

P r o o f. By the summation condition in (50), formulas (21) at x0 become

cijk + cjik ≡ u(i)u(jk) + u(j)u(ik) = δiku(j)u(kk).

Therefore all the nonvanishing terms on the left-hand side of (50) are those on its right-
hand side.
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Lemma 8. Assume that nonnegative ai, i = 1, . . . , n, satisfy ai ≥ aj if i ≤ j. Then for
vector fields (38), (44) related to x0 the following inequality holds at x0:

(51)
∑
k∈Iγ

ai[u(kk),(ii)] ≥
∑
k∈Iγ

ai[u(ii)(G(kk)τi, τi)],

where [Φ(i, j)] = Φ(i, j)− Φ(j, i).

P r o o f. By (40), (48), (49),

(52)
∑
k∈Iγ

ai[u(kk),(ii)]

=
∑
k∈Iγ

n∑
i,j=1

ai((u(kk) − u(jj))(c
j
ki)

2 − (u(ii) − u(jj))(c
j
ik)2 + [u(ii)(G(kk)τi, τi)]).

We use the monotonicity of ai and Lemma 7 to get
n∑

i,j=1

ai(u(ii) − u(jj))(c
j
i,k)2

=
∑

u(ii)>u(jj)

ai(u(ii) − u(jj))(c
j
ik)2 +

∑
u(ii)<u(jj)

ai(u(ii) − u(jj))(c
j
ik)2

=
∑

u(ii)>u(jj)

(ai(u(ii) − u(jj))(c
j
ik)2 − aj(u(jj) − u(ii))(cijk)2)

≤
∑

u(ii)>u(jj)

ai(u(ii) − u(jj))((c
j
ik)2 − (cijk)2)

= ak
n∑
j=1

(u(kk) − u(jj))((c
j
kk)2 − (ckjk)2).

Combining the latter with (52) we obtain (51).
Note that we never use in this section any special properties of Γ or u but smoothness.

6. Application to the general curvature equations. We now return to the cur-
vature equations in the form (36) which presupposes the graphs over Ω to be the only
surfaces of interest. We shall make use as well of the form (4) when exploiting the symme-
try of the considered functions f . We state a helpful and well-known (see [1]) consequence
of symmetry and concavity of f .

Lemma 9. Let f be symmetric and concave on some convex subset B ⊂ Rn. Then
xi ≤ xj implies ∂f/∂xi ≥ ∂f/∂xj for x = (x1, . . . , xn).

Lemma 9 follows from Taylor’s formula. Indeed,

0 = f(x2, x1)− f(x1, x2)

=
(
∂f(x1, x2)

∂x1
− ∂f(x1, x2)

∂x2

)
(x2 − x1)

+
1∫

0

(1− τ)
(

∂2f

(∂x̃1)2
− 2

∂2f

∂x̃1∂x̃2
+

∂2f

(∂x̃2)2

)
dτ (x2 − x1)2,
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where x̃1 = (1− τ)x2 + τx1, x̃2 = (1− τ)x1 + τx2, τ ∈ [0, 1].

Theorem 10. Assume the function f in (4) to be homogeneous of the first order and
symmetric. Assume also the image of D(F ) in Sn, where Sn is the set of all symmetric
matrices, to be convex. Then for any C4-solution u ∈ D(F ) (viewed as a subset of
C2(Ω)) to equation (36) the following alternative holds: either k̃0(x) = (wk0)(x) attains
its maximum at the boundary ∂Ω or

(53) k̃2
0(x) ≤ max

BR

w2l(γ)
h

(
2Λ−(hXX) + 9

l(γ)
h
w2|hX |2

)
,

where BR = {(x, u): |x|+ |u| < R}.

P r o o f. Assume k̃0(x) attains its maximum at x0 ∈ Ω and introduce the function

W =
∑
k∈Iγ

u(kk)

which is defined in some neighbourhood of x0 where u(kk) = uijτ
i
kτ
j
k corresponds to (38),

(44), and Iγ is related to x0 in the fashion described above. It is obvious that

k̃0(x0) =
1
l(γ)

W (x0) = u(kk)(x0),

where l(γ) is the number of elements of Iγ . Moreover,

W (x) ≤W (x0), |x| < ε,

for some sufficiently small ε. Therefore,

(54) W(i)(x0) = u(kk),(i)(x0) = 0, i = 1, . . . , n, k ∈ Iγ ,

(55)
n∑

i,j=1

(
∂F

∂uij
Wij

)
(x0) ≡

n∑
i=1

(
∂F

∂u(ii)
W(ii)

)
(x0) ≡

∑
k∈Iγ

aiu(kk),(ii) ≤ 0.

We rewrite the latter expression as

(56)
∑
k∈Iγ

aiu(kk),(i) =
∑
k∈Iγ

ai[u(kk),(ii)] +
∂F

∂u(ii)
u(ii),(kk).

From (36) and the concavity of F (see (10)), we have
n∑
i=1

(
∂F

∂u(ii)
u(ii),(kk)

)
(x0) ≥ (hw)(kk)(x0).

On the other hand, (36) combined with (54) and Lemma 8 lead to∑
k∈Iγ

ai[u(kk),(ii)](x0) = −2u(k)u(kk)(hw)(k).

Therefore (55) and (56) give rise to the inequality

(57)
∑
k∈Iγ

((hw)(kk) − 2u(k)u(kk)(hw)(k))(x0) ≤ 0.

The position of w in (57) turns out to be convenient for our aims, since at x = x0,

w(k) = wu(k)u(kk),
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w(kk) =
1
w
u2

(kk) + wu(p)u(kkp), u(kkp) = u(kk),(p) + 2δpku(p)u
2
(kk).

Keeping in mind that

W 2(x0) =
1
l(γ)

∑
k∈Iγ

u2
(kk)(x0)

we see that (57) implies the final inequality

(58)
h

wl(γ)
W 2(x0) ≤ w(Λ−(hXX) + 3|hX |W )(x0).

The estimate (53) is a simple consequence of (58).
In contrast to Proposition 1 the assertion of Proposition 2 is a direct corollary of the

estimate (53).
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