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2, Place Jussieu, 75251 Paris Cedex 05, France

E-mail: al@litp.ibp.fr

BERNARD LECLERC

L.I.T.P., Université Paris 7
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Abstract. Classes dual to Schubert cycles constitute a basis on the cohomology ring of the
flag manifold F , self-adjoint up to indexation with respect to the intersection form. Here, we
study the bilinear form

(X,Y ) := 〈X · Y, c(F)〉
where X,Y are cocycles, c(F) is the total Chern class of F and 〈 , 〉 is the intersection form.
This form is related to a twisted action of the symmetric group of the cohomology ring, and
to the degenerate affine Hecke algebra. We give a distinguished basis for this form, which is a
deformation of the usual basis of Schubert polynomials, and apply it to the computation of the
Schubert cycle expansions of Chern classes of flag manifolds.

1. Introduction and preliminaries. Let V be a complex vector space of dimen-
sion n, and F = F(V ) be the variety of complete flags in V . It is well known that the
cohomology ring H∗(F ,C) is the quotient of the polynomial ring C[X] = C[x1, x2, . . . , xn]
by the ideal I+ of symmetric polynomials without constant term.

Let σi, i = 1, . . . , n − 1 be the simple transposition exchanging xi and xi+1. Denote

1991 Mathematics Subject Classification: 14M15, 05E15, 20G20.
Supported by PRC Math-Info and EEC grant n0 ERBCHRXCT930400.
The paper is in final form and no version of it will be published elsewhere.

[111]



112 A. LASCOUX ET AL.

by ∂i the linear operator on C[x1, . . . , xn] defined by

∂if :=
f − σif
xi − xi+1

(1)

(Newton’s divided difference). The operators ∂1, . . . , ∂n−1 induce operators on H∗(F).
According to [1] and [4], the basis of Schubert cycles can be obtained from the class

of a point P = 1
n!

∏
i<j(xi − xj) by successive applications of divided difference oper-

ators. Taking as representative of P the polynomial X := xn−1
1 xn−2

2 · · ·x0
1, one obtains

polynomials Xµ, µ ∈ Sn, called Schubert polynomials, which represent the Schubert
subvarieties in the cohomology ring [11]. A detailed account of the algebraic theory of
Schubert polynomials can be found in Macdonald’s treatise [14].

Divided differences satisfy the braid relations{
∂i∂i+1∂i = ∂i+1∂i∂i+1

∂i∂j = ∂j∂i for |i− j| > 1, (2)

but the squares ∂2
i are null. These relations allow to define operators ∂µ for any per-

mutation µ ∈ Sn: if µ = σi1σi2 · · ·σim is a reduced decomposition of µ, one sets
∂µ = ∂i1∂i2 · · · ∂im . The result does not depend on the choice of a particular reduced
decomposition of µ.

To recover an action of the symmetric group, one can take any q ∈ C and define

Di := σi + q∂i, 1 ≤ i ≤ n− 1. (3)

These operators still satisfy the braid relations{
DiDi+1Di = Di+1DiDi+1

DiDj = DjDi (|i− j| > 1) (4)

together with

D2
i = 1, (5)

so that they generate a representation of the symmetric group Sn on the polynomial
ring C[x1, . . . , xn], as well as on the cohomology ring H∗(F ,C). These operators have
been considered by Cherednik and Bernstein (cf. [2], [3]). Similar operators, acting on
the equivariant K-theory of flag manifolds, have been used by Lusztig [13]. More general
operators satisfying braid relations have been given in [12].

As ∂i decreases degrees by 1, all q 6= 0 will give equivalent representations of Sn, and
by homogeneity, the general case can be recovered from the case q = 1. For simplicity,
we set q = 1, and write

si := σi + ∂i. (6)

We denote as above by sµ the product of operators si corresponding to a permutation µ.
Remark that the operator algebra generated by the si and the variables xj (interpreted
as operators f 7→ xjf) is isomorphic to the degenerate affine Hecke algebra considered
in [2].

Schubert calculus for other classical groups can be found in the work of Fulton [7]
and of Pragacz and Ratajski [15].

This paper is organized as follows. We first define certain elements (Yang-Baxter
operators) of the degenerate affine Hecke algebra. Then we use them to define a bilinear
form on the cohomology of a flag manifold. We exhibit a distinguished basis, called affine
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Schubert polynomials, and compute its adjoint basis. We then apply this formalism to the
computation of the Schubert expansions of Chern classes.

Acknowledgements. The preparation of this paper has been facilitated by the use of
the program system SYMMETRICA [9] and of the Maple package SP [16].

2. Yang-Baxter operators. We shall define inductively operators µ and ∇µ as-
sociated with any permutation µ in Sn. Set 12...n = 1, ∇12...n = 1, and, if µ = σiα with
`(µ) = `(α) + 1, and β = α−1, µ =

(
si + 1

βi+1−βi

)
α

∇µ =
(
si − 1

βi+1−βi

)
∇α

(7)

Using the braid relations (4), one can check that this definition is consistent, i.e.
does not depend on the chosen factorization (see [2, 3] and [6]). This follows in fact
from a classical solution of the Yang-Baxter equation. In [17], C. N. Yang observed
that the operators defined by Yi(u) = u−1 + σi, where u is a scalar parameter and
σi the transposition (i, i+ 1) satisfy the “Quantum Yang-Baxter Equation with spectral
parameter”:

Yi(u− v)Yi+1(u− w)Yi(v − w) = Yi+1(v − w)Yi(u− w)Yi+1(u− v) (8)

It follows that given a n-tuple of parameters u = (u1, . . . , un), one can define for any per-
mutation µ ∈ Sn an operator Rµ(u) by the following prescription: Yµ(u) = Yi(uβ(i+1) −
uβ(i))Rα(u), where, as above, R12...n = 1, µ = σiα, `(µ) = `(α) + 1 and β = α−1. Then,
our operators (7) are respectively Rµ(u) and Rµ(−u), where u = (1, 2, . . . , n) and σi is
interpreted as si.

For the maximal element ω = (n, n−1, . . . , 1) of Sn, one has the following factorization
property (given in [6] for the case of the Hecke algebra):

Proposition 2.1. Define θ =
∏

1≤i<j≤n

(1 + xi − xj) and θ∗ =
∏

1≤i<j≤n

(1 − xi + xj).

Then, for any polynomial f ,
(i) ∇ωf = θ∗ ∂ωf

(ii) ωf = ∂ω(θf).

P r o o f. Recall that the classes of the Schubert polynomials Xµ, µ ∈ Sn, form a basis
of H∗(F) = C[X]/I+. Given µ and i such that `(µσi) > `(µ), the polynomial Xµ is
symmetrical in xi and xi+1. As such, it is sent to 0 by the operator ∇σi

= σi + ∂i − 1.
Now, for any permutation µ 6= ω, there exists an i such that `(µσi) > `(µ). If we

choose a reduced decomposition of ω ending by σi, ω = νσi, say, we see that Xµ is sent
to 0 by ∂ω = ∂ν∂σi and by ∇ω = ∇µ∇σi .

Thus, ∇ω as well as ∂ω annihilate all Schubert polynomials Xµ for µ 6= ω. Finally,
Xω = xn−1

1 . . . x0
n is sent to 1 by ∂ω. To conclude, it remains to prove that

∇ω(Xω) =
∏

1≤i<j≤n

(1− xi + xj).

This formula can be proved by induction on n using the factorization

ωn = σ1σ2 · · ·σn−1ωn−1,
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which gives

∇ωn
=
(
s1 − 1

)
· · ·
(
sn−1 −

1
n− 1

)
∇ωn−1 .

3. Quadratic form. Recall that the intersection form of the cohomology ring
H∗(F ,C) is induced by the form on C[X]

〈f, g〉 = ∂ω(fg)|0 = ∂ω(fg|`(ω)) (9)

where f |k denotes the homogeneous component of degree k of f (cf. [1], [5]). With respect
to this form, the Schubert polynomials satisfy

〈Xµ, Xν〉 =
{

1 if ν = ωµ
0 otherwise. (10)

The tangent bundle TF of the flag manifold has a composition sequence {LiL−1
j }i<j

where L1, L2, . . . , Ln are the tautological line bundles on F . The total Chern class of Li
being c(Li) = 1 + xi, the total Chern class of the tangent bundle of F is

c(F) =
∏
i<j

(1 + xi − xj) (11)

(see e.g. [8], our convention is Li = ξ∗i in the notation of [8]). Consider now the following
quadratic form on C[X]:

Definition 3.1.

(f, g) := ω(fg)|0.

Thus, in the cohomology ring, we see from Proposition 2.1 that

(f, g) = 〈f, g c(F)〉 = 〈f c(F), g〉. (12)

Lemma 3.2. The operators i are self-adjoint with respect to the quadratic form ( , ).

P r o o f. For any i, ω i = 2 ω, since 2
i = 2 i and since one can find a reduced

decomposition of ω ending with σi. Now,

( if, g) = ω (( if)g) |0 =
1
2 ω i (( if)g) |0 =

1
2 ω (( if)( ig)) |0

since if is a scalar for i, being symmetrical in xi, xi+1. The last expression being
symmetrical in f, g, this proves that ( if, g) = (f, ig).

4. Affine Schubert polynomials. Let Hn be the linear subspace of C[x1, . . . , xn]
generated by the monomials xI = xi11 x

i2
2 · · ·xinn such that ik ≤ n − k. Let Π be the

projector from C[X] onto Hn associating to a polynomial P the unique representative in
Hn of its class P ∈ C[X]/I+.

Definition 4.1. Let µ ∈ Sn. The affine Schubert polynomial of index µ is defined by

Zµ = Π
(

µ−1ωZω
)

where Zω := Xω = xn−1
1 xn−2

2 · · ·x0
n.
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Example 4.2. For n = 3,

Z321 = x2
1x2

Z312 = x2
1

Z231 = x1x2

Z213 = x1 − 1/2x1x2 − x2
1

Z132 = x1 + x2 − x1x2 − 1/2x2
1

Z123 = 1

In general, one has Zω = Xω, Zµ = Xµ+(terms of degree > `(µ)), and Zid = 1, the
last identity being due to the fact that ω(Zω) is symmetrical with term of lowest degree
Xid = 1.

Example 4.3. For n = 3,

Z321 = X321

Z312 = X312

Z231 = X231

Z213 = X213 − 1/2X231 −X312

Z132 = X132 −X231 − 1/2X312

Z123 = X123

Theorem 4.4. The polynomials Zµ, µ ∈ Sn, form a basis of Hn. The quadratic form
( , ) is positive definite, and the adjoint basis of {Zµ} is {Z∨µ } where Z∨µ = Π(∇µ−1ωXω).

P r o o f. Zµ is a non-homogeneous polynomial with the Schubert polynomial Xµ as
its term of smallest degree. Since the classes of the Schubert polynomials form a basis of
H∗(F), the same is true for the Zµ.

The polynomials Z∨ωZµθ (for µ 6= id) have no component of degree `(ω). Therefore,
their images under ∂ω are symmetric polynomials without constant term, which proves
that for all µ 6= id, (Z∨ω , Zµ) = 0. On the other hand,

(Z∨ω , Z12...n) = (Z∨ω , 1) = ∂ω (Xωθ) |0 = ∂ω
(
(Xωθ)|`(ω)

)
= ∂ωXω = X12...n = 1.

For the general case of a Z∨ν , one uses induction on the length of ν. Let ν and i be such
that `(νσi) < `(ν). Then, for any µ and an appropriate constant k

(Zµ, Z∨ν ) = (Zµ, (si − k)Z∨ν ) = ((si − k)Zµ, Z∨ν ) = k′(Zµ, Z∨ν ) + k′′(Zµσi
, Z∨ν )

(for some other scalars k′, k′′). By induction, one can suppose (Zµ, Z∨ν ) = 0 for µν−1 6= ω.
One is thus reduced to study the case

µσiν
−1 = ω, `(µσi) > `(µ).

In that case,

Zµσi =
(
si +

1
r

)
Zµ and Z∨µσi

=
(
si −

1
r

)
Z∨µ

for a certain integer r. Then, we check

(Zµσi , Z
∨
νσi

) =
((

si +
1
r

)
Zµ ,

(
si −

1
r

)
Z∨µ

)
=
((

s2i −
1
r2

)
Zµ , Z

∨
ν

)
= 0,
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and

(Zµ, Z∨νσi
) =

((
si +

1
r
− 2
r

)
Zµ , Z

∨
ν

)
= (Zµσi

, Z∨ν )− 2
r

(Zµ, Z∨ν ) = 1− 0.

Example 4.5. Again for n = 3,

Z∨321 = x2
1x2

Z∨312 = x2
1 − 2x2

1x2

Z∨231 = x1x2 − 2x2
1x2

Z∨213 = x1 − 3/2x1x2 − 3x2
1 + 3x2

1x2

Z∨132 = x1 + x2 − 3x1x2 − 3/2x2
1 + 3x2

1x2

Z∨123 = 1− 4x1 − 2x2 + 6x1x2 + 6x2
1 − 6x2

1x2

5. Change of basis. The operators ∂i are self-adjoint with respect to 〈 , 〉, but σi
is adjoint to −σi. This implies that −si is adjoint to s̄i := σi − ∂i.

Let us define µ, ∇µ to be the images of µ and ∇µ under the replacement si 7→ s̄i.
We also define

Zµ := (−1)`(ωµ)Π
(

µ−1ωZω

)
, Z

∨
µ := (−1)`(ωµ)Π

(
∇µ−1ωZω

)
.

Then, (−1)`(µ)Zµ is obtained from Zµ under the transformation xi 7→ −xi, since signs
in the expansion of Zµ correspond to the degree.

Lemma 5.1. {Zωµ} is the adjoint basis of {Zµ} with respect to 〈 , 〉, i.e. one has
〈Zωµ, Zµ〉 = 1 and 〈Zωµ, Zν〉 = 0 for ν 6= µ.

Similarly, {Z∨ωµ} is the adjoint basis of {Z∨µ } for 〈 , 〉.
P r o o f. As in Section 4, the lemma is proved by induction on the length of µ, starting

from the case
〈Zωµ, Zω〉 = 0 if µ 6= ω.

Take i such that `(µσi) > `(µ). Then,

〈Zωµσi
, Zν〉 =

〈(
si +

1
r

)
Zωµ , Zν

〉
=
〈
Zωµ ,

(
−s̄i +

1
r

)
Zν

〉
.

Since (−s̄i+ 1
r )Zν is a linear combination of Zν and Zνσi

, the nullity of the scalar products
〈Zωµσi

, Zν〉 follows from those of 〈Zωµ, Zν〉 for ν 6= µ and ν 6= µσi. In the special case
ν = µσi, one has

〈Zωµσi
, Zµ〉 =

〈
Zωµ ,

(
−s̄i +

1
r

)(
−s̄i −

1
r

)
Zµσi

〉
=
〈
Zωµ ,

(
1− 1

r2

)
Zµσi

〉
which is null.

Example 5.2.

〈Z23514, Z41352〉 =
〈(

s2 +
1
2

)
Z25314 ,

(
−s̄2 −

1
2

)
Z43152

〉
=

〈(
s2 −

1
2

)(
s2 +

1
2

)
Z25314 , Z43152

〉
=

〈(
1− 1

4

)
Z25314 , Z43152

〉
= 0.
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Let {Aµ} and {Bν} be two bases of Hn. We denote by M(A,B) the transition matrix
from the basis {Aµ} to the basis {Bν}, with the convention

Aµ =
∑
ν

M(A,B)µνBν . (13)

For example, M(Z,X)µν = 〈Zµ, Xων〉 and M(X,Z)µν = (Xµ, Z
∨
ων). These matrices

have a symmetry property, thanks to the following property of the scalar product:

〈ωP, ωQ〉 = (−1)`(ω)〈P,Q〉. (14)

Indeed, taking into account the two identities

ω(Xµ) = (−1)`(µ)Xωµω, ω(Zµ) = (−1)`(µ)Zωµω (15)

we see that the four matrices

M(Z,X), M(X,Z), M(Z∨, X) and M(X,Z∨)

possess the symmetry
Mµν = Mωµω,ωνω. (16)

Furthermore, we have the following relation between these matrices and their inverses:

Theorem 5.3. The inverse of M(Z,X) is a matrix with nonnegative entries, given
by

M(X,Z)µν = |M(Z,X)νω,µω|.
Similarly,

M(X,Z∨)µν = |M(Z∨, X)νω,µω|,
where | · | denotes the absolute value.

P r o o f. The first matrix corresponds to the expansions

Zµ =
∑
ν

〈Zµ, Xων〉Xν .

The inverse formulas are, according to Lemma 5.1,

Xν =
∑
µ

〈Zωµ, Xν〉Zµ.

But now, 〈Zωµ, Xν〉 = |〈Zωµ, Xν〉|, whence the first part of the theorem follows. The
proof of the second part is similar.

Thus, the inverse of the matrix M(Z,X) is obtained from M(Z,X) by reflection
through the antidiagonal (µ, ν) −→ (ων, ωµ) and suppression of the signs.

Corollary 5.4. For any pair of permutations,

(Xµ, Z
∨
η ) = |〈Xωµω, Zωηω〉|

and
(Xµ, Zη) = |〈Xωµω, Z

∨
ωηω〉|.

Indeed,

Xµ =
∑
η

(Xµ, Z
∨
η )Zωη

but we have just seen that the coefficients of the expansion of Xµ in the basis Zωη are
the 〈Zη, Xµ〉.
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6. Schubert expansions of Chern classes. Let |I| be a composition of n, i.e.
I ∈ Nr with |I| := i1 + . . . + ir = n, and let J1, . . . , Jr be the associated decomposition
of the interval [1, n], that is

J1 = [1, i1], J2 = [i1 + 1, i1 + i2], . . . , Jr = [i1 + · · ·+ ir−1 + 1, n].

Let FI be the variety of flags

V0 = {0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vr = V

such that dimVk = i1 + · · ·+ ik. Let also SI denote the Young subgroup

S(J1)×S(J2)× · · · ×S(Jr) ⊂ Sn

associated to the composition I. The Chern class θI of the tangent bundle of FI is the
maximal SI -invariant factor of θ:

θI = θ/(θJ1θJ2 · · · θJr
)

where
θJk

=
∏
i<j
i,j∈Jk

(1 + xi − xj).

A basis of the cohomology ring H∗(FI) is the set of Schubert polynomials Xµ with
µ minimal in its right coset µSI . In other words, one restricts the Schubert basis (Xµ)
to those µ such that µ1 < . . . < µi1 , µi1+1 < . . . < µi1+i2 , . . ., µi1+...+ir−1+1 < . . . < µn.
Since µi < µi+1 iff Xµ is symmetrical in xi and xi+1, the Schubert basis of H∗(FI)
consists of those Schubert polynomials which are invariant under SI .

Define the Chern coefficient cµ[FI ] of the variety FI as the coefficient of (the class)
of Xµ in the expansion of θI on the Schubert basis of H∗(FI). In other words,

cµ[FI ] = 〈θI , Xωµ〉. (17)

As in the case of the full flag variety F , these scalar products can be computed with the
help of the scalar product ( , ).

Let ωI be the maximal element of SI , and ζI := ωIω. We have seen that

ω = ∂ωθ = ∂ζI
∂ωI

θIθJ1θJ2 · · · θJr
.

The operator ∂ω factorizes
∂ω = ∂ζi

∂ωI

so that
cµ[FI ] = ∂ω

(
θIXωµ

)
= ∂ζi∂ωi

(
θIXωµ

)
= ∂ζi

(
θI∂ωiXωµ

)
(18)

= ∂ζI

(
θIXωµωI

)
= ∂ζi

(
θIXωµωI

)
(∂ωI

θJ1θJ2 · · · θJr
/I!) (19)

=
1
I!
∂ω (θXωµωI

) (20)

=
1
I!

(1, XωµωI
)

Equality (18) follows from the fact that θI is invariant under SI and thus commutes
with ∂ωI

. Now, θ is of degree
(
n
2

)
, and ∂ω decreases degrees by `(ω) =

(
n
2

)
. Thus ∂ω(θ)
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is a scalar which is checked to be n!. More generally, by direct product, one has for the
maximal element of the Young subgroup SI

∂ωI
θJ1 · · · θJr

= I! := i1! · · · ir!
and equality (19) follows from this identity.

Since θI as well as XωµωI
are invariant under SI , they commute with ∂ωI

, which is
step (20).

Summarizing, we have the following expression for the components of the Chern class
of FI on the Schubert basis.

Theorem 6.1. Let I = (i1, . . . , ir) be a composition of n, SI and FI the correspond-
ing Young subgroup and flag variety. Let µ be a permutation which is minimum in its
coset µSI . Then, the Chern coefficient cµ[FI ] is given by

cµ[FI ] = (1, XωµωI
)/I!.

In particular, for the full flag variety (case I = (1, 1, . . . , 1)), one has

cµ[F ] = (1, Xωµ) = ω(Xωµ) (21)

and these numbers constitute the first column of the matrix M(X,Z∨). Equivalently,
they are equal to the absolute values of the entries of the last row of M(Z∨, X).

In the case of a Grassmann manifold G(p, p + q) = F(p,q), the basis of H∗(F(p,q))
consists of those Xµ for which µ1 < . . . < µp and µp+1 < . . . < µp+q (Grassmannian
permutations). In fact, for such a permutation, Xµ is equal to the Schur function indexed
by the partition (µ1 − 1, µ2 − 2, . . . , µp − p) on the set of variables {x1, . . . , xp}. Thus,
the Chern coefficient cµ[F(p,q)] is

cµ[F(p,q)] = ω

(
X(n+1−µp,...,n+1−µ1,n+1−µn,...,n+1−µp+1)

)
. (22)

For example, up to a factor (2!)2, the Chern coefficients of F(2,2) are 4, 16, 28, 28, 48, 24.
They are given by the absolute values of the six entries of the bottom row of the matrix
M(Z∨, X) corresponding to columns indexed by permutations ωµ where µ is Grassman-
nian.

7. Tables for n = 4.

7.1. Affine Schubert polynomials.

Z4321 = x3
1x

2
2x3

Z4312 = x3
1x

2
2

Z4231 = x3
1x2x3

Z4213 = x3
1x2 − 1/2 x3

1x2x3 − x3
1x

2
2

Z4132 = x3
1x3 + x3

1x2 − x3
1x2x3 − 1/2 x3

1x
2
2

Z4123 = x3
1

Z3421 = x2
1x

2
2x3

Z3412 = x2
1x

2
2

Z3241 = x2
1x2x3 − 1/2 x2

1x
2
2x3 − x3

1x2x3

Z3214 = x2
1x2 − 2/3 x2

1x2x3 − 3/2 x2
1x

2
2 + 1/3 x2

1x
2
2x3 − 2 x3

1x2 + 2/3 x3
1x2x3 + x3

1x
2
2
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Z3142 = x2
1x3 + x2

1x2 − x2
1x2x3 − 2/3 x2

1x
2
2 − x3

1x3 − x3
1x2

Z3124 = x2
1 − 1/2 x2

1x3 − 1/2 x2
1x2 + 1/2 x2

1x2x3 − 2 x3
1 + 1/2 x3

1x3 + 1/2 x3
1x2

Z2431 = x1x
2
2x3 + x2

1x2x3 − x2
1x

2
2x3 − 1/2 x3

1x2x3

Z2413 = x1x
2
2 −1/2 x1x

2
2x3 + x2

1x2 −1/2 x2
1x2x3 −2 x2

1x
2
2 +1/2 x2

1x
2
2x3 −1/2 x3

1x2 +
1/4 x3

1x2x3 + 1/2 x3
1x

2
2

Z2341 = x1x2x3

Z2314 = x1x2 − 2/3 x1x2x3 − x1x
2
2 − x2

1x2

Z2143 = x1x3 + x1x2 − 3/2 x1x2x3 − 2/3 x1x
2
2 + 1/3 x1x

2
2x3 + x2

1 − 2 x2
1x3 −

8/3 x2
1x2 + 7/3 x2

1x2x3 + 4/3 x2
1x

2
2 − 1/3 x2

1x
2
2x3 − 3/2 x3

1 + 2 x3
1x3 +

7/3 x3
1x2 − 2/3 x3

1x2x3 − 1/3 x3
1x

2
2

Z2134 = x1 − 1/2 x1x2 + 1/2 x1x
2
2 − x2

1 + 1/2 x2
1x2 + x3

1

Z1432 = x2
2x3 + x1x2x3 + x1x

2
2 −2 x1x

2
2x3 + x2

1x3 + x2
1x2 −2 x2

1x2x3 −3/2 x2
1x

2
2 +

x2
1x

2
2x3 − 2/3 x3

1x3 − 2/3 x3
1x2 + 2/3 x3

1x2x3 + 1/3 x3
1x

2
2

Z1423 = x2
2 + x1x2 − x1x

2
2 + x2

1 − x2
1x2 − 2/3 x3

1

Z1342 = x2x3 + x1x3 + x1x2 − 2 x1x2x3 − 1/2 x2
1x3 − 1/2 x2

1x2 + 1/2 x2
1x2x3 +

1/2 x3
1x3 + 1/2 x3

1x2

Z1324 = x2 −1/2 x2x3 − x2
2 + x1 −1/2 x1x3 −5/2 x1x2 + x1x2x3 +2 x1x

2
2 −3/2 x2

1 +
1/4 x2

1x3 + 9/4 x2
1x2 − 1/4 x2

1x2x3 − 1/2 x2
1x

2
2 + x3

1 − 1/4 x3
1x3 − 1/4 x3

1x2

Z1243 = x3 + x2 − x2x3 − 1/2 x2
2 + x1 − x1x3 − 3/2 x1x2 + x1x2x3 + 1/2 x1x

2
2 −

1/2 x2
1 + 1/2 x2

1x2

Z1234 = 1

7.2. Adjoint polynomials.

Z∨4321 = x3
1x

2
2x3

Z∨4312 = x3
1x

2
2 − 2 x3

1x
2
2x3

Z∨4231 = x3
1x2x3 − 2 x3

1x
2
2x3

Z∨4213 = x3
1x2 − 3/2 x3

1x2x3 − 3 x3
1x

2
2 + 3 x3

1x
2
2x3

Z∨4132 = x3
1x3 + x3

1x2 − 3 x3
1x2x3 − 3/2 x3

1x
2
2 + 3 x3

1x
2
2x3

Z∨4123 = x3
1 − 2 x3

1x3 − 4 x3
1x2 + 6 x3

1x2x3 + 6 x3
1x

2
2 − 6 x3

1x
2
2x3

Z∨3421 = x2
1x

2
2x3 − 2 x3

1x
2
2x3

Z∨3412 = x2
1x

2
2 − 2 x2

1x
2
2x3 − 2 x3

1x
2
2 + 4 x3

1x
2
2x3

Z∨3241 = x2
1x2x3 − 3/2 x2

1x
2
2x3 − 3 x3

1x2x3 + 3 x3
1x

2
2x3

Z∨3214 = x2
1x2 − 4/3 x2

1x2x3 − 5/2 x2
1x

2
2 + 2 x2

1x
2
2x3 − 4 x3

1x2 + 4 x3
1x2x3 + 6 x3

1x
2
2 −

4 x3
1x

2
2x3

Z∨3142 = x2
1x3 + x2

1x2 − 3 x2
1x2x3 − 4/3 x2

1x
2
2 + 8/3 x2

1x
2
2x3 − 3 x3

1x3 − 3 x3
1x2 +

8 x3
1x2x3 + 8/3 x3

1x
2
2 − 16/3 x3

1x
2
2x3

Z∨3124 = x2
1 − 3/2 x2

1x3 − 7/2 x2
1x2 + 9/2 x2

1x2x3 + 5 x2
1x

2
2 − 4 x2

1x
2
2x3 − 4 x3

1 +
9/2 x3

1x3 + 25/2 x3
1x2 − 12 x3

1x2x3 − 12 x3
1x

2
2 + 8 x3

1x
2
2x3

Z∨2431 = x1x
2
2x3 + x2

1x2x3 − 3 x2
1x

2
2x3 − 3/2 x3

1x2x3 + 3 x3
1x

2
2x3
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Z∨2413 = x1x
2
2 −3/2 x1x

2
2x3 + x2

1x2 −3/2 x2
1x2x3 −4 x2

1x
2
2 +9/2 x2

1x
2
2x3 −3/2 x3

1x2 +
9/4 x3

1x2x3 + 9/2 x3
1x

2
2 − 9/2 x3

1x
2
2x3

Z∨2341 = x1x2x3 − 2 x1x
2
2x3 − 4 x2

1x2x3 + 6 x2
1x

2
2x3 + 6 x3

1x2x3 − 6 x3
1x

2
2x3

Z∨2314 = x1x2 −4/3 x1x2x3 −3 x1x
2
2 +8/3 x1x

2
2x3 −5 x2

1x2 +16/3 x2
1x2x3 +10 x2

1x
2
2 −

8 x2
1x

2
2x3 + 8 x3

1x2 − 8 x3
1x2x3 − 12 x3

1x
2
2 + 8 x3

1x
2
2x3

Z∨2143 = x1x3 + x1x2 −5/2 x1x2x3 −4/3 x1x
2
2 +2 x1x

2
2x3 + x2

1 −4 x2
1x3 −16/3 x2

1x2 +
9 x2

1x2x3 + 16/3 x2
1x

2
2 − 6 x2

1x
2
2x3 − 5/2 x3

1 + 7 x3
1x3 + 9 x3

1x2 − 12 x3
1x2x3 −

6 x3
1x

2
2 + 6 x3

1x
2
2x3

Z∨2134 = x1 −2 x1x3 −7/2 x1x2 + 5 x1x2x3 + 9/2 x1x
2
2 −4 x1x

2
2x3 −5 x2

1 + 8 x2
1x3 +

31/2 x2
1x2 −18 x2

1x2x3 −15 x2
1x

2
2 + 12 x2

1x
2
2x3 + 11 x3

1 −14 x3
1x3 −26 x3

1x2 +
24 x3

1x2x3 + 18 x3
1x

2
2 − 12 x3

1x
2
2x3

Z∨1432 = x2
2x3 + x1x2x3 + x1x

2
2 −4 x1x

2
2x3 + x2

1x3 + x2
1x2 −4 x2

1x2x3 −5/2 x2
1x

2
2 +

6 x2
1x

2
2x3 − 4/3 x3

1x3 − 4/3 x3
1x2 + 4 x3

1x2x3 + 2 x3
1x

2
2 − 4 x3

1x
2
2x3

Z∨1423 = x2
2 − 2 x2

2x3 + x1x2 − 2 x1x2x3 − 5 x1x
2
2 + 8 x1x

2
2x3 + x2

1 − 2 x2
1x3 −

5 x2
1x2 + 8 x2

1x2x3 + 10 x2
1x

2
2 −12 x2

1x
2
2x3 −4/3 x3

1 + 8/3 x3
1x3 + 16/3 x3

1x2 −
8 x3

1x2x3 − 8 x3
1x

2
2 + 8 x3

1x
2
2x3

Z∨1342 = x2x3 −2 x2
2x3 + x1x3 + x1x2 −6 x1x2x3 −2 x1x

2
2 + 8 x1x

2
2x3 −7/2 x2

1x3 −
7/2 x2

1x2 + 25/2 x2
1x2x3 + 5 x2

1x
2
2 − 12 x2

1x
2
2x3 + 9/2 x3

1x3 + 9/2 x3
1x2 −

12 x3
1x2x3 − 4 x3

1x
2
2 + 8 x3

1x
2
2x3

Z∨1324 = x2 − 3/2 x2x3 − 3 x2
2 + 3 x2

2x3 + x1 − 3/2 x1x3 − 15/2 x1x2 + 9 x1x2x3 +
13 x1x

2
2 −12 x1x

2
2x3 −9/2 x2

1 +21/4 x2
1x3 +73/4 x2

1x2 −75/4 x2
1x2x3 −22 x2

1x
2
2 +

18 x2
1x

2
2x3 +6 x3

1 −27/4 x3
1x3 −75/4 x3

1x2 +18 x3
1x2x3 +18 x3

1x
2
2 −12 x3

1x
2
2x3

Z∨1243 = x3 + x2 −3 x2x3 −3/2 x2
2 +3 x2

2x3 + x1 −5 x1x3 −13/2 x1x2 +14 x1x2x3 +
15/2 x1x

2
2 −12 x1x

2
2x3 −7/2 x2

1 +11 x2
1x3 +31/2 x2

1x2 −26 x2
1x2x3 −15 x2

1x
2
2 +

18 x2
1x

2
2x3 + 5 x3

1 − 14 x3
1x3 − 18 x3

1x2 + 24 x3
1x2x3 + 12 x3

1x
2
2 − 12 x3

1x
2
2x3

Z∨1234 = 1 −2 x3 −4 x2 +6 x2x3 +6 x2
2 −6 x2

2x3 −6 x1 +10 x1x3 +22 x1x2 −28 x1x2x3 −
26 x1x

2
2 + 24 x1x

2
2x3 + 16 x2

1 − 22 x2
1x3 − 48 x2

1x2 + 52 x2
1x2x3 + 44 x2

1x
2
2 −

36 x2
1x

2
2x3 − 22 x3

1 + 28 x3
1x3 + 52 x3

1x2 − 48 x3
1x2x3 − 36 x3

1x
2
2 + 24 x3

1x
2
2x3

7.3. Transition matrices with Schubert polynomials. The following matrices give the
decompositions of the polynomials Zµ and Z∨µ in the basis of Schubert polynomials. Rows
and columns are indexed by permutations in reverse lexicographic order:

[4321, 4312, 4231, 4213, 4132, 4123, 3421, 3412, 3241, 3214, 3142, 3124,
2431, 2413, 2341, 2314, 2143, 2134, 1432, 1423, 1342, 1324, 1243, 1234]

The bar over a number is to be interpreted as a minus sign.
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7.3.1. M(Z,X). The entry in row µ and column ν of the following matrix is equal to
the coefficient of Xν in Zµ. This number is also the coefficient of Z∨ωµ in Xων .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2
3 2 0 0 1

3
3
2

2
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 2
3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2 2 0 0 1

2 0 1
2 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1
2

1
4

1
2 0 0 1

2 2 0 0 0 0 1
2 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
3 1 0 0 0 0 0 0 0 0

0 1
3

2
3

1
3 2 3

2
1
3

4
3 2 0 2 0 1

3
2
3

3
2 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1
2 0 1

2 0 1 0 0 0 0 0 0

0 1
3

2
3 0 2

3 0 1 3
2 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 2
3 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1
2 0 0 0 1

2 0 1
2 0 0 0 2 0 0 0 0 0 1 0 0 0

0 0 0 0 1
4 1 0 1

2
1
4 0 1

4
1
2 0 2 1 1 0 0 0 1 1

2 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 1 0 0 0 0 1

2 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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7.3.2. M(Z∨, X). The entry in row µ and column ν of the following matrix is equal
to the coefficient of Xν in Z∨µ . This number is also the coefficient of Zωµ in Xων .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 3
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3
2 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 6 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 3 0 0 0 3
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 6 4 4 0 0 2 5
2

4
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16
3

8
3 8 0 3 0 8

3
4
3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 12 12 8 9
2 4 4 5 9

2 2 3
2 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 3
2 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

9
2

9
2

9
4

3
2 0 0 9

2 4 0 0 0 0 3
2 1 0 0 0 0 0 0 0 0 0 0

6 0 6 0 0 0 6 0 2 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0

8 12 8 8 0 0 8 10 8
3 2 0 0 8

3 3 4
3 1 0 0 0 0 0 0 0 0

6 6 12 2 7 5
2 6 16

3 7 0 4 0 2 4
3

5
2 0 1 0 0 0 0 0 0 0

12 18 24 12 14 11 12 15 14 3 8 3 4 9
2 5 3

2 2 1 0 0 0 0 0 0

4 2 4 0 4
3 0 6 5

2 0 0 0 0 4 0 0 0 0 0 1 0 0 0 0 0

8 8 8 8
3

8
3

4
3 12 10 0 0 0 0 8 3 0 0 0 0 2 1 0 0 0 0

8 4 12 0 9
2 0 12 5 9

2 0 3
2 0 8 0 4 0 0 0 2 0 1 0 0 0

12 18 18 12 27
4 6 18 22 27

4 3 9
4

3
2 12 10 6 3 0 0 3 3 3

2 1 0 0

12 12 24 4 14 5 18 15 14 0 8 0 12 9
2 11 0 2 0 3 3

2 3 0 1 0

24 36 48 24 28 22 36 44 28 6 16 6 24 20 22 6 4 2 6 6 6 2 2 1
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