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ACCELERATION PROPERTIES OF THE

HYBRID PROCEDURE FOR SOLVING LINEAR SYSTEMS

Abstract. The aim of this paper is to discuss the acceleration properties
of the hybrid procedure for solving a system of linear equations. These
properties are studied in a general case and in two particular cases which
are illustrated by numerical examples.

1. The hybrid procedure. Let us consider the system of linear equa-
tions

(1) Ax = b,

where A ∈ R
m×m and x, b ∈ R

m. We denote by x̃ the solution of (1).

Let G = ZT Z be a symmetric positive definite matrix. The G-inner
product and the corresponding G-norm are respectively defined by (x, y)G =
(x,Gy) and ‖x‖G =

√
(x, x)G. The corresponding G-matrix norm is given

by

‖A‖G = sup
x6=0

‖Ax‖G

‖x‖G

=
√

̺((ZAZ−1)T ZAZ−1).

We shall also use the notation x ⊥G y if (x, y)G = 0. For simplicity, the
subscript G will be suppressed when unnecessary.

Let us now assume that two iterative methods for solving the system (1)
are used simultaneously. Their iterates are denoted respectively by x′

n and
x′′

n and the corresponding residual vectors by r′n = b−Ax′
n and r′′n = b−Ax′′

n.

The hybrid procedure defined in [1] consists of constructing a new iterate
xn and a new residual rn = b − Axn by

(2) xn = αnx′
n + (1 − αn)x′′

n, rn = αnr′n + (1 − αn)r′′n,
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with

αn = −
(r′n − r′′n, r′′n)

(r′n − r′′n, r′n − r′′n)
.

From the definition of rn, we see that

‖rn‖ = min
α

‖αr′n + (1 − α)r′′n‖.

We have

(rn, r′n) = (rn, r′′n) = (rn, rn)

and, setting pn = r′n − r′′n, (2) can be written as

(3) rn = r′′n −
(pn, r′′n)

(pn, pn)
pn, rn = r′n −

(pn, r′n)

(pn, pn)
pn.

It is easy to check that

(rn, rn) =
(r′n, r′n)(r′′n, r′′n) − (r′n, r′′n)2

(r′n − r′′n, r′n − r′′n)
(4)

= (r′′n, r′′n) −
(pn, r′′n)2

(pn, pn)
(5)

= (r′n, r′n) −
(pn, r′n)2

(pn, pn)
.(6)

2. Properties of the hybrid procedure. We now study the acceler-
ation properties of the hybrid procedure.

2.1. Asymptotic behavior of the hybrid procedure. Let θn be the angle
between Zr′n and Zr′′n. Using the relation (r′n, r′′n) = ‖r′n‖‖r

′′
n‖ cos θn we

have

αn = −
‖r′n‖‖r

′′
n‖ cos θn − ‖r′′n‖

2

‖r′n‖
2 − 2‖r′n‖‖r

′′
n‖ cos θn + ‖r′′n‖

2

and

‖rn‖
2 =

‖r′n‖
2‖r′′n‖

2(1 − cos2 θn)

‖r′n‖
2 − 2‖r′n‖‖r

′′
n‖ cos θn + ‖r′′n‖

2
.

Setting ̺n = ‖r′n‖/‖r
′′
n‖ we obtain

αn = −
̺n cos θn − 1

̺2
n − 2̺n cos θn + 1

,

‖rn‖
2

‖r′n‖
2

=
1 − cos2 θn

̺2
n − 2̺n cos θn + 1

(7)

= 1 −
(̺n − cos θn)2

(̺n − cos θn)2 + sin2 θn

(8)

=
sin2 θn

(̺n − cos θn)2 + sin2 θn

(9)
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=
sin2 θn

̺2
n − 2̺n cos θn + 1

.(10)

From these relations, we immediately obtain

Theorem 2.1. Suppose that the limit limn→∞ θn = θ exists.

1. If limn→∞ ̺n = 0 then limn→∞ αn = 1.
2. If limn→∞ ̺n = 1 and θ 6= 0, π then limn→∞ αn = 1/2.
3. If limn→∞ ̺n = ∞ then limn→∞ αn = 0.

This theorem shows that the hybrid procedure asymptotically selects the
best method among the two.

Let us now consider the convergence behavior of ‖rn‖/‖r
′
n‖. From (10),

we immediately have

Theorem 2.2. If the limits limn→∞ ̺n = ̺ and limn→∞ θn = θ exist

and ̺2 − 2̺ cos θ + 1 6= 0, then

lim
n→∞

‖rn‖
2

‖r′n‖
2

=
sin2 θ

̺2 − 2̺ cos θ + 1
≤ 1.

R e m a r k 1. Obviously if ̺ ≤ 1, we also have limn→∞ ‖rn‖
2/‖r′′n‖

2 ≤ 1.
Thus limn→∞ ‖rn‖/min(‖r′n‖, ‖r

′′
n‖) exists and is not greater than 1.

Similar results can be obtained by considering the ratio ‖rn‖
2/‖r′′n‖

2.
It must also be noticed that ‖rn‖

2/‖r′n‖
2 tends to 1 if and only if ̺ =

cos θ. This result comes out directly from (8) and we also get

Theorem 2.3. A necessary and sufficient condition for the existence of

an N such that

0 ≤ ‖rn‖
2/‖r′n‖

2 < 1 for all n ≥ N

is that (r′n − r′′n, r′n) 6= 0 for all n ≥ N .

P r o o f. Suppose that (r′n − r′′n, r′n) 6= 0 for all n ≥ N . Thus we have

̺n − cos θn =
‖r′n‖

‖r′′n‖
−

(r′n, r′′n)

‖r′n‖‖r
′′
n‖

=
(r′n, r′n − r′′n)

‖r′n‖‖r
′′
n‖

6= 0

and, from (8), it follows that ‖rn‖
2/‖r′n‖

2 < 1. The reverse implication is
proved similarly.

Let us now study some cases where (rn) converges to zero faster than
(r′n) and (r′′n). From (9), we have

Theorem 2.4. If there are ̺ and N such that 0 ≤ ̺n ≤ ̺ < 1 for all

n ≥ N , then a necessary and sufficient condition for

lim
n→∞

‖rn‖/‖r
′
n‖ = 0

to hold is that (θn) tends to 0 or π.
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P r o o f. First let us prove the sufficiency. Suppose that (θn) tends to 0
or π. Thus, since ̺n ≤ ̺ < 1, from (9) we have limn→∞ ‖rn‖/‖r

′
n‖ = 0.

To prove the necessity, suppose that limn→∞ ‖rn‖/‖r
′
n‖ = 0. The con-

dition ̺n ≤ ̺ < 1 implies that sin θn tends to 0, which ends the proof.

R e m a r k 2. Since ̺n < 1 we have ‖r′n‖ < ‖r′′n‖ for all n ≥ N and so

lim
n→∞

‖rn‖/min(‖r′n‖, ‖r
′′
n‖) = 0.

Let us now study the case where (̺n) tends to 1. From (10), we first
have

Theorem 2.5. If limn→∞ ̺n = 1, then a sufficient condition for

lim
n→∞

‖rn‖/‖r
′
n‖ = 0

to hold is that (θn) tends to π.

R e m a r k 3. Since limn→∞ ̺n = 1, it follows that

lim
n→∞

‖rn‖/min(‖r′n‖, ‖r
′′
n‖) = 0.

Another result in the case where (̺n) tends to 1 is given by

Theorem 2.6. If ‖r′n‖/‖r
′′
n‖ = 1 + an with limn→∞ an = 0, then a

sufficient condition for

lim
n→∞

‖rn‖/‖r
′
n‖ = 0

to hold is that θn = o(an).

P r o o f. We have

cos θn = 1 − θ2
n/2 + O(θ4

n), sin θn = θn + O(θ3
n).

Replacing in formula (10), we have

‖rn‖

‖r′n‖
=

sin2 θn

̺2
n − 2̺n cos θn + 1

=
(θn(1 + O(θ2

n)))2

(1 + an)2 − 2(1 + an)(1 − θ2
n/2 + O(θ4

n)) + 1

=
θ2

n(1 + O(θ2
n))

a2
n + θ2

n + anθ2
n + (1 + an)O(θ4

n)

=
1 + O(θ2

n)

(an/θn)2 + 1 + an + (1 + an)O(θ2
n)

and the result follows.

R e m a r k 4. Since limn→∞ ̺n = 1, the conclusion of Remark 3 still
holds.
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Another presentation consists in considering the angle ϑn between Zr′n
and Zpn. From (6) we have ‖rn‖

2 = ‖r′n‖
2 sin2 ϑn. Directly from this

equation we obtain

Theorem 2.7. If there exists ϑ 6= π/2 such that limn→∞ ϑn = ϑ then

limn→∞ ‖rn‖/‖r
′
n‖ = |sin ϑ| < 1.

Also, we have

Theorem 2.8. limn→∞ ‖rn‖/‖r
′
n‖ = 0 if and only if (ϑn) tends to 0

or π.

These results are simpler than the preceding ones, in particular those of
Theorems 2.2–2.4.

R e m a r k 5. Similarly, if we denote by ϕn the angle between Zr′′n and
Zpn, we have ‖rn‖

2 = ‖r′′n‖
2 sin2 ϕn. Obviously θn = ϕn − ϑn.

2.2. Geometric behavior of the hybrid procedure. A sphere in R
m with

respect to the G-norm will be denoted by

ΥG(q, r) = {y ∈ R
m : ‖y − q‖G = r}.

We have the following properties:

Property 1. rn ∈ ΥG(r′n/2, ‖r′n‖G/2) ∩ ΥG (r′′n/2, ‖r′′n‖G/2).

P r o o f. By definition, we have (rn, rn) = (rn, r′n) = (rn, r′′n). Computing
‖rn − r′n/2‖2 we get

‖rn − r′n/2‖2 = ‖rn‖
2 − (rn, r′n) + 1

4‖r
′
n‖

2 = 1
4‖r

′
n‖

2.

In the same way, we can prove that ‖rn − r′′n/2‖2 = 1
4‖r

′′
n‖

2 and the result
follows.

Let us denote by en = x̃−xn, e′n = x̃−x′
n, e′′n = x̃−x′′

n the error vectors
corresponding respectively to xn, x′

n, x′′
n. Using the relation rn = Aen and

the preceding property we have

Property 2.

en ∈ ΥAT GA(e′n/2, ‖e′n‖AT GA/2) ∩ ΥAT GA(e′′n/2, ‖e′′n‖AT GA/2).

The hybrid procedure is a projection method because there exists a ma-
trix ℘n ∈ R

m×m such that

rn = ℘nr′n = ℘nr′′n with ℘n = I −
pnpT

nG

pT
nGpn

.

It is easy to see that ℘2
n = ℘n and (G℘n)T = G℘n. So ℘n is a G-orthogonal

projection. By definition of ℘n we get

℘nv = v if v ⊥G pn,

℘nv = 0 if v ∈ span{pn}.
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The above results can be considered as a generalization of the results given
in [8].

3. Applications. It seems quite difficult to obtain more theoretical
results on the convergence of the hybrid procedure in the general case. So,
(r′n) being an arbitrary sequence of residual vectors, we shall assume that
we are in one of the following particular cases:

(i) r′′n = Brn−1,
(ii) r′′n = Br′n.

Such a situation arises, for example, if we consider a splitting of the
matrix A,

A = M − N,

and if x′′
n is obtained from y (equal to xn−1 or x′

n) by

x′′
n = M−1Ny + M−1b.

In this case the associated residual has the form

r′′n = b − Ax′′
n = b − A(M−1Ny + M−1b)

= b − (M − N)(M−1Ny + M−1b) = NM−1(b − Ay).

Thus we have B = NM−1 with y = xn−1 (case (i)) and y = x′
n−1 (case (ii)).

It must be noticed that B = I − AM−1. This situation also holds if B =
I − AC with C an arbitrary matrix. In this case, we have

xn = αnx′
n + (1 − αn)(y + C(b − Ay)).

(We are indebted to one of the referees for this remark.)

3.1. Case (i). Let rn be computed by the hybrid procedure from r′′n =
Brn−1 and r′n. We have

rn = αnr′n + (1 − αn)Brn−1

and we get

Lemma 3.1. Let r0 = r′0. Then, for all n ≥ 1,

H1(n) rn =

n∑

i=0

a
(n)
i

Bn−ir′i

with

H2(n)

n∑

i=0

a
(n)
i

= 1.

P r o o f. a
(0)
0 = 1 and so H1(0) and H2(0) are true. Suppose that

H1(n − 1) and H2(n−1) hold. From the definition of rn and from H1(n−1),
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we get

rn = αnr′n + (1 − αn)Brn−1 = αnr′n + (1 − αn)B
n−1∑

i=0

a
(n−1)
i

Bn−1−ir′i

= αnr′n +

n−1∑

i=0

(1 − αn)a
(n−1)
i

Bn−ir′i =

n∑

i=0

a
(n)
i

Bn−ir′i,

where the a
(n)
i

’s are given by

a
(n)
i

= (1 − αn)a
(n−1)
i

, i = 0, . . . , n − 1,

a(n)
n = αn.

Thus H1(n) is true with H2(n) obviously satisfied.

R e m a r k 6. When r′n is computed by a polynomial method of the form
r′n = Pn(B)r′0 then rn = Qn(B)r′0 with Qn given by Qn(t) = αnPn(t) +
(1 − αn)tQn−1(t).

Let us now prove other results. We have

Theorem 3.2. Let γ be an eigenvector of B. If rn = cnγ + an with

lim
n→∞

(γ, r′n)/‖r′n‖ = ‖γ‖ and lim
n→∞

‖an‖/cn = 0

then limn→∞ ‖rn‖/‖r
′
n‖ = 0.

P r o o f. Let θn be the angle between ZBrn−1 and Zr′n. We have

(Brn−1, r
′
n)2 = c2

n−1λ
2(γ, r′n)2 + (Ban−1, r

′
n)2 + 2cn−1λ(γ, r′n)(Ban−1, r

′
n),

‖Brn−1‖
2 = c2

n−1λ
2‖γ‖2 + ‖Ban−1‖

2 + 2cn−1λ(γ,Ban−1),

where λ is the eigenvalue of B corresponding to γ. Thus

lim
n→∞

cos2 θn = lim
n→∞

(Brn−1, r
′
n)2

‖Brn−1‖2‖r′n‖
2

= lim
n→∞




λ2 (γ, r′n)2

‖r′n‖
2

+
(Ban−1, r

′
n)2

c2
n−1‖r

′
n‖

2
+ 2λ

(γ, r′n)(Ban−1, r
′
n)

cn−1‖r′n‖
2

λ2‖γ‖2 +
‖Ban−1‖

2

c2
n−1

+ 2λ
(γ, an−1)

cn−1




= 1

and the result follows from Theorem 2.4.

From the minimization property of rn we have

‖rn‖ ≤ ‖Brn−1‖ ≤ ‖B‖‖rn−1‖

and thus ‖rn‖ ≤ ‖rn−1‖ if ‖B‖ ≤ 1.
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In particular, consider a splitting A = M −N of the matrix A. Premul-
tiplying the system (1) from the right by M−1 we get a new system of the
form

A(M)x = b(M)

with
B(M) = M−1N, A(M) = I − B(M), b(M) = M−1b.

Applying the method described above to this new system, we get

‖rn‖ ≤ ‖B(M)‖‖rn−1‖.

Thus, a good choice of B(M) is equivalent to a good choice of the precondi-
tioner M from the right-hand side.

When B = I, the method is called the Minimal Residual Smoothing

(MRS) algorithm. It was introduced in [6, 7] and applied to some well
known methods. For more details, see [2, 9–12].

We now apply it to an error-minimization method [4]. Set e′n = x̃ − x′
n

and en = x̃ − xn. Let ϕ be any norm in R
m. For any x ∈ R

m we denote by
z(x) a vector such that

(z(x), x) = ϕ(x).

This is called a decomposition of the norm ϕ. Such decompositions were
introduced by Gastinel [3] for the case of the l1-norm.

Let x′
0 be a given vector. The Transformed Norm Decomposition Method

(TNDE) [4] is defined by

r′0 = b − Ax′
0, p′0 = AT z0,

and for n = 0, 1, . . . ,

x′
n+1 = x′

n − βnp′n, r′n+1 = r′n + βnAp′n,

p′n+1 = AT zn+1 +

n∑

i=0

γ
(i)
n+1p

′
i,

where zi is such that (zi, ri) = ϕ(ri). The coefficients βn and γ
(i)
n+1 are given

by

βn =
(p′n, e′n)

(p′n, p′n)
= −

ϕ(r′n)

(p′n, p′n)

and

γ
(i)
n+1 = −

(p′
i
, AT zn+1)

(p′
i
, p′

i
)

, i = 0, . . . , n.

The sequence (e′n = x̃ − x′
n) has the following properties:

1. e′n ∈ Vn = e′0 + span{p′0, . . . , p
′
n},

2. Vn−1 ⊂ Vn,
3. ‖e′n‖ = mine∈Vn

‖e‖,
4. ‖e′n‖ ≤ ‖e′n−1‖.
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If the MRS is applied to the TNDE, that is, to the sequence (r′n) defined
above with r0 = r′0, then we have

Theorem 3.3. If αn ∈ ]0, 1[ then ‖en‖ ≤ ‖en−1‖.

P r o o f. We have

en−1 = αn−1e
′
n−1 + (1 − αn−1)en−2.

It follows that en−1 =
∑n−1

i=1 a
(n−1)
i

e′
i
∈ Vn−1 for all n. Thus, from prop-

erty 3,

‖e′n−1‖ ≤ ‖en−1‖.

Using property 4, we get

‖en‖ ≤ αn‖e
′
n‖ + (1 − αn)‖en−1‖ ≤ αn‖e

′
n−1‖ + (1 − αn)‖en−1‖

≤ αn‖en−1‖ + (1 − αn)‖en−1‖ = ‖en−1‖

and the result follows.

3.2. Case (ii). Suppose now that rn is given by

rn = αnr′n + (1 − αn)Br′n

with B = I − AM−1. Then rn can be written as

rn = r′n −
(AM−1r′n, r′n)

(AM−1r′n, AM−1r′n)
AM−1r′n.

R e m a r k 7. If r′n = rn−1 and M = I, then the hybrid procedure is
identical to the Minimal Residual Method.

Definition 1. Consider two vector sequences (un), (vn) ∈ R
m such

that limn→∞ un = u and limn→∞ vn = v. We say that (un) converges with

the same speed as (vn) if there exists N such that for all n ≥ N there are
Mn ∈ R

m×m and an ∈ R
m with ‖an‖ ≤ ε such that

• vn+1 = Mnvn,
• un+1 = Mnun + an.

Lemma 3.4. Suppose that there exists N such that for all n ≥ N , there

is Mn ∈ R
m×m such that r′n+1 = Mnr′n and AM−1Mn = MnAM−1. If

limn→∞ αn = α exists and if there is K such that ‖Mn‖ < K for all n, then

(rn) converges with the same speed as (r′n).

P r o o f. If (αn) converges, then there is a sequence (εn) with limn→∞ εn

= 0 such that αn+1 = αn − εn for all n. Setting an = εnAM−1Mnr′n, we
get from the definition

rn+1 =r′n+1 − (1 − αn+1)AM−1r′n+1 =Mnr′n − (1 − αn + εn)AM−1Mnr′n

=Mn(r′n − (1 − αn)AM−1r′n) + εnAM−1Mnr′n = Mnrn + an.

Obviously limn→∞ an = 0 and the result follows.
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We now assume that r′n = cnγ + an, where cn ∈ R, an ∈ R
m, and that

γ is an eigenvector of B. In this case we get

Lemma 3.5. Let γ be an eigenvector of B. If r′n = cnγ + an, then there

are K ∈ R and Mn ∈ R
m such that for all n, ‖Mn‖ ≤ K and rn = Mnan.

P r o o f. We know that

rn = ℘nr′n = cn℘nγ + ℘nan

with

℘n = I − pnpT

nG/(pT

n Gpn),

where pn = AM−1r′n. Premultiplying pn by ℘n we get

0 = ℘npn = (1 − λ)cn℘nγ + ℘nAM−1an,

where λ is the eigenvalue of B corresponding to γ. Thus, since A is assumed
to be regular,

cn℘nγ = −
1

1 − λ
℘nAM−1an.

Setting

Mn = ℘n

(
I −

1

1 − λ
AM−1

)
,

we get rn = Mnan. The matrix ℘n is a G-orthogonal projection and thus
‖℘n‖G = 1. It follows that

‖Mn‖ ≤ 1 +
1

|1 − λ|
‖AM−1‖

which ends the proof.

R e m a r k 8. As a consequence of Lemma 3.5 we have ‖rn‖ = O(‖an‖).

From Theorem 2.8, we easily get

Theorem 3.6. Let γ be an eigenvector of B with the corresponding eigen-

value λ. If r′n = cnγ + an with limn→∞ ‖an‖/cn = 0 then

lim
n→∞

αn = −
λ

1 − λ
and lim

n→∞

‖rn‖

‖r′n‖
= 0.

P r o o f. We have

r′n = cnγ + an, Br′n = λcnγ + Ban, AM−1r′n = (1 − λ)cnγ + AM−1an,

and
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lim
n→∞

αn = −
(Br′n, AM−1r′n)

(AM−1r′n, AM−1r′n)

= lim
n→∞

[
−

λ(1− λ)c2n(γ, γ) + cnλ(γ,AM
−1an)

(1− λ)2c2n(γ, γ) + 2(1− λ)cn(γ,AM−1an) + (AM−1an, AM−1an)

+
(1− λ)cn(Ban, γ) + (Ban, AM

−1an)

(1− λ)2c2n(γ, γ) + 2(1− λ)cn(γ,AM−1an) + (AM−1an, AM−1an)

]

= lim
n→∞


−

λ(1− λ)(γ, γ) + λ
(γ,AM−1an)

cn

(1− λ)2(γ, γ) + 2(1− λ)
(γ,AM−1an)

cn
+
(AM−1an, AM

−1an)

c2n

+

(1− λ)
(Ban, γ)

cn
+
(Ban, AM

−1an)

c2n

(1− λ)2(γ, γ) + 2(1− λ)
(γ,AM−1an)

cn
+
(AM−1an, AM

−1an)

c2n




= −
λ

1 − λ
.

Let θn be the angle between Zr′n and ZAM−1r′n. Replacing r′n and AM−1r′n
by their expressions above, we also get

lim
n→∞

cos2 θn = lim
n→∞

(r′n, AM−1r′n)2

‖r′n‖
2‖AM−1r′n‖

2

= lim
n→∞

[
1

c2n(γ, γ) + 2cn(γ, an) + (an, an)

×
[(1− λ)c2n(γ, γ) + cn(γ,AM

−1an) + (1− λ)cn(an, γ) + (an, AM
−1an)]

2

(1− λ)2c2n(γ, γ) + 2(1− λ)cn(γ,AM−1an) + (AM−1an, AM−1an)

]

= lim
n→∞


 1

(γ, γ) + 2
(γ, an)

cn
+
(an, an)

c2n

×

[

(1− λ)(γ, γ) +
(γ,AM−1an)

cn
+ (1− λ)

(an, γ)

cn
+
(an, AM

−1an)

c2n

]2

(1− λ)2(γ, γ) + 2(1− λ)
(γ,AM−1an)

cn
+
(AM−1an, AM

−1an)

c2n




= 1

and the result follows by Theorem 2.8.

The conditions of Lemma 3.5 and Theorem 3.6 seem difficult to check in
practice. We now give an example where these results can be applied.

Example. Let {λi}
m
i=1 be the eigenvalues of B = I − A with the corre-
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sponding eigenvectors {γi}
m
i=1. Suppose that |λ1| ≥ . . . ≥ |λm| and that the

eigenvectors form a basis of R
m. Let r′n be such that r′n = Br′n−1 and let rn

be obtained by the hybrid procedure from r′n and r′n+1. Let r′0 =
∑m

i=1 diγi.
Thus

r′n =

m∑

i=1

diλ
n

i γi = d1λ
n

1γ1 +

m∑

i=2

diλ
n

i γi.

Setting

cn = d1λ
n

1 , an =

m∑

i=2

diλ
n

i γi,

we get from Remark 8 and Theorem 3.6

Theorem 3.7. If r′n = Br′n−1, r0 = r′0 and if rn is obtained by the hybrid

procedure from r′n and r′n+1, then ‖rn‖ = O(|λ2|
n). Moreover , if |λ2| < |λ1|,

then limn→∞ ‖rn‖/‖r
′
n‖ = 0.

R e m a r k 9. This theorem holds even if |λ2| < 1 < |λ1|.

R e m a r k 10. Since (αn) converges, Lemma 3.4 shows that (rn) con-
verges with the same speed as (r′n). In this case, the iterations will be
stopped when |αn + λ1/(1 − λ1)| ≤ ε, where ε is an arbitrary threshold. Of
course the value of λ1 is usually unknown and this test cannot be used in
practice. Thus the iterations will be stopped when |αn − αn−1| ≤ ε. How-
ever, it must be noticed that, due to a possible stagnation of the method,
this test does not guarantee that the recurrence is close to the limit.

4. Numerical examples. In all the examples we take G = I, M = I,
B = I − A and x0 = 0. The right-hand side is computed in order that
the solution be x̃ = [1, . . . , 1]T . Each figure shows log ‖r′n‖ and log ‖rn‖
as a function of the number n of iterations and the lowest curve always
corresponds to the hybrid procedure.

Let {λi}
m
i=1 be the set of eigenvalues of B. The elements of the matrix

A ∈ R
100×100 were randomly chosen in [0, 1]. The values of ‖B‖, |λi| (i =

1, . . . , 100) were computed with Matlab with a precision of 10−20.

4.1. Case (i). Let r′n be obtained by the norm decomposition method
of Gastinel [3] with ϕ1(r) =

∑m

i=1 |ri|. This method is as follows: for
n = 0, 1, . . . ,

x′
n+1 = x′

n − α′
nAT zn, r′n+1 = r′n + α′

nAAT zn,

where zn = sgn(r′n). Thus, (zn, r′n) = ϕ1(r
′
n) and

α′
n = −

ϕ1(r
′
n)

(AT zn, AT zn)
.
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Let rn be computed by the hybrid procedure from r′n and Brn−1.

Example 1 Example 2 Example 3

‖B‖ 0.998605 0.663839 1.485374
|λ1| 0.030418 0.661562 0.078104
|λ2| 0.030372 0.040093 0.046249

For each example |λ2| < |λ1| and thus condition 2 of Theorem 3.2 is satisfied.
We did not check condition 1 but the numerical results show that, in this
case, the convergence of Gastinel’s method has been accelerated.
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4.2. Case (ii). Let r′n be such that r′n = Br′n−1 and let rn be computed
by the hybrid procedure from r′n and r′n+1.

Example 4 Example 5 Example 6

‖B‖ 6.296298 3.273282 6.457731
|λ1| 6.274695 1.158723 0.822448
|λ2| 0.380272 0.099341 0.195185

Let N be the index such that |αN + λ1/(1 − λ1)| ≤ 10−20. We get

Example 4 Example 5 Example 6

N 12 > 35 > 55
log ‖r′N‖ 20.992904
log ‖rN‖ −9.771103
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For each example we have |λ2| < |λ1|. Thus the conditions of Theorem 3.7
are satisfied and we get limn→∞ ‖rn‖/‖r

′
n‖ = 0 even if limn→∞ ‖r′n‖ = ∞

(see Examples 4 and 5). For Example 1 we get, at iteration 12, |α12 +
λ1/(1 − λ1)| ≤ 10−20. Moreover, we also have |αn + λ1/(1 − λ1)| ≤ 10−20

for n ∈ [12, 20], and thus we see that (rn) converges with the same speed
as (r′n). We can also remark that, since the sequence (r′n) diverges, so does
(rn) (from iteration 12) and thus it is better to stop the iterations at n = 12.
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