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Abstract. Classes dual to Schubert cycles constitute a basis on the cohomology ring of the
flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we
study the bilinear form

(X,Y) = (XY, ¢(F))
where X,Y are cocycles, ¢(F) is the total Chern class of F and ( , ) is the intersection form.
This form is related to a twisted action of the symmetric group of the cohomology ring, and
to the degenerate affine Hecke algebra. We give a distinguished basis for this form, which is a

deformation of the usual basis of Schubert polynomials, and apply it to the computation of the
Schubert cycle expansions of Chern classes of flag manifolds.

1. Introduction and preliminaries. Let V be a complex vector space of dimen-
sion n, and F = F(V) be the variety of complete flags in V. It is well known that the
cohomology ring H*(F,C) is the quotient of the polynomial ring C[X] = Clxy, z2, . .., Zy]
by the ideal Z1 of symmetric polynomials without constant term.

Let 04,72 =1,...,n — 1 be the simple transposition exchanging x; and x;;;. Denote
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112 A. LASCOUX ET AL.

by 0; the linear operator on C[zy,...,x,] defined by
f—of

Ti — Tit+1

Oif = (1)
(Newton’s divided difference). The operators 01, ..., d,_1 induce operators on H*(F).

According to [1] and [4], the basis of Schubert cycles can be obtained from the class
of a point P = % IL- j (x; — x;) by successive applications of divided difference oper-
ators. Taking as representative of P the polynomial X := z7 *2372...29 one obtains
polynomials X, u € &,, called Schubert polynomials, which represent the Schubert
subvarieties in the cohomology ring [11]. A detailed account of the algebraic theory of
Schubert polynomials can be found in Macdonald’s treatise [14].

Divided differences satisfy the braid relations

0;0;410; = 0i410i0;11 )
8,»8j = GJ& for |’L —j| > 1,

but the squares 97 are null. These relations allow to define operators 9, for any per-
mutation p € &,: if p = 04,04, 04, is a reduced decomposition of p, one sets
Oup = 03,04, -+ 0;,,. The result does not depend on the choice of a particular reduced
decomposition of p.

To recover an action of the symmetric group, one can take any ¢ € C and define

Dz:O'Z—i-qa“ 1§z§n—1 (3)
These operators still satisfy the braid relations
DiDiy1D; = Dit1DiDiq (4)
together with
D} =1, (5)
so that they generate a representation of the symmetric group &,, on the polynomial
ring Clz1,...,z,], as well as on the cohomology ring H*(F,C). These operators have

been considered by Cherednik and Bernstein (cf. [2], [3]). Similar operators, acting on
the equivariant K-theory of flag manifolds, have been used by Lusztig [13]. More general
operators satisfying braid relations have been given in [12].

As 0; decreases degrees by 1, all g # 0 will give equivalent representations of &,,, and
by homogeneity, the general case can be recovered from the case ¢ = 1. For simplicity,
we set ¢ = 1, and write

S; = 0'7;+8i. (6)
We denote as above by s,, the product of operators s; corresponding to a permutation .
Remark that the operator algebra generated by the s; and the variables z; (interpreted
as operators f +— x;f) is isomorphic to the degenerate affine Hecke algebra considered
in [2].

Schubert calculus for other classical groups can be found in the work of Fulton [7]
and of Pragacz and Ratajski [15].

This paper is organized as follows. We first define certain elements (Yang-Baxter
operators) of the degenerate affine Hecke algebra. Then we use them to define a bilinear
form on the cohomology of a flag manifold. We exhibit a distinguished basis, called affine
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Schubert polynomials, and compute its adjoint basis. We then apply this formalism to the
computation of the Schubert expansions of Chern classes.

Acknowledgements. The preparation of this paper has been facilitated by the use of
the program system SYMMETRICA [9] and of the Maple package SP [16].

2. Yang-Baxter operators. We shall define inductively operators 00, and V, as-
sociated with any permutation g in &,. Set O12.., = 1, V1., = 1, and, if y = 0;« with
() =4(a)+1,and B =a L,

Hu = (Si + ﬂi+11—5i) Ha

VH = (Si - m) Va

Using the braid relations (4), one can check that this definition is consistent, i.e.

does not depend on the chosen factorization (see [2, 3] and [6]). This follows in fact

from a classical solution of the Yang-Baxter equation. In [17], C. N. Yang observed

that the operators defined by Y;(u) = u~! + o;, where u is a scalar parameter and

o; the transposition (i,7 + 1) satisfy the “Quantum Yang-Baxter Equation with spectral
parameter”:

Yi(u = v)Yip1(u — w)Yi(v — w) = Yipa (v — 0)Yi(u — w)Yipa (u — v) (8)
It follows that given a n-tuple of parameters u = (uq, ..., u,), one can define for any per-

mutation p € &, an operator R, (u) by the following prescription: Y, (u) = Yi(ug(it1) —
ug(;))Ra(u), where, as above, Ri2.., = 1, p = oy, £(p) = () + 1 and 3 = a~!. Then,

(7)

our operators (7) are respectively R, (u) and R,(—u), where u = (1,2,...,n) and o; is
interpreted as s;.
For the maximal element w = (n,n—1,...,1) of &,, one has the following factorization

property (given in [6] for the case of the Hecke algebra):

PROPOSITION 2.1. Define § = H (14+z, —z;) and 0* = H (1—a; + ;).
1<i<j<n 1<i<j<n
Then, for any polynomial f,

(i) Vof =0"0.f

(ii) Dwf =0, <9f>

Proof. Recall that the classes of the Schubert polynomials X,,, i € &,,, form a basis
of H*(F) = C[X]/Z*". Given p and ¢ such that ¢(uo;) > €(u), the polynomial X, is
symmetrical in z; and x; 4. As such, it is sent to 0 by the operator V,, =0, + 0; — 1.

Now, for any permutation p # w, there exists an 4 such that £(uo;) > €(u). If we
choose a reduced decomposition of w ending by o;, w = vo;, say, we see that X, is sent
to 0 by 0, = 0,05, and by V, =V,V,,.

Thus, V,, as well as 0, annihilate all Schubert polynomials X, for u # w. Finally,
X, = x?fl ... 20 is sent to 1 by 9,,. To conclude, it remains to prove that

° n
Vw(Xw) = H (1—.1%4—3,‘])
1<i<j<n
This formula can be proved by induction on n using the factorization

Wp = 0102 Opn—-1Wn—1,
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which gives

Vo, = (sl - 1) (sn_l - i 1)Vw"71. n

3. Quadratic form. Recall that the intersection form of the cohomology ring
H*(F,C) is induced by the form on C[X]

(f,9) = 0u(f9)lo = 0u(f9le(w)) 9)

where f|;, denotes the homogeneous component of degree k of f (cf. [1], [5]). With respect
to this form, the Schubert polynomials satisfy

(60 = {

1 if v=wp

0 otherwise. (10)

The tangent bundle T'F of the flag manifold has a composition sequence {LiLjfl}K j
where L1, Lo, ..., L, are the tautological line bundles on F. The total Chern class of L;
being ¢(L;) = 1 + x;, the total Chern class of the tangent bundle of F is

c(F) :H(l—&—xi—xj) (11)
i<j
(see e.g. [8], our convention is L; = & in the notation of [8]). Consider now the following
quadratic form on C[X]:

DEFINITION 3.1.

(f,9) :==0u(f9)lo-

Thus, in the cohomology ring, we see from Proposition 2.1 that

(f,9) = {f,9¢(F)) = (f «(F), 9)- (12)

LEMMA 3.2. The operators O; are self-adjoint with respect to the quadratic form (, ).

Proof. For any 4, O, 0; = 200, since 0? = 200; and since one can find a reduced
decomposition of w ending with ¢;. Now,

@if,9) =0, (@if)9) lo = %Dw 0 (@if)g) lo = %Dw (@:if)@ig)) lo

since O, f is a scalar for OJ;, being symmetrical in z;,z;11. The last expression being
symmetrical in f, g, this proves that (d;f,g) = (f,0:g). =

4. Affine Schubert polynomials. Let 7, be the linear subspace of Clzy,..., 2]
generated by the monomials 2/ = z}'zi?---xin such that i, < n — k. Let II be the
projector from C[X] onto H,, associating to a polynomial P the unique representative in

H,, of its class P € C[X]/Z+.

DEFINITION 4.1. Let p € &,,. The affine Schubert polynomial of index p is defined by
Zy =T(0,-102.)

e _.n—1_n-—2 0
where Z, := X, =27 x5 " ---x,.



TWISTED ACTION OF THE SYMMETRIC GROUP 115

ExAMPLE 4.2. For n = 3,

Z3o1 = xixe

Zs1o = i

Z231 = 12

Z213 = X1 — 1/2$1$2 — 1’?

Zizz = @1+ w—wx0 — 1/227

Zyag = 1
In general, one has Z,, = X,,, Z, = X,+(terms of degree > ¢(u)), and Z;q = 1, the
last identity being due to the fact that O,,(Z,,) is symmetrical with term of lowest degree
Xiy=1.

ExamPLE 4.3. For n = 3,

Z3o1 = Xaz
Z312 = Xz12
Zoz1 = Xozi
Zonsz = Xo13—1/2Xo31 — X312
Zizo = Xizo — Xoz1 —1/2X319
Z123 = Xio3

THEOREM 4.4. The polynomials Z,,, 1 € &, form a basis of Hy,. The quadratic form
(, ) is positive definite, and the adjoint basis of {Z,.} is {Z)} where Z] = TI(V ,-1,X.,).

Proof. Z, is a non-homogeneous polynomial with the Schubert polynomial X, as
its term of smallest degree. Since the classes of the Schubert polynomials form a basis of
H*(F), the same is true for the Z,,.

The polynomials Z Z,0 (for p # id) have no component of degree ¢(w). Therefore,
their images under 9, are symmetric polynomials without constant term, which proves
that for all p # id, (2, Z,) = 0. On the other hand,

(Z;/, Zl2...n) = (Z(_\:, 1) = 80.) (Xwe) |O = 60.) ((Xw0)|€(w)) = anw = X124..n =1.

For the general case of a Z)/, one uses induction on the length of v. Let v and 4 be such
that ¢(vo;) < £(v). Then, for any p and an appropriate constant k

(Z,uv Zz\//) = (Z;La (Si - k)Zz\//) = ((SZ - k)Zuv Z;Y) = k/(Z,uv ZIY) + k//(Z/»LUw Zz\//)
(for some other scalars &/, k). By induction, one can suppose (Z,,, Z)) = 0 for ur=! # w.
One is thus reduced to study the case
poivt =w, (uoy) > (),

In that case,

1
Zp,o’,; = <Sz + T‘) ZIL and Z,i\lt/ai, = <Sz — ) ZL/

r
for a certain integer r. Then, we check

1 1 1
(ZHUNZ;/ai) = ((Si—’_,r,) Zl“ (sl - 7,) Zl) = ((‘922 - TQ) ZH? Zl\//> =0,
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and
1 2 2
(ZF“ZL\//O'i) = ((52 + o r> Zus Z:Y) = (ZMUi7ZL\//) - ;(ZMZ:Y) =1-0. =

ExXAMPLE 4.5. Again for n = 3,

Z3p = 33%552

Z$o = m% - 2$%$2

Zyy = 132 — 27770

Zshg = w1 —3/2xxs — 3x] + 3aTws

ZYsy = x4 w2 — 32122 — 3/227 + 3ais
Zhs = 1—dxy — 2z + 62122 + 627 — 6afas

5. Change of basis. The operators 0; are self-adjoint with respect to ( , ), but o;
is adjoint to —o;. This implies that —s; is adjoint to §; := o; — 0;.

Let us define 0, ﬁu to be the images of 0, and V,, under the replacement s; — 5;.
We also define

Zy = (D MO0 20), 2= (D) (V002

Then, (—1)*"7Z, is obtained from Z, under the transformation x; — —a;, since signs
in the expansion of Z,, correspond to the degree.

LEMMA 5.1. {Z,,} is the adjoint basis of {Z,} with respect to ( , ), i.e. one has

(Zwp: Zp)y =1 and (Zop, Z,) =0 for v # pu.
Similarly, {ZZH} is the adjoint basis of {Z)]} for (, ).

Proof. Asin Section 4, the lemma is proved by induction on the length of u, starting
from the case

Zow ) =0 if ptw.
Take ¢ such that ¢(uo;) > ¢(u). Then,

<pra,177u> = <<Sz + 7];) Zw,u ) Zu> = <Zw;u <=§i + i) Zz/> .

Since (—Ei—i—%)ZU is a linear combination of Z,, and Z,,,, the nullity of the scalar products

(Zwpos» Zy) follows from those of (Z,,,,Z,) for v # p and v # po;. In the special case
v = uo;, one has

— _ 1 _ 1 1
(1 (102) () ) 2 - ) )

which is null. =

EXAMPLE 5.2.

_ 1 1N\
(Zass14, Zar352) = <(82 + 5)225314, (—52 - 2)243152>

1 1 —

= <(82 - 5) (82 + §>Zz53147 Z43152>
1 _

= <(1 — Z>Zzs314, Z43152> =0.
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Let {A,} and {B,} be two bases of H,,. We denote by M (A, B) the transition matrix
from the basis {A,} to the basis {B, }, with the convention
Ay => M(A, B)uwB,. (13)

For example, M(Z, X),, = (Z,,, Xov) and M(X, Z),, = (X, Z},). These matrices
have a symmetry property, thanks to the following property of the scalar product:

<WP, wQ> = (71)““}) <PaQ> (14)
Indeed, taking into account the two identities
w(X) = (D X w(Zy) = (-1)" P Z (15)

we see that the four matrices
M(Z,X), M(X,Z), M(Z",X) and M(X,Z")
possess the symmetry
My, = Mo wvw- (16)

Furthermore, we have the following relation between these matrices and their inverses:

THEOREM 5.3. The inverse of M(Z,X) is a matriz with nonnegative entries, given
by

M(X, Z) = IM(Z, X)yw,peol-
Similarly,
M(X,Z" )y = IM(Z", X )i po

where | - | denotes the absolute value.

Proof. The first matrix corresponds to the expansions

Zy =Y {Zu, X)X,

v

The inverse formulas are, according to Lemma 5.1,

Xy =Y Zuow, X)Z,.
I

But now, (Zuwu, X») = [(Zwu, Xu)|, whence the first part of the theorem follows. The
proof of the second part is similar. =

Thus, the inverse of the matrix M(Z, X) is obtained from M (Z, X) by reflection
through the antidiagonal (u,v) — (wv,wpu) and suppression of the signs.

COROLLARY 5.4. For any pair of permutations,
(Xm Z7\7/) = |<quwv Zwvw>|
and
(XM7Z”I) = |<XWM¢U7Z<.\J/nw>|'
Indeed,
Xu = Z(Xm ZX)an
but we have just seen that the Coefﬁcier?ts of the expansion of X, in the basis Z.,, are

the <77I7XM>' ]
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6. Schubert expansions of Chern classes. Let |I| be a composition of n, i.e.
I € N" with |I| :=41 + ...+ i, = n, and let Jq,...,J. be the associated decomposition
of the interval [1,n], that is
J = [1,@'1], Jo = [il + 1,4, —l—ig], B A [il 4+t + 1,’17,].

Let F; be the variety of flags

Ww={0tcvcWhc...cV,=V
such that dim Vi = 41 + - - - 4 1. Let also & denote the Young subgroup

G(Jl) X G(JQ) X - X B(JT) Cc G,
associated to the composition I. The Chern class 67 of the tangent bundle of F; is the
maximal &j-invariant factor of 6:

01 =0/(05,05,---0,,)

where

0, = H 14z — z;).
i<j
i,jE€J)

A basis of the cohomology ring H*(F7) is the set of Schubert polynomials X, with
4 minimal in its right coset 4&;. In other words, one restricts the Schubert basis (X,,)
to those p such that gy < ... < iy, fig41 < oo < Higdiny - o Pt dip_ 141 < ovo < fhn.
Since p; < pipr iff X, is symmetrical in ; and x;41, the Schubert basis of H*(Fy)
consists of those Schubert polynomials which are invariant under &;.

Define the Chern coefficient c,[F| of the variety Fr as the coefficient of (the class)
of X, in the expansion of #7 on the Schubert basis of H*(F;). In other words,

culFr) = (07, Xup). (17)
As in the case of the full flag variety F, these scalar products can be computed with the
help of the scalar product ( , ).

Let wy be the maximal element of &, and (; := wyw. We have seen that
Ow = 0,0 = 0¢,0,070,,05,---0..
The operator J,, factorizes
O = 0¢, 00,

so that

culFr] = 0. (07 Xp)

= 0¢,0u, (0" Xup) = ¢, (0700, Xooyh) (18)
= aCI (QIXW#WI) = a(i (GIXWMWI) (80)19]1 612 o 'GJT»/I!) (19)
1
= 10 (0 X pr) (20)
1
= ﬁ (17 quwl)

Equality (18) follows from the fact that 6! is invariant under &; and thus commutes
with 9,,,. Now, 6 is of degree (3), and 9,, decreases degrees by {(w) = (3). Thus 0,,(6)
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is a scalar which is checked to be n!. More generally, by direct product, one has for the
maximal element of the Young subgroup &;

0uy0g, -+ 05 =1 =iy,

and equality (19) follows from this identity.

Since 07 as well as Xwpw, are invariant under &y, they commute with d,,,, which is
step (20).

Summarizing, we have the following expression for the components of the Chern class
of F; on the Schubert basis.

THEOREM 6.1. Let I = (iy,...,i,) be a composition of n, &1 and Fy the correspond-
ing Young subgroup and flag variety. Let p be a permutation which is minimum in its
coset 1S, Then, the Chern coefficient ¢, [Fi] is given by

C#[}-I] = (LXWMWI)/I!'

In particular, for the full flag variety (case I = (1,1,...,1)), one has
CM[}-} = (Lqu) = Dw(qu) (21)

and these numbers constitute the first column of the matrix M (X, Z"). Equivalently,
they are equal to the absolute values of the entries of the last row of M (ZV, X).

In the case of a Grassmann manifold G(p,p + q) = F(;,q), the basis of H*(F,q))
consists of those X,, for which 1 < ... < pp and ppy1 < ... < pipiq (Grassmannian
permutations). In fact, for such a permutation, X, is equal to the Schur function indexed
by the partition (41 — 1,2 —2,...,pp — p) on the set of variables {x1,...,zp}. Thus,
the Chern coefficient ¢, [F(, q)] is

CH[}_(PJJ)] =Uow (X(n+1—up7~~>n-5-1—u17n+1—un7~-,N+1—M+1)) : (22)
For example, up to a factor (2!)?, the Chern coefficients of F o) are 4,16,28, 28,48, 24.
They are given by the absolute values of the six entries of the bottom row of the matrix
M(ZV,X) corresponding to columns indexed by permutations wy where p is Grassman-
nian.

7. Tables for n = 4.
7.1. Affine Schubert polynomials.

_ 3.2
24321 = T1T573

_ 3.2
Z4312 = T1T3

_ .3
Z4231 = T1T273

_ .3 3 3.2
Zyo13 = xjT2 — 1/2 afwoxs — w325

_ .3 3 3 3.2
Zy30 = T3w3 + 13m0 — X3W023 — 1/2 2323

_ .3
Zy123 = T

2.2
L3401 = T1THT3

2.2
Z3412 = TITy

_ 2 2.2 3
Z3o41 = xiwoxs — 1/2 xiaizs — xjwoxs

Z3o1a = 23w9 —2/3 2310703 —3/2 2303 +1/3 232323 — 2 2310 +2/3 2i70w3 + 2323
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Z3142 =

Z3124 =

Zoy31 =

Z2413

23341
Z3314

Z2143

22134 =

Zl432

Z1423

21342

Z1324

21243

21234

A. LASCOUX ET AL.

2 2 2 2,.2 3 3
rir3 + xiTe — TiTows —2/3 wixy — xixz — XX

22 —1/2 25 —1/2 2229 +1/2 222003 —2 23 +1/2 2303 +1/2 2319
r1w3w3 + Tirews — wiw3Tz — 1/2 237073

r123 —1/2 212323 + 23wy —1/2 2320wz —2 2323 +1/2 230323 —1/2 2310 +
1/4 x3wox3 +1/2 2323

T1T2T3

r1T2 —2/3 ;w273 — T175 — Xy

r1T3 + 119 — 3/2 myxews — 2/3 mxd +1/3 xvx3rz + 23 — 2 2l —
8/3 23wy + 7/3 w3xows +4/3 2323 — 1/3 223wy — 3/2 23 +2 afxs +
7/3 23wy —2/3 23woxs — 1/3 2323

vy —1/2 3109 +1/2 3125 — 23 +1/2 2229 + 23

373 + T1T2w3 + T173 —2 Myzdrs + virs + 2y —2 23wows —3/2 2323 +
222dw3 —2/3 2313 —2/3 23wy +2/3 23w023 +1/3 2323

= 23 + xmy — 23 + 23 — 2wy —2/3 23

Tow3 + T3 + T1xe — 2 myTox3 — 1/2 2¥x3 — 1/2 23319 +1/2 232003 +
1/2 zixs +1/2 aias

o —1/2 x0w3 — 23 + 21 —1/2 2123 —5/2 X172 + T1T2T3 +2 2105 —3/2 23 +
1/4 2323 +9/4 2309 —1/4 2320wz —1/2 2323 + 23 —1/4 2323 —1/4 2329
3 + T2 — Tow3z —1/2 23 + 1 — 1173 —3/2 M97T2 + T1T2T3 +1/2 923 —
1/2 23 +1/2 232

1

7.2. Adjoint polynomials.

\
Z4321 -

\
Z4312 -

\
Z4231

V
Z4213

vV
Z4132

Vv
Z4123

\
23421 -

\
Z3412
\
23241
\
Z3214
\
Z3142

\
Z3124

4
Z2431

3.2
T1T5T3

3.2 3.2
T — 2 277523

rirows — 2 xiadus

x3ry —3/2 x3womws — 3 2322 + 3 wirdas

3wz + 23w — 3 2iw0mws — 3/2 2323 + 3 wiadas

¥ —2a%w3 —4 axe +6 2iroxsz +6 2323 — 6 x3adas
v3x3rs — 2 x3wdas

2,.2 2,.2 3.2 3.2
riTs — 2 xiT5Ts — 2 xiT5 +4 TiT573

229wz — 3/2 23x373 — 3 2iwax3 + 3 T32dws

22wy —4/3 23013 —5/2 2223 +2 232dx3 — 4 2dws +4 2303 +6 2323 —
4 x3r373

23x3 + wire — 3 2x0wy —4/3 2303 +8/3 2xdxs — 3 2z — 3 adwy +
8 w3wox3 +8/3 x322 —16/3 x3xdws

¥3 —3/2 2%x3 —T7/2 23xy +9/2 22x0w3 +5 233 — 4 2ixdws —4 23 +
9/2 x3x3 +25/2 310 — 12 23w0x3 — 12 2323 + 8 23a323

r1x373 + virews — 3 wixdws —3/2 2dwoxs + 3 wiadws



\ —
Z2413 -
\ —
22341 -
\ —
Z2314 -
\ —
Z2143 -

\ —
Z2134 -

Vv —
Zl432 -

Vv —
Zl423 -

v —
Z1342 -

Vv —
Z1324 -

\ —
Z1243 -

\ —
Zl234 -

7.3.
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123 —3/2 212375 + 23wy —3/2 B3x0m3 —4 2323 +9/2 2323wy —3/2 232y +
9/4 z3xqzs +9/2 2323 —9/2 23xdas

12273 — 2 212303 — 4 2iwows + 6 232313 + 6 Tirems — 6 22308

r1T2 —4/3 v170w3 —3 1105 +8/3 M1w373 —5 X310 +16/3 X3W073 +10 2I2E —
8 w2x3x3 + 8 x3wy — 8 Tiw0ws — 12 2322 + 8 23373

1173 + 1172 —5/2 w2073 —4/3 1103 +2 12303 + 23 —4 23wz —16/3 320 +
9 23rox3 +16/3 2323 — 6 2323203 —5/2 23 +7 23wy +9 23wy — 12 232003 —
6 2323 +6 xirdas

r1 —2mx3 —T/2 3122 +5 210223 +9/2 1123 —4 292303 —5 27 +8 273 +
31/2 239 — 18 23zows — 15 2323 +12 232323 +11 23 — 14 2323 — 26 2320 +
24 23wox3 + 18 23w3 — 12 wixdas

2373 + T1T2w3 + T173 —4 Myzdrs + vy + 2y —4 23wows —5/2 2323 +
6 zir3rs —4/3 x3x3 —4/3 2310 +4 37013 + 2 232 — 4 232d03

x% -2 x%xg + x99 — 2 T1T2T3 — 5 xlxg + 8 $1I%£3 + x% -2 13%933 —
523wy +8 xiwows +10 2323 —12 a%a23x3 —4/3 23 +8/3 2323 +16/3 x3zo —
8 2ixows — 8 w3zl + 8 xiadws

Toxy — 2 .13%1‘3 + 123 + T2 —6 T1T2T3 — 2 xlxg +8 xlxgacg —7/2 l‘%l‘g —
7/2 23y +25/2 23woxs + 5 23 — 12 2xdxs +9/2 2dxs +9/2 2l
12 23wows — 4 2322 + 8 a3x3x3

o —3/2 xox3 —3 2% +3 2dws + 11 —3/2 w3 —15/2 19732 +9 T1T2T3 +
13 x123 —12 210323 —9/2 3 +21/4 2323 +73/4 23w —75/4 2310703 —22 2323 +
18 232323 +6 23 —27/4 x3w3 —75/4 2370 +18 220ws +18 2325 —12 232323
3 + x9 —3 xow3 —3/2 x% +3 x%xg + 21 —bxzy —13/2 2129 +14 2120203 +
15/2 2123 —12 xq2des —7/2 23 +11 2325 +31/2 2329 —26 23w075 —15 2323 +
18 #223xs +5 a3 — 14 23wy — 18 2dwy + 24 2fwoxs + 12 2323 — 12 232323
1—-2xz3 —425+6 2923 +6 x% —6 Z%l’g —6x1 +10 x123 +22 z129 —28 12273 —
26 T123 +24 12373 + 16 23 — 22 2y — 48 2319 + 52 2iwoxs +44 2323 —
36 2223wy —22 23 +28 23wy +52 23wy — 48 2dwazs — 36 2323 + 24 a3adws

Transition matrices with Schubert polynomials. The following matrices give the

decompositions of the polynomials Z,, and ZX in the basis of Schubert polynomials. Rows
and columns are indexed by permutations in reverse lexicographic order:

[4321, 4312, 4231, 4213, 4132, 4123, 3421, 3412, 3241, 3214, 3142, 3124,
2431, 2413, 2341, 2314, 2143, 2134, 1432, 1423, 1342, 1324, 1243, 1234]

The bar over a number is to be interpreted as a minus sign.



A. LASCOUX ET AL.

122

7.3.1. M(Z,X). The entry in row p and column v of the following matrix is equal to

L in X,,.

\
w

the coefficient of X, in Z,,. This number is also the coeflicient of Z
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TWISTED ACTION OF THE SYMMETRIC GROUP
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7.8.2. M(ZV,X). The entry in row p and column v of the following matrix is equal
0

to the coefficient of X, in Zl\j. This number is also the coefficient of Z,,, in X, .
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