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NORMALIZING CONSTANTS FOR A STATISTIC
BASED ON LOGARITHMS OF DISJOINT m-SPACINGS

Abstract . The paper is concerned with the asymptotic normality of a
certain statistic based on the logarithms of disjoint m-spacings. The exact
and asymptotic mean and variance are computed in the case of uniform
distribution on the interval [0, 1]. This result is generalized to the case
when the sample is drawn from a distribution with positive step density on
[0, 1].

1. Introduction. Let X1, . . . , XN be a sample from the uniform dis-
tribution on the interval [0, 1]. Let us denote by X(1), . . . , X(N) the order
statistics derived from this sample and define X(0) = 0, X(N+1) = 1. Let
Y0, Y1, . . . , YN be i.i.d. exponential random variables with unit mean. It is
known that

(1) X(i)
d= exp

(
− Yi

i
− . . .− YN

N

)
, i = 1, . . . , N.

We will use the notation

(2) Xk:l = exp
(
−

l∑
i=k

Yi

i

)
, 1 ≤ k ≤ l ≤ N.

We also have

(3) X(i)
d=
Y1 + . . .+ Yi

Y0 + . . .+ YN
.

We define the m-spacings from the sample X1, . . . , XN as the differences
D

(m)
n,N = X(n+m) −X(n), n = 0, . . . , N + 1−m,m ≥ 1. Let us introduce the
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following notation:

(4) G(m)
n = D

(m)
n,N logD(m)

n,N .

We are interested in the statistic

(5) GN =
∑

0≤im≤N+1−m

G
(m)
im

based on disjoint m-spacings. It can be proved as in Cressie (1976) or
deduced from Del Pino (1979) that GN is asymptotically normal. The gen-
eral results of Del Pino (1979) give the asymptotic means and variances of
statistics based on disjoint m-spacings in the form of means and variances of
some other random variables. In any particular case these quantities have
to be computed separately to obtain the values of normalizing constants.
This method was used by Jammalamadaka & Tiwari (1986). In this paper
we will find the exact values of E(GN ) and Var (GN ) in a closed and simple
form. We will also establish the asymptotic normality of GN for alternatives
with step densities.

2. Main results

Theorem 1. Let k ≥ 1 and N + 1 = km. Then the random variable GN

has the mean and variance given by

E(GN ) = −
N+1∑

i=m+1

1
i
,(6)

Var(GN ) =
1

N + 2
[
F (m+ 1)− F (N + 2)],(7)

where

(8) F (n) = n

∞∑
i=n

1
i2
.

The method of the proof will be similar to that of Cressie (1976). To
prove the main result we will need some lemmas.

Lemma 1. For α > −1 and n ≥ 1 we have

E(Xα
n:N ) =

N∏
i=n

i

i+ α
,(a)

E(Xα
n:N logXn:N ) = −

N∏
i=n

i

i+ α

N∑
j=n

1
j + α

,(b)

E(Xα
n:N log2Xn:N ) =

N∏
i=n

i

i+ α

[ N∑
j=n

1
(j + α)2

+
( N∑

j=n

1
j + α

)2]
.(c)
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P r o o f. The proof is straightforward using the definition of Xn:N and
integrating with respect to the density of the exponential distribution.

Lemma 2. For n,m ≥ 1 we have

E(log (1−Xn:n+m−1)) = −
∞∑

k=1

1
k

n+m−1∏
i=n

i

i+ k
= −

n+m−1∑
i=m

1
i
.

P r o o f. Expanding the logarithm into a power series we get

E(log (1−Xn:n+m−1)) = E
(
−

∞∑
k=1

1
k
Xk

n:n+m−1

)

= −
∞∑

k=1

1
k

E(Xk
n:n+m−1) = −

∞∑
k=1

1
k

n+m−1∏
i=n

i

i+ k
.

On the other hand, Xn:n+m−1 has the same distribution as the nth order
statistic from a sample of size n + m − 1. Applying the transformation
x→ 1− x we get 1−Xn:n+m−1

d= Xm:n+m−1 and hence

E(log (1−Xn:n+m−1)) = E(logXm:n+m−1) = −
n+m−1∑

i=m

1
i
.

Lemma 3. For n,m ≥ 1 we have
∞∑

k=1

n+m∏
i=n

i

i+ k
=

n

m
.

P r o o f. Using Lemma 1 and the transformation x → 1 − x as in the
proof of Lemma 2, we get

∞∑
k=1

n+m∏
i=n

i

i+ k
=

∞∑
k=1

E(Xk
n:n+m) = E

( ∞∑
k=1

Xk
n:n+m

)
= E

(
Xn:n+m

1−Xn:n+m

)
= E

(
1−Xm+1:n+m

Xm+1:n+m

)
= E

(
1

Xm+1:n+m

)
− 1

= E
(

exp
( n+m∑

i=m+1

Yi

i

))
− 1 =

n+m∏
i=m+1

i

i− 1
− 1 =

n

m
.

Lemma 4. For n,m ≥ 1 we have
∞∑

k=1

n+m−1∏
i=n

i

i+ k

n+m−1∑
i=n

1
i(i+ k)

=
∞∑

k=n+m

1
k2
.

P r o o f. This can be proved by induction. See Cressie (1976).

P r o o f o f T h e o r e m 1. We calculate E(GN ) first. It follows from (3)
that all m-spacings have the same distribution. Hence from Lemma 1(b) we



408 F. Czeka la

get

E(G(m)
n ) = E(G(m)

0 ) = E(X(m) logX(m))

= E(Xm:N logXm:N ) = − m

N + 1

N∑
i=m

1
i+ 1

.

Thus

E(GN ) = E
( k−1∑

i=0

G
(m)
im

)
= kE(G(m)

0 )

=
N + 1
m

· −m
N + 1

N∑
i=m

1
i+ 1

= −
N∑

i=m

1
i+ 1

.

The variance of GN is more complicated to obtain. We have

Var(GN ) = kVar(G(m)
0 ) + k(k − 1) Cov(G(m),G(m)

m )
0 .

From Lemma 1 we get

Var(G(m)
0 ) = E(X2

m:N log2Xm:N )− E2(Xm:N logXm:N )

=
m(m+ 1)

(N + 1)(N + 2)

[ N+2∑
i=m+2

1
i2

+
( N+2∑

i=m+2

1
i

)2]

− m2

(N + 1)2

( N+1∑
i=m+1

1
i

)2

.

To calculate Cov(G(m)
0 , G

(m)
n ), n ≥ m, let us note that

log (Xn+m:N −Xn:N ) = logXn+m:N + log
(

1− Xn:N

Xn+m:N

)
= logXn+m:N + log (1−Xn:n+m−1).

Hence

E(G(m)
0 G(m)

n ) = E(Xm:N logXm:N (Xn+m:N −Xn:N ) logXn+m:N )
+ E(Xm:N logXm:N (Xn+m:N −Xn:N ) log (1−Xn:m+n−1)).

The expected values above can be calculated using the identities

Xn:N = Xn:n+m−1Xn+m:N , Xm:N = Xm:n−1Xn:N

and the fact that Xm:n−1, Xn:n+m−1, Xn+m:N are independent. After ele-
mentary but lengthy calculations we get

(9) E(Xm:N logXm:N (Xn+m:N −Xn:N ) logXn+m:N )

=
m2

(N + 1)(N + 2)

( N+2∑
i=m+n+2

1
i

N+2∑
i=m+1

1
i

+
N+2∑

i=m+n+2

1
i2

)
.
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Similarly, using the expansion log (1−Xn:m+n−1) = −
∑∞

k=1 k
−1Xk

n:m+n−1

and Lemmas 1–4 we obtain

(10) E(Xm:N logXm:N (Xn+m:N −Xn:N ) log (1−Xn:n+m−1))

=
m2

(N + 1)(N + 2)

( m+n+1∑
i=m+1

1
i

N+2∑
i=m+1

1
i
−

∞∑
i=m+n+2

1
i2

)
.

Combining (9) and (10) we have for n ≥ m,

E(G(m)
0 G(m)

n ) =
m2

(N + 1)(N + 2)

[( N+2∑
i=m+1

1
i

)2

−
∞∑

i=N+3

1
i2

]
and

Cov(G(m)
0 , G(m)

n ) = E(G(m)
0 G(m)

n )− E(G(m)
0 )E(G(m)

n )

=
m2

N + 1

[
1

N + 2

( N+2∑
i=m+1

1
i

)2

− 1
N + 1

( N+1∑
i=m+1

1
i

)2

− 1
N + 2

∞∑
i=N+3

1
i2

]
.

Now we can calculate Var(GN ):

Var(GN ) = kVar(G(m)
0 ) + k(k − 1) Cov(G(m)

0 , G(m)
m )

=
m+ 1
N + 2

[ N+2∑
i=m+2

1
i2

+
( N+2∑

i=m+2

1
i

)2]
− m

N + 1

( N+1∑
i=m+1

1
i

)2

+ (k − 1)m
[

1
N + 2

( N+2∑
i=m+1

1
i

)2

− 1
N + 1

( N+1∑
i=m+1

1
i

)2

− 1
N + 2

∞∑
i=N+3

1
i2

]

=
m+ 1
N + 2

N+2∑
i=m+2

1
i2
− (k − 1)m

N + 2

∞∑
i=N+3

1
i2

+
( N+2∑

i=m+1

1
i

)2

−
( N+1∑

i=m+1

1
i

)2

+
m+ 1
N + 2

[( N+2∑
i=m+2

1
i

)2

−
( N+2∑

i=m+1

1
i

)2]

=
1

N + 2

[
(m+ 1)

∞∑
i=m+1

1
i2
− (N + 2)

∞∑
i=N+2

1
i2

]
.

In the next lemma we give the expected value and the variance of GN

in the case when N + 1 is not divisible by m.
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Lemma 5. Assume that N + 1 is not divisible by m and let n < N be the
largest integer such that n+ 1 is divisible by m, i.e. n+ 1 = km. Then

(11) E(GN ) = − n+ 1
N + 1

N+1∑
i=m+1

1
i
,

(12) Var(GN ) =
(n+ 1)(n+ 2)

(N + 1)(N + 2)

×
[ N+2∑

i=n+3

1
i2

+
( N+2∑

i=n+3

1
i

+
n+1∑

i=m+1

1
i

)2

+ Var(Gn)
]

− (n+ 1)2

(N + 1)2

( N+1∑
i=m+1

1
i

)2

where Var(Gn) is given by (7).

P r o o f. We have GN =
∑k−1

i=0 D
(m)
im,N logD(m)

im,N and

D
(m)
im,N = (Xim+m:N −Xim:N )

= Xn+1:N (Xim+m:n −Xim:n) = Xn+1:ND
(m)
im,n.

In the equation above Xn+1:N is independent of D(m)
im,n, thus

GN =
k−1∑
i=0

Xn+1:ND
(m)
im,n log (Xn+1:ND

(m)
im,n)

=
k−1∑
i=0

Xn+1:N logXn+1:ND
(m)
im,n +

k−1∑
i=0

Xn+1:ND
(m)
im,n logD(m)

im,n

= Xn+1:N logXn+1:N +Xn+1:NGn

and Xn+1:N is independent of Gn. Using the last identity and applying
Lemma 1 we get easily the statement of Lemma 5.

Theorem 2. E(GN ) and Var(GN ) given by (6), (11) and (7), (12) re-
spectively are asymptotically equivalent to

(13) eN =
m∑

i=1

1
i
− log (N + 2)− γ

and

(14) σ2
N =

1
N + 2

[F (m+ 1)− 1],

where γ = 0.577 . . . is Euler’s constant.
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P r o o f. We want to show that Var(GN )/σ2
N → 1 and (E(GN )−eN )/σN

→ 0. Since F (n) → 1 it is easy to show that (7) and (12) are equivalent to
σ2

N . It remains to prove that
√
N + 2 (E(GN ) − eN ) → 0. We can replace

(11) by (6) because

√
N + 2

∣∣∣∣− n+ 1
N + 1

N+1∑
i=m+1

1
i

+
N+1∑

i=m+1

1
i

∣∣∣∣ ≤ m
√
N + 2

N + 1

N+1∑
i=m+1

1
i
→ 0.

Let us define γN =
∑N

i=1 i
−1 − log (N + 1). Then

γN =
N∑

i=1

[
1
i
− log

(
i+ 1
i

)]
and γN → γ. Applying the inequalities

0 <
1
i
− log

(
i+ 1
i

)
<

1
i
− 1
i+ 1

<
1
i2
,

we get

√
N + 2

(
−

N+1∑
i=m+1

1
i
− eN

)

=
√
N + 2 (γ − γN+1) =

√
N + 2

∞∑
i=N+2

(
1
i
− log

(
i+ 1
i

))

≤
√
N + 2

∞∑
i=N+2

1
i2
≤

∞∑
i=N+2

1
i3/2

→ 0.

It is easy to see that the expresions for eN and σ2
N given by (13) and (14)

agree with the results of Gebert and Kale (1969) for m = 1 and Jammala-
madaka & Tiwari (1986) for m ≥ 1.

3. The case of step densities. In this section we will find the asymp-
totic distribution of Gn in the case when the underlying distribution has a
positive step density on [0, 1]. For m = 1 it was found by Czeka la (1993).

Let X = (X1, X2, . . . , Xn, . . .) be a sequence of random variables which
are used to form Gn. Gn is a function of n and X which we can write as
Gn = φ(n,X). To simplify the notation we assume that φ(0, X) = 0. Now
let k ≥ 1 be a fixed integer and let 0 = x0 < x1 < . . . < xk = 1 be fixed real
numbers. We can define subintervals of [0,1] as follows:

I1 = [x0, x1), . . . , Ik−1 = [xk−2, xk−1), Ik = [xk−1, xk].

The lengths of the intervals Ii will be denoted by di. Let fi > 0, i = 1, . . . , k,
be fixed numbers such that

∑k
i=1 fidi = 1. These numbers together with
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the intervals Ii define a step density f :

(15) f(x) =
k∑

i=1

fi 1Ii(x)

Define pi = fidi. We have
∑
pi = 1 and hence there exist numbers 0 = x′0 <

x′1 < . . . < x′k = 1 such that the intervals I ′i, defined similarly to Ii, have
lengths pi. There also exists a vector of random elements (U, Y 1, . . . , Y k)
such that:

(a) the coordinates of this vector are stochastically independent,
(b) U = (U1, U2, . . .) is a sequence of independent random variables

uniformly distributed on [0,1],
(c) Y i = (Y i

1 , Y
i
2 , . . .), for i = 1, . . . , k, are sequences of independent

random variables with uniform distribution on Ii.

We can now define a sequence Z = (Z1, Z2, . . .) of independent random
variables with density f :

(16) Zn =
k∑

i=1

1I′
i
(Un)Y i

n, n ≥ 1.

Let us denote by Ni,n the number of random variables Z1, . . . , Zn taking
values in the interval Ii, that is,

(17) Ni,n =
n∑

j=1

1Ii
(Zj).

It is easy to see that Ni,n =
∑n

j=1 1I′
i
(Uj) and thus the sequence of vectors

(N1,n, . . . , Nk,n) is independent of (Y 1, . . . , Y k). Using this we will prove in
the next two lemmas that φ(n,Z) is asymptotically identically distributed
as

(18)
k∑

i=1

φ(Ni,n, Y
i).

In the sequel we will use the notation ψ(x) = x log x.

Lemma 6. If τ is an arbitrary random variable taking values in the set
{1, . . . ,m} then

√
nψ(X(τ))

P→ 0,
where X(τ) denotes the τ -th order statistic from the sample of size n.

P r o o f. We have

P (
√
n |ψ(X(τ))| ≥ ε) ≤

m∑
i=1

P (
√
n |ψ(X(i))| ≥ ε),
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hence it is enough to prove that
√
nψ(X(i))

P→ 0 for each fixed i ≥ 1. It is
known that nX(i) converges weakly to some random variable X (with Er-
lang’s distribution). Since ψ is a continuous function we also have ψ(nX(i))
d→ ψ(X). It follows that

√
nψ(X(i)) =

ψ(nX(i))√
n

− log n√
n

(nX(i))
P→ 0.

Lemma 7. The statistic φ(n,Z) has the same asymptotic distribution as
the statistic (18).

P r o o f. Let us consider the sequence Zαi,1, Zαi,2, . . . of those successive
random variables Zn whose values belong to the interval Ii. The sequence
αi,n, n ≥ 1, is determined by the sequence U , so it is independent of Y i.
Since by (16), Zαi,n = Y i

αi,n
, the sequence Zαi,n has the same probability dis-

tribution as Y i. It can be shown similarly that the joint distribution of the
vector (Zα1,n , n ≥ 1, . . . , Zαk,n

, n ≥ 1) is the same as that of (Y 1, . . . , Y k).
It follows that the sequence X(1), . . . , X(n) has the same probability dis-
tribution as Y 1

(1), . . . , Y
1
(N1,n), . . . , Y

k
(1), . . . , Y

k
(Nk,n). To prove our lemma we

need to exclude the m-spacings that span different intervals Ii. We have
Ni,n

P.1→ ∞ so we can assume that each of the intervals Ii contains at least
one full m-spacing. Then the m-spacings that are fully contained in Ii are
built from the random variables

(19) Y i
τi
, Y i

τi+1, . . . , Y
i
τi+ηi

,

where τi = m + m[Si−1/m] − Si−1, ηi = m[Si/m] − m[Si−1/m] − m and
Si =

∑i
j=1Nj,n. We have omitted the index n in the definition of τi, ηi, Si to

simplify the notation. Let D = Y i+1
τi+1

−Y i
τi+ηi

be the m-spacing containing xi

which is the common endpoint of Ii and Ii+1. We can write D = D1 +D2 =
(xi−Y i

τi+ηi
)+(Y i+1

τi+1−xi). We have
√
n |ψ(D)| ≤

√
n |ψ(D1)|+

√
n |ψ(D2)|

and from Lemma 6 we obtain ψ(D) P→ 0. We have proven that the m-
spacings spanning different intervals Ii are negligible.

Now τi and ηi are independent of Y i so the distribution of (19) will not
change if we replace (19) by

(20) Y i
(0), Y

i
(1), . . . , Y

i
(ηi)

.

It follows that φ(n,Z) has the same asymptotic distribution as∑k
i=1 φ(ηi, Y

i). It is easy to see that the latter statistic is asymptotically

identically distributed as (18) because 0 < Ni,n−ηi < 2m−1 and Ni,n
P.1→ ∞.

We will need some lemmas to find the asymptotic distribution of (18).
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Lemma 8. Let X and Xn, n ≥ 1, be random variables such that Xn
P.1→ 0

and
√
nXn

d→ X. Then

(21)
√
n |log (1 +Xn)−Xn

∣∣ P→ 0.

P r o o f. (21) follows easily from the fact that for |x| ≤ 1/2 we have

|log (1 + x)− x| ≤ x2.

Lemma 9. Let Xi,n, i = 1, . . . , k, n ≥ 0, be the random variables defined
as follows:

Xi,n =
1
σn

(φ(n, Y i)− di(log di + en)),

where en and σn are defined by (13) and (14). Then

(22)
(
X1,N1,n

, . . . , Xk,Nk,n
,
N1,n − np1√

n
, . . . ,

Nk,n − npk√
n

)
d→ (d1X1, . . . , dkXk,W1, . . . ,Wk),

where the Xi are independent and normally N(0, 1) distributed random vari-
ables, the vector (W1, . . . ,Wk) is independent of (X1, . . . , Xk) and has the
multivariate normal distribution N(0, Σ), where Σ = [σi,j ] and

σi,j =
{
−pipj for i 6= j,
pi − p2

i for i = j,

i, j = 1, . . . , k.

P r o o f. We will first show that

(23) (X1,n, . . . , Xk,n) d→ (d1X1, . . . , dkXk).

We have σ−1
n (φ(n, Y i/di) − en) d→ Xi, where en and σn are given by (13)

and (14) respectively. Transforming φ(n, Y i/di) into φ(n, Y i) we get Xi,n
d→

diXi. As Xi,n are independent we also have (23). Now we show that

(24)
(
N1,n − np1√

n
, . . . ,

N1,n − np1√
n

)
d→ (W1, . . . ,Wk).

This follows from the central limit theorem because Ni,n =
∑n

j=1 1I′
i
(Uj),

E(1I′
i
(U1)) = pi and Cov(1I′

i
(U1),1I′

j
(U1)) = σi,j . Since the sequence Ni,n

is independent of Y i, (23) and (24) together give (22).

Lemma 10. We have(√
n log

(
N1,n

np1

)
, . . . ,

√
n log

(
Nk,n

npk

))
d→

(
1
p1
W1, . . . ,

1
pk
Wk

)
.
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P r o o f. Let α(x) = log (1 + x)− x. Then

√
n log

(
Ni,n

npi

)
=
Ni,n − npi√

npi
+
√
nα

(
Ni,n − npi

npi

)
.

From Lemma 8 it follows that
√
nα((Ni,n − npi)(npi)−1) P→ 0. The rest of

the proof results from Lemma 9.

Now we can compute the asymptotic distribution of the statistic Gn

when the underlying distribution has density f given by (15).

Theorem 3. If the X1, X2, . . . , Xn, . . . are i.i.d. random variables with
the density f given by (15) then

(25)
Gn − ef,n

σf,n

d→ N(0, 1),

where

ef,n = E
(

1
f

log
(

1
f

))
−

n+1∑
m+1

1
i
,(26)

σ2
f,n =

1
n+ 2

[
F (m+ 1)E

(
1
f2

)
− 1

]
.(27)

An asymptotically equivalent form of ef,n is

(28) ef,n = E
(

1
f

log
(

1
f

))
− log n+

m∑
i=1

1
i
− γ.

P r o o f. As proved in Lemma 7 we can replace Gn by
∑
φ(Ni,n, Y

i). Set
Cm = F (m+ 1)− 1. From Lemmas 9 and 10 we get

1
σn

[ k∑
i=1

φ(Ni,n, Y
i)−

k∑
i=1

di log
(
di

npi

)
−

( m∑
i=1

1
i
− γ

)]
d→

k∑
i=1

di√
pi
Xi −

1√
Cm

k∑
i=1

di

pi
Wi,

where Wi and Xi are defined in Lemma 9. It remains to compute the
variance of the right side:

Var
( k∑

i=1

di√
pi
Xi −

1√
Cm

k∑
i=1

di

pi
Wi

)
=

k∑
i=1

d2
i

pi
+

1
Cm

k∑
i=1

k∑
j=1

didj

pipj
σij

=
k∑

i=1

d2
i

pi
+

1
Cm

( k∑
i=1

d2
i

pi
− 1

)
.
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From this we get∑k
i=1 φ(Ni,n, Y

i)− E(f−1 log f−1) + log n−
∑m

i=1 i
−1 + γ√

(n+ 2)−1[F (m+ 1)E(f−2)− 1]
d→ N(0, 1).

Replacing log n + γ in the expression above by
∑n+1

i=1 i
−1, which is asymp-

totically equivalent as was shown in the proof of Theorem 2, we obtain (26).
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