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Abstract. Symmetries of the control systems of the form ut = f(t,u,v), u∈Rn, v ∈ Rm are
studied. Some general results concerning point symmetries are obtained. Examples are provided.

Introduction. Technically, the control systems are underdetermined systems of dif-
ferential equations. These are not familiar objects for symmetry analysis, probably be-
cause their full symmetry algebras are presumed to be unresonably large. In [2] the first-
and second-order generalized symmetries of the underdetermined “system” ux = (vxx)2,
where u and v are scalar functions of x, were studied. The resulting Lie algebra of second-
order symmetries is the noncompact real form of the exceptional Lie algebra G2. Later
Kersten, [1], obtained the description of the general higher-order symmetry algebra for
this equation. Moreover, he gave the elegant and short derivation of the full Lie algebra
of generalized symmetries for general “scalar system”

(1) ux = f(u, v, vx, vxx, . . . , vxk),

x, u and v being scalars. In short, any n+2-order generalized symmetry may be obtained
from an arbitrarily chosen function H(x, u, v, . . . , vxn) by explicit procedure, provided n

is sufficiently greater than k. References [4]–[8] deal mostly with the setting of a problem
(there is a choice: whether to consider v-type variables as functional parameters or as
unknown functions on a par with u-type ones; we choose the latter).

As became lately known to the author, Proposition 1 was obtained independently by
Krishenko [3]. He also obtained some necessary conditions for a control system to admit
a decomposition in terms of the system’s symmetry algebra.

We are mainly concerned here with the system of the form

(2) ut = f(x,u,v),

which is the general form of a control system and also with a more general system
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(3) ut = f(x,u,v,vt, . . . ,vtk),

where t ∈ R, u ∈ Rn and v ∈ Rm.

General discussion

1. Higher symmetries. The symmetry equation for (3) is of the form

(4) DtA− fuA−
k∑
s=0

fvts B|{ut=f(t,u,v,vt,...,vtk )} = 0,

where subscripts stand for partial derivatives, (A,B) is a symmetry and Dt denotes the
total derivative with respect to t. To be precise,

Dt = ∂t +
∞∑
s=0

( n∑
i=1

uits+1
∂

∂uits
+

m∑
j=1

vjts+1

∂

∂vjts

)
is the scalar operator acting on the n-vector A = A(t,u,v,ut,vt, . . . ,utk ,vtk). Note that
in (4), B = B(t,u,v,ut,vt, . . . ,utk ,vtk) is an m-vector, while fu and fv are n × n and
n×m matrices with entries f iuj and f ivj respectively.

When restricted to (2), Dt becomes

(5) Dt = ∂t +
n∑
i=1

Aj
∂

∂ui
+
∞∑
s=0

m∑
j=1

vjts+1

∂

∂vjts
.

Besides, A and B restricted to (2) depend on t,u,v,vt, . . . ,vtk only, that is, do not
depend on any derivatives of u.

To simplify notations we shall write vs instead of vts . Substituting (5) into (4) we get

(6) ∂tA +
n∑
i=1

∂A
∂ui

f i +
k∑
s=0

m∑
j=1

vjs+1

∂A

∂vjs
− fuA− fvB = 0.

The maximal order derivatives entering (6) are vjs+j . They enter it linearly; their
contribution to (6) is

m∑
j=1

∂A

∂vjs
.

There are no other summands to cancel them, and it follows that

∀j :
∂A

∂vjs
= 0.

In other words, if B depends on derivatives of v of orders up to k, then A depends on
vjs, s ≤ k − 1.

2. Point symmetries. Let us first consider point symmetries of (2). As is well known,
in that case

(7)
A = S(t,u,v) + α(t,u,v)ut,

B = T(t,u,v) + α(t,u,v)vt,
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which corresponds to diffeomorphisms of the (t,u,v) space (the space of dependent and
independent variables) with infinitesimal generators

−α ∂
∂t

+
n∑
i=1

Si
∂

∂ui
+

m∑
j=1

T i
∂

∂vj
.

Here α is a scalar function. The symmetry (7) restricted to (2) becomes

(8)
A = S(t,u,v) + α(t,u,v)f ,

B = T(t,u,v) + α(t,u,v)vt,

in accordance with the previous conclusion. Substituting (8) into (6) we subsequently
observe that maximal order derivatives in (6) are components of v1, entering linearly:

(9) ∂t(S + αf) +
n∑
i=1

∂(S + αf)
∂ui

f i +
m∑
j=1

vj1
∂(S + αf)

∂vj
− fu(S + αf)− fv(T + αv1) = 0.

Therefore the coefficient by v1 equals zero:
m∑
j=1

∂(S + αf)
∂vj

− fvα = 0,

that is, (S + αf)v − αfv = 0 or, furthermore,

(10) Sv + αvf = 0.

In this notation αv is an n× 1 matrix and f is a 1× n matrix.

Proposition 1. If αv 6= 0 then rank fv ≤ 1.

P r o o f. On components, the relation (10) means

Sivj = −αvjf i.

The compatibility conditions Sivjvk = Sivkvj yield relations f ivjαvk = f ivkαvi or

(11) ∀i;∀j, k :
∣∣∣∣ f ivj f ivk

αvj αvk

∣∣∣∣ = 0.

If αv 6= 0, this means that f i and α as functions of {vj}, j = 1, . . . ,m, are functionally
dependent for all i. Thus the equation (11) shows that rank fv ≤ 1, that is, de facto,
there is no more than one independent control parameter for the system (2) in case of
αv 6= 0.

2.1. rank fv ≤ 1. Of course, the absence of control parameters is a situation of no inter-
est in the present context. In the reasonable case of rank fv = 1 one can choose α(t,u,v)
as a new variable which will be the sole control parameter. Thus f = Φ(t,u, α(t,u,v))
or simply f = Φ(t,u, α) in accordance with (11). So the situation αv 6= 0 makes sense
only for m = 1. Now (7) takes the form

A = S(t,u, v) + α(t,u, v)f(t,u, v),

B = T (t,u, v) + α(t,u, v)v1.
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Here B, T and v are scalars. The symmetry equation becomes{
Sv + αvf = 0,
∂t(S + αf) + (S + αf)uf − fu(S + αf)− fvT = 0,

or

(12)
{

Av = αfv,
∂tA + Auf − fuA = T fv.

To obtain a symmetry, get A using the former equation. The T is a kind of eigenvalue
(if there are any) in the latter equation. See also Examples 1 and 2 below.

2.2. rank fv > 1. In another case, if αv = 0 then Sv = 0 and in place of (7) we get

(13)
A = S(t,u) + α(t,u)f ,

B = T(t,u, v) + α(t,u)vt.

and in place of (9) we get

(14) ∂t(S + αf) +
n∑
i=1

∂(S + αf)
∂ui

f i − fu(S + αf)− fvT = 0

or

∂t(S + αf) + (S + αf)uf − fu(S + αf)− fvT = 0.

After differentiation this takes the form

(15) St + Suf − fuS + [(αf)t + (αuf)f ] = fvT.

In case m = n or, rather, rank fv = n the solution of (15) is readily obtained.

Proposition 2. In case m = n point symmetries correspond to arbitrary transforma-
tions of u variables.

P r o o f. Indeed, for arbitrary n+ 1 functions α, Si, i = 1, . . . , n, of t, u we get

(16) T = f−1
v {St + Suf − fuS + [(αf)t + (αuf)f ]},

since the matrix f−1
v is nondegenerate in this situation. Since any symmetry produces

(infinitesimally) a transformation uτ = S + αf compatible with (2), this proves the
statement. The formulas (16) and (13) give the full description of point symmetries in
case of m = n.

The last remark concerns the case 1 < m < n. As follows from (15),

St + Suf − fuS + [(αf)t + (αuf)f ] ∈ Im fv.

The dimension of the latter equals m, and this is a first rough obstruction to the exis-
tence of a symmetry. Yet there are situations where the maximal algebra is attained: see
Example 3 below.

Example

The case m = 1
1. As follows from Proposition 1, only in case of m = 1 the dependence of α on v is

possible. Yet often enough α is independent of v even in this case. Consider the control
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system {
u1
t = g(t, u1, u2),
u2
t = h(t, u1, u2) + v.

Its point symmetries are the solutions of (12). Here

A =
(
A1

A2

)
, Au =

(
A1
u1 A1

u2

A2
u1 A2

u2

)
,

fv =
(

0
1

)
and fu =

(
gu1 gu2

hu1 hu2

)
.

Thus A1
v = 0, A2

v = α,
A1
t +A1

u1g +A1
u2(h+ v)−A1gu1 −A2gu2 = 0,

A2
t +A2

u1g +A2
u2(h+ v)−A1hu1 −A2hu2 = T.

Differentiating the third equation with respect to v and taking the first one into account
we obtain A1

u2 = A2
vgu1 = αgu1 (the last equality follows from the second equation of the

system). Since A1 does not depend on v, this is also true for α.
Now A1 = A1(t, u1, u2) is an arbitrary function, while A2, α and T are obtained

immediately from the latter system.
However, in the following example α does depend on v.

2. Consider the system {
u1
t = vu2,
u2
t = vu1.

Here

fv =
(
u2

u1

)
, fu =

(
0 v
v 0

)
.

We take α = v. Then A1
v = vu2, A2

v = vu1,
A1
t + v(A1

uu
2 +A1

u2u1)− vA2 = Tu2,
A2
t + v(A2

u1u2 +A2
u2u1)− vA1 = Tu1.

It follows from the first two equations that

A1 = 1
2v

2u2 + p(t, u1, u2), A2 = 1
2v

2u1 + q(t, u1, u2),

for some p, q. To satisfy the remaining equations it is sufficient to choose p and q in such
a way that pu1 − qu2 = 0 (then T = 0). For instance, there is the following symmetry:

A =
(

1
2 (v2u2 + tu1(u2)2
1
2 (v2u1 + t(u2)3

)
, B = vv1.

The case 1 < m < n

3. Let us consider an example of a linear system of the form ut = P (t)u + Q(t)v,
where P and Q some proper-sized matrices. Multiplying it by exp(−

∫
P (t) dt) we obtain

wt = Qv for w = exp(−
∫
P (t)dt)u and Q = exp(−

∫
P (t)dt)Q. If rankQ = m, then by

an invertible transformation on ui’s the simplest general form of such a system may be
obtained: Ut = V, where U = (U1, . . . , Un) and V = (V 1, . . . , V m, 0, . . . , 0).



342 A. V. SAMOKHIN

The symmetry equation (4) for the latter system is as follows:

DtA−B|{Ut=V} = 0.

For point symmetries (13) we get

DtS + [αtV + (αUV)V] = VVT

On components it means thatT i = DtS
i + αtV

i +
( n∑
j=0

αUjV j
)
V i, 1 ≤ i ≤ m,

DtS
i = 0, m < i ≤ n.

Thus, Si, i > m, are arbitrary constants, α = α(t,U) and Si(t,U), 0 ≤ i ≤ m, are
arbitrary functions, while T i(t,U,V) are defined by (17).
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