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Abstract. We investigate ramification properties with respect to parameters of integrals
(distributions) of a class of singular functions over an unbounded cycle which may intersect
the singularities of the integrand. We generalize the classical result of Nilsson dealing with the
case where the cycle is bounded and contained in the set of holomorphy of the integrand. Such
problems arise naturally in the study of exponential representation at infinity of solutions to
certain PDE’s (see [Z]).

1. Introduction. Nilsson type integrals were introduced by Nilsson [N] and their
investigation was continued i.a. by Leray [L], Pham [P], Kobayashi [Ko], Andronikof [A].

We are interested in analytic continuation of the function defined by integration of
multivalued analytic functions depending on parameters. Let f(z, θ) be a given multival-
ued analytic function of variables θ ∈ Cn with parameters z ∈ Cm. We assume that there
is a polynomial P (z, θ), (z, θ) ∈ Cm×Cn, such that the singularities of f(z, θ) are defined
by the equation P (z, θ) = 0 in Cm × Cn. Let γ(z) be a compact n-dimensional cycle in
Cn, depending continuously on the parameter z ∈ Cm. Consider the Nilsson integral

I(z) =
∫

γ(z)

f(z, θ) dθ.

It is known ([N], [L], [A]) that, if γ(z) does not intersect the set V = {P (z, θ) = 0}
for z ∈ Cm then I(z) can be continued to Cm as a multivalued analytic function with
singularities defined, in general, by the discriminants of the polynomial P (z, θ).
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In this work, we study the same problem for the function I(z) but in the case when
γ(z) may be unbounded and may intersect the singularities of the integrand f(z, θ). We
consider the case where for z ∈ C, γ(z) = a

∗+ iRn ⊂ Cn with a
∗ ∈ Rn fixed and f(z, θ) =

K(z, θ)/P (z, θ), where P (z, θ) is a polynomial of (z, θ) and K(z, θ) is a holomorphic
function with some growth properties at infinity. We prove that I(z) can be continued to
C as a multivalued analytic function and its singularities can be described by “generalized
discriminants” of the polynomial P (z, θ).

The first author wishes to express his thanks to the Institute of Mathematics of the
Polish Academy of Sciences for its kind hospitality during the work on the problems
considered in this paper.

2. Analytic continuation of I(z). First let us recall some fact about Nilsson type
integrals over intervals and unbounded cycle. Let H(z, θ) be a function of the complex
variables z = (z1, . . . , zk) ∈ Ck and θ ∈ C such that there exists an algebraic variety VH
in Ck of the form

VH = {(z, θ) ∈ Ck × C : P (z, θ) = 0},
where P is a nontrivial complex polynomial, such that H(z, θ) is holomorphic on the
universal covering space ˜Ck+1 \ VH of Ck+1 \ VH . Recall (see [Z]) that if P (z, θ) is of the
form

P (z, θ) =
m∑
j=0

aj(z)θj = am(z)(θ − c1(z)) . . . (θ − cm(z))

then the polynomial

∆θP (z) = (am(z))2m−1
∏
j,l

(cj(z)− cl(z))2

is called the complete discriminant of P with respect to θ. In the case where P contains
multiple factors the reduced discriminant of the polynomial P, ∆̃θP , is obtained from P

by neglecting multiple factors.

We begin by stating the following reformulation of a lemma from [N] (Lemma 2,
p. 466):

Lemma 1. Let H(z, θ) be as above and let b1(z) and b2(z) be algebraic functions on
Ck such (z◦, b1(z◦)), (z◦, b2(z◦)) 6∈ VH for some z

◦ ∈ Ck and for all branches of b1 and b2.
Then the function

(1) I(z) =
b2(z)∫

b1(z)

H(z, θ) dθ,

defined in a neighbourhood of z◦, extends analytically to a multivalued holomorphic function
on ˜Ck \ VI , where VI = {z : W (z) = 0} with

W (z) = ∆̃θP (z)P1(z)P2(z)Q3(z),

where ∆̃θP (z) is the reduced discriminant of P with respect to θ, the set {Pj(z) = 0} is
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the singular set of bj (j = 1, 2), and Q3 is such that outside {Q3(z) = 0}, P (z, bj(z)) 6= 0
for j = 1, 2(1).

We shall also consider the situation when either of the end points in (1) may be infinite
(cf. Theorem 3.1 in [Z]):

Lemma 2. Let H be as above and let a∗ ∈ R. Fix z◦= α
◦ + iβ

◦
∈ Ck, and let b(β) be a

(real) algebraic function of β ∈ Rk such that

P (z◦, a∗+ iγ) 6= 0

for γ ≤ b(β
◦
). Define formally

I(z◦) =
a
∗
+ib(β

◦
)∫

a
∗−i∞

H(z◦, θ) dθ.

Suppose that

(2) |H(z◦, θ)| = o(|θ|) for Re θ ≥ a∗ with |θ| large,

and locally uniformly in z ∈ Ck,

(2′) H(z, θ) ≤ C(z)
1

|Re θ|2

for Re θ positive and Im θ bounded. Then the function I is well defined for z = α
◦+iβ with

β in some (real) open neighbourhood of β
◦

in Rk and extends analytically to a multivalued
function Iα◦ (z) on Ck \VI , where VI is defined by the polynomial W as in Lemma 1 (with
P1 ≡ 1). Explicitly , the analytic continuation of I to the set

Ck#(VI + Rk+) := (C \ VI,1 + R+)× . . .× (C \ VI,k + R+)

(the subscript standing for projection onto the respective C) is given by the integrals

Ia∗(z) =
∫

a
∗
+ib(−iz−α◦ )+R+

H(z, θ) dθ +
∫
Γz

H(z, θ) dθ,

where for a fixed z ∈ Ck#(VI + Rk+), Γz is a curve in C encircling the set {θ : P (z, θ) =
0}+ R+ and contained in a small tubular neighbourhood of that set.

P r o o f. It follows from Lemma 1 by deforming the contour of integration due to the
estimates (2) and (2′).

R e m a r k 1. In the case where b(β
◦
) ≡ +∞ and H(z, θ) = K(z, θ)/P (z, θ), where P

is a polynomial (without multiple factors) and K is entire and such that the conditions
(2) and (2′) are satisfied, we have

I(z) =
∑

j∈I+(z)

K(z, cj(z))
am(z)

∏m
q=1,q 6=j(cj(z)− cq(z))

,

(1) The existence of such Q follows from the fact that the projection of an algebraic set is
semialgebraic.
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where

(3) P (z, θ) = am(z)
m∏
j=1

(θ − cj(z))

and

(4) I+(z) = {j : Re, cj(z) > a
∗}.

For the proof of this proposition see [Z], Theorem 3.1.

We now consider the integral (to be understood in the sense of distributions if neces-
sary)

(5) I(z) = reg
∫

′a
∗
+iRn

H(z, θ) dθ,

where θ = (θ1, . . . , θn) ∈ Cn, z ∈ C, ′a∗+ iRn ⊂ Cn, ′a∗ = (a∗1, . . . , a
∗
n) ∈ Rn.

Let H(z, θ) have the form

H(z, θ) =
K(z, θ)
P (z, θ)

,

where P (z, θ) is a polynomial of variables (z, θ) ∈ C × Cn, and K(z, θ) is an entire
function. Set

VH = {(z, θ) : P (z, θ) = 0}.
Fix a∗0 ∈ R. This time, however, we admit that

VH(a∗0, ′a
∗) = VH ∩ {(a∗0 + iR)× (′a∗+ iRn)} 6= ∅.

For convenience we assume that P has no multiple factors.

We start by considering the function

(6) Hn−1(z0, . . . , zn−1) =
∫

∗
an+iR

H(z0, . . . , zn−1, θ) dθ.

The precise definition of Hn−1 requires however some caution:
For a fixed a∗ = (a∗0, . . . , a

∗
n) we consider the system of two real algebraic equations in

variables (β0, . . . , βn),

(7) ReP (a∗+ iβ) = 0, ImP (a∗+ iβ) = 0.

Assuming that the system (7) is nondegenerate it describes an (n − 2)-dimensional
algebraic subset of Rn. Then its projection onto the n − 1 first variables is a semi-
algebraic set An−1 and we denote by Pn−1(β0, . . . , βn−1) a polynomial vanishing on
that set. We solve the system (7) with respect to the variables (βn−1, βn) ∈ R2 with
β′′ = (β0, . . . , βn−2) regarded as parameters. In particular, we obtain a multivalued alge-
braic function βn−1(β0, . . . , βn−2) which clearly satisfies the equation

Pn−1(β0, . . . , βn−1(β0, . . . , βn−2)) = 0.

Lemma 3. For every point β′ = (β0, . . . , βn−1) 6∈ An−1 the function Hn−1(a∗′ + iβ′)
defined by (6) in a neighbourhood of that point (in Rn) extends to a multivalued function
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outside the set {∆n = P} given by the formula

(8) Hn−1(z′) =
∑

p∈I+(z′)

K(z′, cp(z′)
am(z′)

∏m
q=1,q 6=p(cp(z′)− cq(z′))

,

where cj and I+(z′) are given by (3), (4) and ∆nP is the discriminant of P with respect to
the variable zn. Moreover , for any two points β′, β̃′ belonging to the same open connected
component of Rn−1 \An−1 the corresponding extensions coincide.

P r o o f. The first part follows easily from Remark 1 since for β′ 6∈ An−1, P (a∗′ + iβ′,
a
∗
n+iγn) 6= 0 for γn ∈ R. To see that the extensions coincide on the connected components

of Rn−1 \ An−1 it is enough to check that the set I+ may change only for β′ such that
Re cj0(a∗′ + iβ′) = a

∗
n for some j0. But then we would have

P (a∗′ + iβ′, a
∗
n + i Im cj0) = 0,

which means that β′ ∈ An−1 and proves the claim.

R e m a r k 2. The assertion of the lemma remains valid also when P has multiple roots
with the discriminant ∆nP replaced by the reduced discriminant ∆̃nP (cf. [Z]) and with
(7) replaced by a similar expression involving derivatives of K with respect to zn.

We next consider the function

(9) Hn−2(z0, . . . , zn−2) =
∫

an−1+iR

Hn−1(z0, . . . , zn−2, θ) dθ.

As before this integral requires explanation, especially that Hn−1 is not a single function
but a family of multivalued functions. Thus Hn−2 is defined as follows:

Fix a point β′′ = (β0, . . . , βn−2) ∈ Rn−1 and let βjn−1 = βjn−1(β′′), j = 1, . . . ,m, be
the roots of Pn−1(β′) = 0 chosen so that

−∞ = β0
n−1 < β1

n−1 ≤ . . . ≤ βmn−1 < βm+1 =∞.

For γn−1, β
j
n−1 < γn−1 < βj+1

n−1 we are in one component of Rn \ An−1 and we take the
corresponding function Hn−1. We define

(10) Hj
n−2(a∗′′ + iβ′′) =

βj+1
n−1(β

′′)∫
βj

n−1(β
′′)

Hn−1(a∗′′ + iβ′′, a
∗
n−1 + iγn) dγn.

In order that this be well-defined we must ensure that the singularities of Hn−1 do not lie
on the interval of integration. The singularities of Hn−1 are described by the discriminant
∆nP (a∗+ iβ′) = 0, and we are thus led to the system of (real) equations

∆nP (a∗′ + iβ′) = 0

which replaces the system (7). We denote by An−2 the projection of {∆nP = 0} onto
the variables (β0, . . . , βn−2) and by Pn−2(β0, . . . , βn−2) the polynomial which describes
An−2.

Lemma 4. For every fixed β′′ 6∈ An−2 and j = 0, . . . ,m+1 the function Hj
n−2(a∗′′+iβ′′)

defined initially in a neighbourhood of that β′′, extends to a multivalued function outside
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the set {Wn−2(z′′) = 0}, where

(11) Wn−2 = Wn−1∆n−1P̃Qn−2, Wn−1 = ∆n,n−1P

with

P̃n−1(z0, . . . , zn−2, βn−2) = Pn−1(−i(z0 − a∗0), . . . ,−i(zn−2 − a∗n−1), βn−1),

∆n,n−1P = ∆n−1(∆nP ),

and Qn−2 is the polynomial describing the set

Πn−2({∆n−1P (z0, . . . , zn−2, a
∗
n−1 + iβn−1) = 0} ∩ {P̃n−1(z0, . . . , zn−2, βn−1) = 0})

whith Πn−2 denoting the projection onto the variables (z0, . . . , zn−2). Moreover , the ex-
tension can be given by the (contour) integral

(12) Hj
n−2(z′′) =

βj+1
n−1(−i(z

′′−a∗′′))∫
βj

n−1(−i(z
′′−a∗′′),

Hn−1(z′′, a∗n−1 + iγn−1) dγn−1.

P r o o f. Clearly the proof consists in adapting Lemma 1 to our situation. We see that
the function (10) extends to a holomorphic function in the complexifications ζ0, . . . , ζn−2

of the variables β0, . . . , βn−2. Returning to the original variables z by the formula ζj =
−i(zj−a∗j) we obtain (12). The ramification points of Hj

n−2 arise from the singular points
of the integrand (described by ∆n,n−1P = 0), the singular points of βjn−1(−i(z′′ − a∗))
and of βj+1

n−1(−i(z′′ − a∗)) (described by ∆n−1P̃n−1 = 0) and the points z′′ for which the
integration limits are the singular points of the integrand (described by Qn−2 = 0). This
proves the lemma.

R e m a r k 3. Clearly the function

Hn−2 =
m+1∑
j=0

Hj
n−2

has the same regularity properties as Hj
n−2. Moreover, Hn−2 may be different on different

components of the projection onto (β0, . . . , βn−2) of the sets Rn \ An−1 minus the zero
set An−2 of Pn−2.

By applying Lemma 4 n−1 times we arrive at the following result for I(z0) = H0(z0):

Theorem 1. There exists a family of disjoint intervals A1
0, . . . , A

k
0 which fill the line

a
∗
0 + iR up to a set of measure zero such that from each of these intervals the function
I(a∗2 + iβ) extends to a ramified function on ˜C \ {W0(z◦) = 0}, where W0 is defined by the
recurrence (11).

3. Example. We consider the polynomial

P (z) = z2
1 + z2

2 + z2
3 in C3.

Let a∗ = (a∗1, a
∗
2, a
∗
3)∈R3 be fixed. For a fixed b1 ∈ R we shall solve the system of equations

(13) P (a∗+ ib) = 0
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with respect to the unknowns b2(a∗, b1), b3(a∗, b1) with a∗ and b1 regarded as fixed param-
eters. Explicitly, (13) is equivalent to the pair of equations

(13′)
3∑
j=1

(a∗2j − b2j ) = 0,
3∑
j=1

a
∗
jbj = 0.

Suppose a3 6= 0. Then b3 = (1/a∗3)
∑2
j=1 a

∗
jbj , and (13′) reduces to an equation in the

unknown b2:

(14) Ab22 +Bb2 + C = 0,

where
A = a

∗2
2 + a

∗2
3,

B = 2a∗1b1a
∗
2,

C = a
∗2
1b

2
1 − a

∗2
3(a∗21 + a

∗2
2 + a

∗2
3 − b21).

The discriminant of (14) equals

∆ = −a∗23a
∗2
1b

2
1 + a

∗2
3(a∗22 + a

∗2
3)(a∗21 + a

∗2
2 + a

∗2
3 − b21) = (a∗21 + a

∗2
2 + a

∗2
3)(a∗22 + a

∗2
3 − b21)a2

3

and is positive if and only if a∗22 + a
∗2
3 > b21. Hence if ‖a∗‖ =

√
a
∗2
1 + a

∗2
2 + a

∗2
3 and ‖′a∗‖ =√

a
∗2
2 + a

∗2
3 then

b12(a∗, b1) =
−2a∗1a

∗
2b1 − ‖a∗‖

√
‖′a∗‖2 − b21

2‖a∗′‖2
,

b22(a∗, b1) =
−2a∗1a

∗
2b1 + ‖a∗‖

√
‖′a∗‖2 − b21

2‖′a∗‖2
.

So we fix b1 ∈ R such that |b1| < ‖′a∗‖. We consider

I(z1) =
∫

a
∗′+iR2

K(z1, θ2, θ3)
P (z1, θ2, θ3)

dθ2 dθ3.

Let c(z1, θ2) =
√
−z1 − θ22 so that

P (z1, θ2, θ3) = (θ3 − c(z1, θ2))(θ3 + c(z1, θ2)).

Since for z1 = a
∗
1 + ib1 and θ2 = a

∗
2 + ib2 with b2 6= b12(a∗, b1), b22(a∗, b1),

P (z1, θ2, a
∗+ ib3) 6= 0 for b3 ∈ R,

we may compute the integral

H(z1, θ2) =
∫

a
∗
3+iR

K(z1, θ2, θ3)
P (z1, θ2, θ3)

dθ3.

by the residue theorem and obtain, as in §8 of [Z],

H(z1, θ2) =


K(z1, θ2, c(z1, θ2))

2c(z1, θ2) for b2 > b22(a∗, b1),

0 for b12(a∗, b1) < b2 < b22(a∗, b1),

−K(z1, θ2,−c(z1, θ2))
2c(z1, θ2)

for b2 < b12(a∗, b1).
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Hence

I(z1) = −
a
∗
2+ib

1
2(a
∗
,b1)∫

a
∗
2−i∞

K(z1, θ2,−c(z1, θ2))
2c(z1, θ2)

dθ2

+
a
∗
2+i∞∫

a
∗
2+ib

2
2(a
∗
,b1)

K(z1, θ2,−c(z1, θ2))
2c(z1, θ2)

dθ2

Now in order to investigate the regularity of the function I(a∗1+ib1) with respect to b1
we must see when the singular points of the integrand lie on the integration half-lines. The
singular points are given by the equation z2

1 + θ22 = 0, and by setting z1 = a
∗
1 + ib1, θ2 =

a
∗
2 + iγ2 we find the solutions

b1 = −a∗2, γ2 = a
∗
1 and b1 = a

∗
2, γ2 = −a∗1.

Denote by A1, A2, A3 the intervals (−‖′a∗‖,−a∗2), (−a∗2, a∗2), (a∗2, ‖′a∗‖), respectively. Then
it follows from Lemma 2 that for each Aj there exist εj , ε̃j ∈ {+,−} such that for
β1 ∈ Aj , I can be written as (cf. Example in §8 of [Z])

I(a∗1 + ib1) =
∫

R+

K(z1, εjiz1,−ε̃jc(z1, εjiz1 + γ))
2ε̃jc(z1, εjiz1 + γ)

dγ

−
∫

R+

K(z1, εjiz1,−ε̃jc(z1, εjiz1 + γ))
2ε̃jc(z1, εjiz1 + γ)

dγ

−
∫

a
∗
2+ib

1
2+R+

K(z1, εjiz1,−ε̃jc(z1, εjiz1 + γ))
2ε̃jc(z1, εjiz1 + γ)

dγ

+
∫

a
∗
2+ib

2
2+R+

K(z1,−εjiz1, ε̃jc(z1,−εjiζ1 + γ))
2ε̃jc(z1,−εjiz1 + γ)

dγ

+
∫

R+

K(z1,−εjiz1, ε̃jc(z1,−εjiz1 + γ))
2ε̃jc(z1,−εjiz1 + γ)

dγ

−
∫

R+

K(z1,−εjiz1,−ε̃jc(z1,−εjiz1 + γ))
2ε̃jc(z1,−εjiz1 + γ)

dγ.

Now by Lemma 2 the first, second, fifth and sixth integrals extend to functions in z1 with a
ramification point at z1 = 0. Hence in particular if a∗1 > 0 they are holomorphic if Re z1 ≥
a
∗
1. The case of the third and fourth integrals is slightly more delicate. Considering each

of them as a function in the variable b1 ∈ Aj (and not in z1 = a
∗+ib1) we derive again from

Lemma 1 that they extend to ramified functions in the variable ζ1 (= complexification of
b1) with ramification points at ζ1 = ia

∗
1 and at ζ1 = ±ζ1 = ±‖′a∗‖. Now introducing back

the variable z1 in these extensions by the formula ζ1 = −i(z1 − a∗1), we obtain ramified
functions in z1 with ramification points at z1 = 0 and z1 = a

∗
1 ± i‖′a∗‖. Thus the desired

extensions assume the form
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−
∫

a
∗
2+ib

1
2(a
∗
1,−i(z1−a

∗
1))+R+

K(z1, εjiz1,−ε̃jc(z1, εjiz1 + γ))
2ε̃jc(z1, εjiz1 + γ)

dγ

+
∫

a
∗
2+ib

2
2(a
∗
1,−i(z1−a

∗
1))+R+

K(z1,−εjiz1, ε̃jc(z1,−εjiz1 + γ))
2ε̃jc(z1 − εjiz1 + γ)

dγ.
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