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NORMALIZING CONSTANTS FOR A STATISTIC
BASED ON LOGARITHMS OF DISJOINT m-SPACINGS

Abstract. The paper is concerned with the asymptotic normality of a
certain statistic based on the logarithms of disjoint m-spacings. The exact
and asymptotic mean and variance are computed in the case of uniform
distribution on the interval [0,1]. This result is generalized to the case
when the sample is drawn from a distribution with positive step density on
[0, 1].

1. Introduction. Let Xi,..., Xy be a sample from the uniform dis-
tribution on the interval [0,1]. Let us denote by X(i),..., X(n) the order
statistics derived from this sample and define X(g) = 0, X(ny11) = 1. Let
Yo, Y1,..., YN be ii.d. exponential random variables with unit mean. It is
known that

Y; Y,
(1) X(i)iexp<—,z—...—]<rv>, i=1,...,N.
(3

We will use the notation

(2) Xk;zzexp<—iy.;>, 1<k<I<N.
We also have

(3) X (i)
We define the m-spacings from the sample Xi,..., Xy as the differences

D(:“A)I = Xntm) — Xm),n=0,...,N+1—m,m > 1. Let us introduce the

n
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following notation:

2 6 = D108 DL,
We are interested in the statistic
(5) Gv= > G

0<im<N+1—-m

based on disjoint m-spacings. It can be proved as in Cressie (1976) or
deduced from Del Pino (1979) that Gy is asymptotically normal. The gen-
eral results of Del Pino (1979) give the asymptotic means and variances of
statistics based on disjoint m-spacings in the form of means and variances of
some other random variables. In any particular case these quantities have
to be computed separately to obtain the values of normalizing constants.
This method was used by Jammalamadaka & Tiwari (1986). In this paper
we will find the exact values of E(G ) and Var (Gx) in a closed and simple
form. We will also establish the asymptotic normality of G for alternatives
with step densities.

2. Main results

THEOREM 1. Let k > 1 and N +1 = km. Then the random variable G
has the mean and variance given by

N+1 1
(6) E(GN):_ Z 57
i=m-+1
(7) Var(Gy) = Niq [F(m +1) - F(N +2)),

(8) F(n) = nZZ12

The method of the proof will be similar to that of Cressie (1976). To
prove the main result we will need some lemmas.

LEMMA 1. For o« > —1 and n > 1 we have

Z:nz—i—a
N ) N 1
(b) E(X"NlogX"N)__gi+a;’+a’
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Proof. The proof is straightforward using the definition of X,,.; and
integrating with respect to the density of the exponential distribution.

LEMMA 2. For n,m > 1 we have

=1 i
E(log (1 — Xn:n—i—m—l)) = — Z % A - —

Proof. Expanding the logarithm into a power series we get

E(log (1 — Xn:n—i-m 1 < Z L n: n+m 1>

00 n+m 1 .
:_Zk‘ nn+m1 Z H Z-f—k‘

On the other hand, X,.,1m—1 has the same dlstrlbutlon as the nth order

statistic from a sample of size n + m — 1. Applying the transformation

xr—1—xwegetl— Xnmtm—1 4 Xm:n+m—1 and hence

s\;_n

E(log (1 - Xn:nerfl)) (log Xm n+m— 1 Z

LEMMA 3. For n,m > 1 we have

Proof. Using Lemma 1 and the transformation x — 1 — z as in the
proof of Lemma 2, we get

oo n+m

31T = S ) = (M) =5( 22 )

k=1 i1=n
E(l ‘<771,+1:7’L+77L> = E (X )
‘<m+1n+m m—~+1:n+m

n—l—mYVi n+m Z n
:E(exp( Z i>>_1: H i—l_lzg'

i=m+1 i=m-+1

LEMMA 4. For n,m > 1 we have

oo n+m—1 . n+m—1
Z H i+ k: Z (i + k Z k’2
i=n k=n+m

Proof. This can be proved by induction. See Cressie (1976).

Proof of Theorem 1. We calculate E(Gy) first. It follows from (3)
that all m-spacings have the same distribution. Hence from Lemma 1(b) we
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get
E(G(™) = B(GY™) = E(X (1) 10g X (1))
m N 1
—E(X,, . ylog X, .n)=— .
(X l0g Xom.') N+1izmi+1
Thus
k—1
E(Gy) =B( X G) = kEGE™)
1=0
N+1 -m i -
 m  N+1 i+1 it 1

The variance of G is more complicated to obtain. We have

— m (m)
Var(Gy) = k Var(GS™) + k(k — 1) Cov(GJ™ ).
From Lemma 1 we get

Var(G{™) = B(X2,. 5 10g? Xpin) — B (X 108 X))

- <an(3<}2 2) [Ni 1*( > 1)]

=m-+2 1=m-+2

9 N+1 2
__m z:l
w2 1)
To calculate Cov(Ggm), G%m)), n > m, let us note that
X’I’l:
log (Xym:N — Xn:n) = log Xy .y + log <1 - XN)
n+m:N
= 10g Xner:N + log (1 - Xn:nerfl)-
Hence
E(G(()m)G%m)) = E(XmN IOg Xm:N(Xn—l-m:N - XnN) log Xn+m:N)
+ E(XmN lOg Xm:N(Xn—i—m:N - XnN) log (1 - Xn:m—l—n—l))-
The expected values above can be calculated using the identities
Xn:N = Xn:n+m—1Xn+m:N7 Xm:N = Xm:n—an:N

and the fact that X,,.,—1, Xnntm—1, Xnim:n are independent. After ele-
mentary but lengthy calculations we get

(9) E(XmN 1Og Xm:N(Xn+m'N - Xn N) 10g Xn+m N)
N+2 N+2 N+2

- X P2 it X g

i= m+n+2 1= m+1 i=m-+n+2
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Similarly, using the expansion log (1 — Xym4n—1) = — Y peq k

nm—i—n 1
and Lemmas 1-4 we obtain
(10) E(Xm:N log Xm:N(Xn-‘,-m'N - Xn N) 10g (1 - Xn~n+m_1))
m+n+1 N+2 fo'e) 1
(N +1)( N—|—2< Z Z T 12)
= m+1 i=m-+n—+2

Combining (9) and (10) we have for n > m,

BGO) = <N+1ﬂ>2<21v+2>{<;§ 1)‘ > 7

=m+1 i=N+3

and
Cov(G™, G™) = B(GG™) = B(GE™)E(GH™)

Com? [ Nizlz
N+ 1[N+2\ i

i=m-+1
HEY s
- - - = |-
N +1 i:mHz N—|—2i:N+3z

Now we can calculate Var(Gy):

Var(Gy) = k Var(GI™) + k(k — 1) Cov(G™, GIm)

m+1 N+2 1 N+2 1 2 m N-+1 1 2
vl 2 e (X))

i=m+42 i=m+42 i=m+1

1 N+2 1 2
k—1 _— -
+( )m[N+2<i;_lz>
(B e s
_ = ht - =
N +1 M N—|—2i:N+3z
_m+1NZ+:21 (k 1)mi1+ ]Vile
N +2 i2 N+2 i2
7 +2 1=N-+3 1=m—+1
7 N+ 2 ) 7
1=m-+1 i=m-+2 i=m-+1
- min S Lowiy Y L
N +2 . i? , 2
i=m+1 1=N-+2

In the next lemma we give the expected value and the variance of G
in the case when N + 1 is not divisible by m.
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LEMMA 5. Assume that N + 1 is not divisible by m and let n < N be the
largest integer such that n + 1 s divisible by m, i.e. n+ 1 =km. Then

n+1 Nil 1
N+1 i’

1=m-+1

(11) E(Gn) =

(n+1)(n+2)
(N +1)(N +2)

x{% <Z§:2+7§ >—|—Var )}

(12)  Var(Gy) =

1=n-+3 1=n-+3 i=m+1
(n+1)2 Nil 1\?
(N +1)2 Pl 1

where Var(G,,) is given by (7).

Proof. We have Gy = Zk ! DEZ)N log D'fm)N and

- n+1:N(Xim+m:n - szn) — Xn—i—l:NDl(Z)n

In the equation above X, 4+1.n is independent of pim ) thus

k—1
Gy = Z Xyt ND'fm)n log (Xn+1: NDz(m)n)
=0
k—1
— Z Xn+1:N 10g Xn+1 NDZ(m)n + Z X n+1: NDz(m)n 10g Dz(z)n
=0 =0

— Xn+1:N IOg Xn+1:N + Xn—‘,—l:NGn

and X,,41.5 is independent of G,,. Using the last identity and applying
Lemma 1 we get easily the statement of Lemma 5.

THEOREM 2. E(Gy) and Var(Gy) given by (6), (11) and (7), (12) re-
spectively are asymptotically equivalent to

1
13 = — —log (N +2) —
(13) ex =35 - log(N+2) =
and
1
2 _ _
(14) ok = g Fm+ 1) - 1l

where v = 0.577... is Fuler’s constant.
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Proof. We want to show that Var(Gx)/o3 — 1 and (E(Gy)—en)/on
— 0. Since F(n) — 1 it is easy to show that (7) and (12) are equivalent to
0%:. It remains to prove that N + 2 (E(Gy) — en) — 0. We can replace
(11) by (6) because

N+1 N+1

N+1
n4+1 1 1 mv N + 2 1
VNF2| - Yoo Y < TETE S o
+ ‘ N+1i:m+1i+i:m+1i =T N11 i:m+1i_>

Let us define vy = Zf\il i~ —log (N +1). Then

=S ()

=1

and vy — . Applying the inequalities

0t e (iTL) 1 11
7_0 _— — —
i e\ i il
we get
N+1 1
N+2<— > —eN>
1=m-+1
= /1 i+1
=VN+2(y—ws)=VN+2 Y <4—1Og< . >>
i=N+42 ¢ ¢
=1 =1
§\/N+2 Z ZES Z 2,37—>0.
i=N+2 i=N+2

It is easy to see that the expresions for ey and o3 given by (13) and (14)
agree with the results of Gebert and Kale (1969) for m = 1 and Jammala-
madaka & Tiwari (1986) for m > 1.

3. The case of step densities. In this section we will find the asymp-
totic distribution of GG, in the case when the underlying distribution has a
positive step density on [0,1]. For m = 1 it was found by Czekala (1993).

Let X = (X1, X5,...,X,,...) be a sequence of random variables which
are used to form G,,. G, is a function of n and X which we can write as
Gy = ¢(n, X). To simplify the notation we assume that ¢(0,X) = 0. Now
let £ > 1 be a fixed integer and let 0 = z9 < 1 < ... < xx = 1 be fixed real
numbers. We can define subintervals of [0,1] as follows:

Il = [:UOaxl)) ) Ik‘fl = [$k727$k71)) Ik = [ﬂfkfl,ﬂfk].

The lengths of the intervals I; will be denoted by d;. Let f; > 0,i=1,...,k,
be fixed numbers such that Z?Zl fid; = 1. These numbers together with
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the intervals I; define a step density f:

k
(15) fla) =3 fitn @)

Define p; = fid;. We have > p; = 1 and hence there exist numbers 0 = z}, <
x] < ... < z) = 1 such that the intervals I, defined similarly to I;, have
lengths p;. There also exists a vector of random elements (U,Y!,...,Y¥)
such that:

(a) the coordinates of this vector are stochastically independent,

(b) U = (U1,Us,...) is a sequence of independent random variables
uniformly distributed on [0,1],

() Y' = (Y},Yy,...), for i = 1,...,k, are sequences of independent
random variables with uniform distribution on I;.

We can now define a sequence Z = (Z, Zs,...) of independent random
variables with density f:

k
(16) Zn =Y 10(Un)Yy, n>1.
i=1
Let us denote by N;, the number of random variables Zi,..., 7, taking

values in the interval I;, that is,
j=1

It is easy to see that N; , = Z;;l 1 (U;) and thus the sequence of vectors
(N1.py- .., Nip) is independent of (Y1,...,Y"). Using this we will prove in
the next two lemmas that ¢(n,Z) is asymptotically identically distributed
as

k

(18) > G(Nim, Y.

i=1
In the sequel we will use the notation 1 (z) = xlogx.
LEMMA 6. If T is an arbitrary random variable taking values in the set
{1,...,m} then
P
V(X)) =0,

where X () denotes the T-th order statistic from the sample of size n.

Proof. We have

m

P(Vn (X)) =€) <> P(nlp(Xa)l =),

i=1
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hence it is enough to prove that /n (X)) L0 for each fixed i > 1. Tt is
known that nX(;y converges weakly to some random variable X (with Er-
lang’s distribution). Since v is a continuous function we also have 1 (n.X(;))

<, P(X). It follows that

Viu(Xy) = T B 2o,

LEMMA 7. The statistic ¢(n, Z) has the same asymptotic distribution as
the statistic (18).

Proof. Let us consider the sequence Z,, 1, Za, 2, - .. of those successive
random variables Z,, whose values belong to the interval I;. The sequence
Qin, n > 1, is determined by the sequence U, so it is independent of Y.
Since by (16), Z,, ,, = Yim, the sequence Z,, ,, has the same probability dis-
tribution as Y. It can be shown similarly that the joint distribution of the
vector (Za, ,,n>1,...,Z,,,n > 1) is the same as that of (Y*!,...,Y*).
It follows that the sequence'X(l), .++,X(n) has the same probability dis-
tribution as Y(ll), . ’Y&Vl,n)’ . ,Y(li), . ,Y(lj\,k)n). To prove our lemma we
need to exclude the m-spacings that span different intervals I;,. We have
Nin 21 50 s0 we can assume that each of the intervals I; contains at least
one full m-spacing. Then the m-spacings that are fully contained in I; are
built from the random variables

(19) YTiﬂYTiHrl’""Y”fier’

where 7, = m + m[S;_1/m] — Si—1, i = m[S;/m] — m[S;_1/m] — m and
S; = 23:1 N n. We have omitted the index n in the definition of 7;, ;, S; to
simplify the notation. Let D = in —YT’; +n; be the m-spacing containing z;
which is the common endpoint of I; and I;11. We can write D = D1+ Dy =
(@i =Y o)+ (V5L =), We have v/ [¢(D)] < v/n [ (D1)| + /n |9 (Ds))|
and from Lemma 6 we obtain (D) L 0. We have proven that the m-
spacings spanning different intervals I; are negligible.

Now 7; and 7; are independent of Y so the distribution of (19) will not
change if we replace (19) by
(20) Y0 Y- Yiny)-
It follows that ¢(n,Z) has the same asymptotic distribution as
Zle é(n;, Y?). Tt is easy to see that the latter statistic is asymptotically

identically distributed as (18) because 0 < N, ,,—1; < 2m—1and N; , 2 .
We will need some lemmas to find the asymptotic distribution of (18).
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LEMMA 8. Let X and X,,, n > 1, be random variables such that X, 2o
and /i Xn % X. Then
(21) Vallog (14 X,) — X,.| & 0.
Proof. (21) follows easily from the fact that for |z| < 1/2 we have
llog (1 + x) — x| < 22

LEMMA 9. Let X; ,,, i =1,...,k, n >0, be the random variables defined
as follows:

1 )
Xi,n = ?(¢(nayl) - dz(logdz + en))a

n

where e, and o, are defined by (13) and (14). Then

Nl,n — np1 Nk,n — NPk
d
= (1 X1, die X, W, oo, W),

(22) (lelen,...,kaNk’n,

where the X; are independent and normally N (0, 1) distributed random vari-
ables, the vector (Wi, ..., Wy) is independent of (X1,...,Xk) and has the
multivariate normal distribution N(0,X), where X' = [0 ;] and

o — L Pip fori # j,

W\ pi—p} o fori=j,
ii=1,... k.
Proof. We will first show that

(23) (Xims s Xpm) 2 (o X1, di Xy).

We have o, 1(¢p(n,Y?/d;) — ep) 4, X;, where e, and o, are given by (13)
and (14) respectively. Transforming ¢(n,Y?/d;) into ¢(n,Y") we get X, ,, <,
d; X;. As X, ,, are independent we also have (23). Now we show that
Nl,n — np1 Nl,n -
Tn NG
This follows from the central limit theorem because N, = >>7_; 11/(Uj),
E(lIZ{(Ul)) = p; and Cov(lIZ((Ul), 1[;,(U1)) = 0;,j. Since the sequence N, ,,
is independent of Y, (23) and (24) together give (22).

1 1
)) 4 (Wl,...,Wk>.
b1 Pk

(24)

npl) i (Wb' "aWk)'

LEMMA 10. We have

N N,
(ﬁlog( 1’"),...,\/ﬁlog< kym
k

np1 np
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Proof. Let a(x) =log (1 + ) — z. Then

Nin Nzn_ 7
mog< 7): iy Jwa (p>
np; N np;

From Lemma 8 it follows that v/na((N;,, —np;)(np;) ™) £ 0. The rest of
the proof results from Lemma 9.

Now we can compute the asymptotic distribution of the statistic G,
when the underlying distribution has density f given by (15).

THEOREM 3. If the X1, Xo,..., X,,,... are i.i.d. random variables with
the density f given by (15) then
(25) Cn=Cpn 4 nig 1),
Ofm
where
n+1
m ee{n()) 5
m+1
(27) i [F(m + 1)E<> — 1]
bn 42 f? '

An asymptotically equivalent form of ef , is

(28) ef,n:E<flog <f>) logn—sz_fy

Proof. As proved in Lemma 7 we can replace Gy, by Y ¢(N; ., Y?). Set
Cpm = F(m+1)—1. From Lemmas 9 and 10 we get

LIS o) = S s log - %
[zqs( W)=Y g(p)(Zv)]
k

AN~ by 1 iy,
H;\/@Xl m;piWH

where W; and X; are defined in Lemma 9. It remains to compute the
variance of the right side:

Var<i di X; — ! idiW):i—i-zzdda
\/171‘ i mi:1pi i ij

i=1 i=1 i=1 j= 1 PiPj

k

21 2
=25 c(;m‘l>'

i=1
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From this we get
Z?:1 A(Nin, YY) —E(ftog f~1) +logn =Y " it +v 4 N
— N(0,1).
Vin+2)"I[F(m+ 1DE(f~2) — 1]
n+1 1

Replacing logn + v in the expression above by > " i~ which is asymp-
totically equivalent as was shown in the proof of Theorem 2, we obtain (26).
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