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R. DZIUBINSKA and D. SZYNAL (Lublin)

ON FUNCTIONAL MEASURES OF SKEWNESS

Abstract. We introduce a concept of functional measures of skewness
which can be used in a wider context than some classical measures of asym-
metry. The Hotelling and Solomons theorem is generalized.

1. Introduction. It was shown in [1] that the Pearson coefficient s of
skewness:

(1.1) s = (mean — median)/(standard deviation)

necessarily lies between —1 and 1. A neat proof of that fact and an extension
of the statement that the mean is within one standard deviation of any
median can be found in [2]. Namely, it was proved that

(1.2) |l — xq] < omax(v/(1—q)/q,v/a/(1 - q)),

where 1 denotes the mean and x, the gth quantile of a random variable X.
More details and references on this subject can be found in [3].

The goal of this note is to discuss measures of skewness of the type
(1.1) for conditional distributions and to extend (1.1) to a class of random
variables with infinite mean values. We are also interested in conditional
versions of (1.2).

2. Measures of skewness of conditional distributions. We con-
sider here only pairs (X,Y) of random variables with continuous strictly
increasing marginal and conditional distribution functions.

For any given p € (0,1), y, stands for the pth quantile of Fy-. The gth
quantiles of the distribution functions P[X <z | Y >y,|, P[X <z |Y <yp)
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(2)

alp’ respectively, i.e. we have

are denoted by 1: and T

1 1
P[X<x((]‘}))]Y>yp}§q§P[X§3:;|I))\Y>yp],
2 2
P[X<xg‘;]Y<yp}SqSP[X§m2|;\Y<yp].
Moreover, we write

1 2
pily @) = EIX |Y >yl 4Gy (0) = EX | Y <y,

k k
U;I)Y(p) Varg(l)y(p), k=1,2,
Varlg), (p) = E[X2 | Y > y,] — (E[X | Y > y,])?,

Var(2)

Xy (0) = BIX? Y <yp] = (BIX | Y < yp))*.

We introduce the following notions.

DEFINITION 1. The quantities

1) sEh®) = W) -2l 0, pe 1), k=12,

(if they exist) define the functional measures of skewness of conditional
distribution functions for a pair (X,Y") of random variables.

We note that sgl)y() defines a functional measure of skewness of the
conditional distribution function of X under the condition that values of Y
cross the pth quantile y,. Similarly one can interpret sgl)y() If X and Y

are independent then (2.1) reduces to (1.1). Moreover, it is not difficult to
see that the limit values (if they exist) of sg?fy(p) k=12 asp— 0and
p — 1, respectively, are Sg(?y(o) = s and SX‘Y(l) =s.

Following the above idea we can introduce a concept of a functional
measure of skewness which is a generalization of (1.1).

Put
mg)(p) = median(P[X <z | X > z,]),
mg?)(p) = median(P[X < z | X < z,]),
WP ) = BIX [ X > o), wp):=EX | X <z,
o) = Varlf(p), k=12,

Varl (p) := E[X? | X > x,) — E2[X | X > 2],

Vard (p) := E[X? | X < a,) — B2[X | X < ).
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DEFINITION 2. The quantities
22)  s5'0) = (15 0) - mP @)/ ). pe©1), k=12,
(if they exist) are called the functional measures of skewness of a random
variable X (or of its probability distribution function).

DEFINITION 3. The measures of skewness sg];)
bution function are defined by

(2.3) sg) = hn% sg;)(p), sg?) = 1171—>H11 sg?) (p),

of any probability distri-

provided that at least one of the above limits exists.

One can see that in the case when EX? < oo, we have sg’;) =s,k=1,2,
with s defined by (1.1).

The following examples present applications of the introduced measures
of skewness.

EXAMPLE 1. Let F(x) =1—1/2% 2 > 1, and 0 otherwise. Then
EX =3/2, o*X =3/4, z,=1/3/1—p,
m$(p) = V2/(L—p), mP )= 2/2-p).
—:W* /A —-p)/2. u$p)=301- /1 -p)?)/2p).
< “> =3/1/(1—p)?/4,
<a§?)<p>>2 =3(4p -3~ (p+3) YT —p+63/(1—p2)/(4p).

Hence the coefficient of skewness (1.1) is s = V3 — 2\3@/ V/3, while the
functional coefficients are

s ) = V3 —2V2/V3,
@ (p) = V3(1 - /(1 -p)?) —2py/2/(2 - p/\f
\/4p 3 (p+3)T—p+6¢/(1—p)
Moreover, limp_,gsg()( ) =lim,_q sg()() V3 —2V2/V3 =s.

EXAMPLE 2. Let F(z) =1—1/x, x > 1. We see that EX = co and the
classical measure of skewness (1.1) is undefined. Moreover,

1 =1/(1=p), m§ ) =2/(1-p), mPp)=2/2-p),
Y () =00, WX (p) = —p~'In(1-p),  (6F)* = 1/(1-p)—p > In*(1-p).
Hence sg)(p) is undefined but
@ () = =2 “'In(l—p)—2/(2-p)

\/1/ 1—p)—p-2In*(1—p)

)
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and
s = hms( )( ) = 0.

Now we give examples elumdatmg the quantities (2.1) (the conditional
measures of skewness).

EXAMPLE 3. Let F(z,y) =1 —e™® —e ¥ 4+ e~ @Hv+29) 4 4 >0, and 0
otherwise. Then

yp=—In(1—p), 2')=(n(-q)/(n(1-p)-1),
n$hy () =1/ =1 =p)), (o) ()?=1/(1—In(1-p))?,

which gives sgfy(p) = 1—-1In2, p € (0,1), proving that the functional

measure of skewness of P[X <z |Y > y,] is a constant function.

The quantity Sg?fy (p) can be determined only by an approximation.

EXAMPLE 4. Let F(z,y) = 1—1/z —1/y + 1/(2Yy), z,y > 1, and 0
otherwise. Then EX = co. Moreover,
yp=1/(1=p), ') =0-q"", u) @) =1/p,
1) e J oo, 0<p<1/2,
o =
O = T ren -1y, U p it
Hence we get

0, 0<p<1/2,

D (p)={ 1—p2t->
sxly () %\/Qp—l, 1/2 <p<1.

(2)

The characteristic s X|

v (p) can be given by an approximation.

3. Properties of functional measures of skewness. The following
generalization of the estimate derived in [2] (cf. (1.2)) gives bounds for
functional measures of skewness.

THEOREM. Under the notations of Section 2 we have:
. k k k
i) ey @ -2 <ol Mg), pe01), k=12,
. k
@) ek @) -F <o M), pe(0,1), k=12

Lalp

(3.1)

where M(q) = max{~/q/(1 —q),/(1 —q)/q}, and %EJT; and fgj; denote the
qth quantzles of PIX <z | X >z and P X <z | X <z, respectively.

Proof. We need only prove (i) with £ = 1 as the remaining cases can
be shown similarly.
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Note that the distribution function P[X < x | Y > y,| can be written
as a mixture of distribution functions as follows:

(32) PX<z|Y >y,
:qu[X<x|Y>yp]+(1—q)P2[X<m|Y>yp],

where
1
-PX<z|Y >y, =< l'(T),
(3.3) PX<z|Y>y)=X%14¢ ff;
1, T > Tyips
and
(34) B[X<z|Y >y
€3]
0, . TS Talp’
= q 1
From (3.2) we have
(3.5) ity () = am (p) + (1 = @)pa(p),
where

pip) = [ wdP[X <z |Y >y), i=1.2
Moreover, (3.3) and (3.4) imply

1
and

1
(3.7) ua(p) > a1,
respectively.

Now by (3.5)—(3.7) we conclude that

Hily () = gy < (1= @) (p2(p) = 1 (p)
and

() — i)y () < alpa(p) — pa ().
Hence

(38)  (ultly () — 1) < max{?, (1 - 0)*} (uap) — 1 (p))*.
Then using (3.2) and (3.5) we see that
(o @) =q [ (@ —qu®p) - (1 - Qpa(p))? dPI[X <z |Y >y,
+(1—q) [ (z—qu(p) — (1 = Qpua(p)® dPo[ X <z | Y >y
=q [ (z—m@)?dPX <z|Y >y,
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tq [ (- pa(p)? dPo(X <z |Y >y,

+q(1 = q)*(p2(p) — p1(p))* + *(1 — @) (p2(p) — pa(p))?
> q(1 = q)(u2(p) — p1(p))*.

Hence after using (3.8) we get

(0§|)Y(P))2 = max{qq(; (_1(1_) 0)?} (Ngfy(p) B mc(jz):)Q‘

COROLLARY. The limits of functional measures of skewness are as fol-
lows:

. k k k
(i) iy @) =20 <ol (), pe(0,1), k=12,
(ii) 1P ) —mP ) <oPp), pe(01), k=1,2

4. Examples. We now give examples of functional measures of skewness
using conditional distribution functions of order statistics.

ExaMPLE. Let U and V be independent random variables with a com-
mon strictly monotone distribution function. We consider two cases:

(i) X =U, Y =max(U,V),

(i) X =U, Y = min(U, V),
and put F'x = F.

In the case (i) we have y, = r 5 and

PIX <x]/(1+ /D), r < T p
(PIX <a]=p)/(L=p), =>z s

PIX <z|/v/p, z<2x_sm,
P[X<x\Y<yp]:{1’[ I/vp x>m£’

O _ {%(H\/ﬁ)? q < /p/(L+ /),
alp Lg(1—p)+pr 4 > \/ﬁ/(l + \/f))a
(2)

Lalp = Tayps x§1/)2|p = T(1+p)/25 x§2/)2|p = Typ/2s
iy (0) = 1+ VD) ' EXIX < 2 5] + (1 —p) 'EXI[X > 2 4,
EX?|Y >yl = (14 p) "EX?I[X <z 5]+ (1—p) "EX?I[X >z _g),
pely () = p7VPEXIX < x5,
E[X?|Y <yp] =p ' PEX?I[X <z 5.

P[X<x\y>yp]:{

From this one gets
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siely (0) = {(1+ V) T EXTIX < ]
+ (1= p) T EXIX <2 p] = 2(14p)/2}
x{(1+p) "EX*IX <z 5]+ (1 -p) 'EX?IX < z_g]
—((L+p) 'EXI[X <z 5]+ (1 —p) ' EXI[X >z g])2} 12
B p\PEXIX <z 5l — s
{p~'PEX2X <z 5] — p ' E2XI[X <z g]}/?

2
sy (p)

Now we give the values of sg‘)y (p) and s()?‘)y (p) for exponential, uniform,

and Pareto distributions.

(a) Let F(z) =1—e~*, x >0, and zero otherwise. Then

SO (p) = (1+p)(1—n2) +In(1 — p)+vP(1 — ,/p) VP
XY 7
| \/(1+\/}3)2+\/]31n2(1—\/}3)
(2 (p) = vP(1=In2) +1n(2 - \/23)\/27(1 _ \/13)1—\/5
SX|y p) = 7
\/p —(1—p)In*(1 - /p)
lim sl =1 -2, limsig, =1-In2.

(b) Let F(x) =z, x € [0, 1], and zero otherwise. Then

- Vpyp lim s (p) =0, 5T (p) =0
VI—p+2p(1+p)+p* »-0 Xy W)= Sy W) =

s\l (p) =

(c) Let F(z) = 1—1/z, x > 1, and zero otherwise. Then sgfy(p) is
undefined and

D - VI VPRV = P — )

Sx|y

, lim SS?I)Y (p) =0.

ey - -y

In the case (ii) we have y, = z;_ 51— and

0, $§x17m,
PX<z|Y>y|=qPX<2]-(0-vI-p)
m ) 1—/T—p>»
PIX <xl/p, T < T
PX<z|Y<y|=4q1-y1I-p

) (PIX <z]+V1T—=p), =>21_ 1=,
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1) _ o
Tolp = T1-(—g)vIp  T1j2)p = T1-yT-p/2;

@ _ {:cqp, q<1/(1++1-p), L@
= - 25
alp LTog—(1—q)vi-p» 4 > 1/(1 + V1 _p)7 1/2lp »/

ity () = (1= p) 2EXTX > 2, =),
E[X?|Y >y = (1-p) PEX?I[X > ;_ =),
el () = p EXIX <2y =)+ (1= V1= p)p ' EXIX > 2, =),
E[X?|Y <y,
=p 'EX?IX <ay_ g5+ (1= V1-pp 'EX?IX >z, 1=5].
From this one gets
siely (0)
(1—p) YV2EXI[X >z 73] — T1_ =52
\/(1 —p) VPEX2AX > a,_ g — (1 —p) 'EX2[X >, 1]
sy ()
={p "EXI[X <z, 1
+ (1= V1-pp 'EXI[X > 2y 5] — 22}
x {p'EX*1[X < xy_ =]
+ (1= V1-pp 'EXX >z, g=5] — (0 'EXI[X < 2y_ 75
+ (1= 1=pp 'EXI[X >z, 1=))*} /%

Now we see that in the case (a),

(1)
Sxjy(P) =1-1In2,
p(l —1In2 —|—1n2—p191_p(1—p)/2 '
Sy (p) = ( )12 Pl p) . limsP) (p) = 1-In2;
\/p2—(1—p)1n2m P

in the case (b) we have

Sga)y (p) = 05

_ \/3(1 —p)3/2 e o
Vi+2yT=p2—p)—p(i—p) »=1 % :

while in the case (c¢) both quantities sg‘)y (p) and s%)y (p) are undefined.

sy ()
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