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ON NEARLY SELFOPTIMIZING STRATEGIES

FOR MULTIARMED BANDIT PROBLEMS

WITH CONTROLLED ARMS

Abstract. Two kinds of strategies for a multiarmed Markov bandit prob-
lem with controlled arms are considered: a strategy with forcing and a
strategy with randomization. The choice of arm and control function in
both cases is based on the current value of the average cost per unit time
functional. Some simulation results are also presented.

1. Introduction. This paper presents allocation rules for the multi-
armed bandit problem with N > 1 arms, the dynamics of which is character-
ized by controlled Markov chains Xj = (Xj

i ), i = 1, 2, . . . ; j = 1, . . . ,N (on
a state space E), whose transition probability operators are parametrized
by an unknown parameter θ0,j ∈ Θ, where Θ is a given compact set.

We assume that at each time t always one of the N arms is played.
The arm that we play is also controlled. In general a control strategy is
a sequence (v0, v1, . . .) of U -valued (U is a given compact set of control
parameters) random variables that are adapted to the σ-field generated by
the observations of the arms.

When at time t the jth (j = 1, . . . ,N) arm is played and the control vt

is used the cost c(xj
t , vt) is incurred, with xj

t denoting the position of the jth
arm at time t. The problem is to find a strategy that minimizes the average
cost per unit time. In what follows we shall restrict the class of admissible
controls to the so-called Markov controls, i.e. controls of the form vt = u(xj

t),
where u : E → U is a measurable function (we write u ∈ B(E,U)), assuming
that at time t the jth arm is played. By the general theory of controlled
Markov processes with average cost per unit time (see [8]) it is known that
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optimal controls are usually Markov, in particular, when we assume an
ergodic condition (1.1) that we formulate below. Given a control vt = u(xj

t)
at time t, the transition operator that describes the evolution of the jth arm
until time t + 1 is of the form P θ0,j

vt
(xj

t , A), where θ0,j is the unknown value
of the parameter corresponding to the arm j.

To indicate the dependence of P θ0,j

vt
(xj

t , A), on the Markov control func-

tion u we shall simply write P θ0,j

u (xj
t , A).

We assume that for j = 1, . . . , N and u ∈ B(E,U) the operator P θ
u (x,A)

is uniformly ergodic, that is, there exists 0 < γ < 1 and a unique invariant
measure πθ

u satisfying

(1.1) sup
θ∈Θ

sup
u∈B(E,U)

sup
x∈E

sup
A∈B(E)

|(P θ
u )n(x,A) − πθ

u(A)| ≤ γn.

Our purpose is to minimize

(1.2) J := lim sup
t→∞

t−1
N

∑

j=1

t−1
∑

i=0

c(xj
i , vi)Sj(i),

where c : E × U → R
+ is a bounded measurable function and

Sj(i) =
{

1 when the jth arm is played at time i,
0 otherwise.

At each time t we choose one of the N arms to be played and then the
control is applied to this arm. Since the transition operators of the arms
depend on the unknown parameter θ0 we cannot determine immediately
the arm and control that guarantee the minimal value of the cost functional
(1.2). Although the dynamics of the arms depends on the unknown param-
eters θ0,j, j = 1, . . . , N , in this paper we do not estimate them directly.
Instead we compare the average per unit time costs for different arms and
controls. To make this approach feasible, we have to adopt from [9] the
assumption that for ε > 0 there exists a finite set ϑ = {u1, . . . , ur(ε)} of
ε-optimal control functions, i.e. a family ϑ such that for all θ ∈ Θ there
exists u ∈ ϑ satisfying

(1.3) Jθ(u) := lim sup
t→∞

t−1
t−1
∑

i=0

Eθc(xi, u(xi)) ≤ λ(θ) + ε

with

λ(θ) = inf
u∈B(E,U)

Jθ(u).

Notice that by (1.1), we clearly have

Jθ(u) =
∫

E

c(x, u(x)) πθ
u(dx).
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Sufficient conditions under which there exists a finite set of ε-optimal
controls can be found in [9].

The multiarmed bandit processes with controlled arms are called some-
times superprocesses and were studied so far with discounted cost criterion
only (see [5], [7] and the references therein). In this paper the superprocesses
are considered with long run average cost (1.2). The approach based on the
existence of ε-optimal functions introduced above seems to be new. The
multiarmed bandit problems with noncontrolled arms and long run average
cost were thoroughly investigated in the series of papers [1]–[4].

The present paper consists of 5 sections. In Section 2 a nearly optimal
strategy with constant decision horizon is considered. The next Section 3
is devoted to the construction of an optimal strategy with increasing deci-
sion horizon. In Section 4 a nearly optimal strategy with randomization is
studied. Finally, in Section 5 some simulation results are presented.

For the construction of our strategy, it is important to find, for a given
ε > 0, a decision time horizon κ > 0 which satisfies the inequality

(1.4) sup
θ∈Θ

sup
u∈B(E,U)

sup
x∈E

∣

∣

∣
κ−1Eθ

x

{

κ−1
∑

i=0

c(xθj

i , u(xθj

i ))
}

−
∫

E

c(x, u(x)) πθ
u(dx)

∣

∣

∣
≤ ε.

We have

Lemma 1.1. Assume that (1.1) holds. Then the inequality (1.4) is satis-

fied for

(1.5) κ >
2‖c‖

1 − γ
·

1

ε
.

P r o o f. From (1.1) we have

sup
θ∈Θ

sup
u∈B(E,U)

sup
x∈E

∣

∣

∣
Eθ

x{c(xi, u(xi))} −
∫

E

c(x, u(x)) πθ
u(dx)

∣

∣

∣
≤ 2‖c‖γi.

Then

sup
θ∈Θ

sup
u∈B(E,U)

sup
x∈E

∣

∣

∣
κ−1

{

κ−1
∑

i=0

Eθ
xc(xθj

i , u(xθj

i ))
}

−
∫

E

c(x, u(x)) πθ
u(dx)

∣

∣

∣

≤ sup
θ∈Θ

sup
u∈B(E,U)

sup
x∈E

{

κ−1
κ−1
∑

i=0

∣

∣

∣
Eθ

xc(xθj

i , u(xθj

i )) −
∫

E

c(x, u(x)) πθ
u(dx)

∣

∣

∣

}

≤ sup
θ∈Θ

sup
u∈B(E,U)

sup
x∈E

{

κ−1
κ−1
∑

i=0

2‖c‖γi
}

≤
2‖c‖

κ

κ−1
∑

i=0

γi ≤
2‖c‖

κ
·

1

1 − γ
.
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Therefore for κ satisfying (1.5) the inequality (1.4) holds.

In order to illustrate the problem we consider the following

Example 1. Assume (xj
i ) satisfies the equation

xj
i+1 = f(xj

i , vi, θ
j) + g(xj

i )wi, xj
0 = x,

where f is a bounded continuous vector function, g is a square matrix which
has a bounded inverse and wi is a sequence of i.i.d. Gaussian vectors with
expected value 0 and covariance matrix I. Then

P θj

u (xj
i , A) := P{f(xj

i , u(xj
i ), θj) + g(xj

i )wi ∈ A}

= N(f(xj
i , u(xj

i ), θj), g(xj
i )g∗(xj

i )).

In particular, in the one-dimensional case the transition probability function
has the form

P θj

u (x,A) :=
1

√

2πg2(xj
i )

∫

A

e−(y−f(xj

i
,u(xj

i
),θj))2/(2g2(xj

i
))dy.

It can be shown (see [9]) that the transition operators P θj

u defined above
satisfy (1.1), and γ can be calculated explicitly. Moreover, for every ε > 0
there exists a finite set of ε-optimal control functions (Lemma 2 of [9]).

Acknowledgments. The author would like to thank Prof.  L. Stettner
for helpful comments and encouragement. The paper is a part of the au-
thor’s Ph.D. thesis written under the supervision of Prof.  L. Stettner at the
Technical University of Warsaw.

2. Construction of an ε-optimal strategy with forcing and con-

stant time decision horizon. In this section we shall consider a strategy
under which at certain times, called forcing times, successively each arm is
played and each control of the class ϑ(ε) with fixed ε > 0 is applied.

Denote by F the set of all forcing times to be defined. It is characterized
by a sequence ai, i = 0, 1, . . . , such that ai+1 + ai ≥ Nr(ε)κ, with a0 = 0.

At time ai we choose the first arm and apply the control function u1

for κ consecutive moments of time. Then, at time ai + κ we play again
the first arm but apply the control function u2 for the next κ moments of
time. We continue to play the first arm applying successively the controls
(u3, . . . , ur(ε)) for consecutive κ moments of time. At time ai + r(ε)κ, we
start to play a second arm and test successively for κ moments of time
each of the control functions of the class ϑ(ε). Then we test in a similar
way all the remaining arms. At time ai + Nr(ε)κ − 1 we finish the forc-
ing.
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Therefore

F = {0, 1, . . . , Nr(ε)κ − 1, a1, a1 + 1, . . . , a1 + Nr(ε)κ − 1, . . .

. . . , ai, ai + 1, . . . , ai + Nr(ε)κ − 1, . . . (i = 1, 2, . . .)}.

We choose ai in such a way that for F we have

lim sup
t→∞

t−1
t−1
∑

i=0

χF (i) = 0.

Let

F k
j = the set of forcing moments when we play the jth arm and

the control function uk,

Fj = the set of forcing moments when we play the jth arm.

It is clear that Fj ∩ Fi = ∅ for i 6= j, F =
⋃N

j=1 Fj and Fj =
⋃r(ε)

k=1 F k
j .

Let ∆ = r(ε)κ. We construct our nearly optimal strategy in the following
way.

A. Strategy in the forcing intervals. For the jth arm, we use the control
function ui+1 in the time interval [(j−1)∆+ iκ, (j−1)∆+(i+1)κ−1] (j =
1, . . . , N, i = 1, . . . , r(ε)).

The forcing is finished at time N∆ − 1. At time a1 we start again the
forcing and in the intervals [a1, a1 + κ− 1], . . . , [a1 + iκ, a1 + (i+ 1)κ− 1] we
play the first arm and use the control functions u1, . . . , ui+1, respectively.

At time a1 + ∆ we start to play the second arm and the procedure is
continued until time a1 + N∆ − 1. We proceed in the same way for other
times ai.

B. Strategy outside of the forcing intervals. Let Tj(t) be the number of
times arm j was used up to stage t, and T k

j (t) be the number of times arm
j and the control function uk were used up to stage t. Clearly

t = T1(t) + . . . + TN (t), Tj(t) = T 1
j (t) + . . . + T

r(ε)
j (t).

Let

(2.1) Jk
j (t) := (T k

j (t))−1
t−1
∑

i=0

c(xj
i , uk(xj

i ))Sk
j (i)

be the average cost at time t for the jth arm when the control function uk

is used; here

Sk
j (i) =

{

1 if the jth arm is played and uk is applied,
0 otherwise.
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Let

(2.2) Jj(t) := (Tj(t))−1
t−1
∑

i=0

r(ε)
∑

k=1

c(xj
i , uk(xj

i ))Sk
j (i)

be the average cost for the jth arm.
Outside the forcing set F we use the following decision rule.
Let t be a multiple of κ.
B1. We find j, j = 1, . . . , N , and k, k = 1, . . . , r(ε), such that

Jk
j (t) = min

i=1,...,N
min

l=1,...,r(ε)
J l

i (t).

B2. If Jk
j (t) = J l

i (t) and j 6= i or k 6= l then we choose the jth arm and
the control function uk when j < i; if j = i we choose the jth arm and the
control function uk provided k < l. For the next κ moments of time we play
the jth arm and use the control function uk.

The next decision is made at time t + κ. If t + κ ∈ F we apply step A;
if t + κ 6∈ F we repeat step B of our strategy.

Notice that under the above notation the average cost at time t is of the
form

(2.3) J(t) := t−1
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

c(xj
i , uk(xj

i ))Sk
j (i).

We define

J := lim sup
t→∞

t−1J(t).

In what follows we shall need the following sequence of lemmas.

Lemma 2.1. Let ci, i = 0, 1, . . . , be a bounded sequence of numbers.

Assume that the nonnegative integers N are partitioned into N disjoint in-

finite subsets Φ(j), j = 1, . . . , N. If , for a given ε > 0, there exist numbers

gt
j , j = 1, . . . , N, t = 0, 1, 2, such that

(2.4) lim sup
t→∞

∣

∣

∣

(

t−1
∑

i=0

χΦ(j)(i)
)−1

t−1
∑

i=0

ciχΦ(j)(i) − gt
j

∣

∣

∣
≤ ε

for every j ∈ {1, . . . , N} then

(2.5) lim sup
t→∞

∣

∣

∣
t−1

t−1
∑

i=0

ci −
N

∑

j=1

gt
jt

−1
t−1
∑

i=0

χΦ(j)(i)
∣

∣

∣
≤ ε.

P r o o f. Clearly

(2.6) t−1
t−1
∑

i=0

ci =
N

∑

j=1

(

t−1
∑

i=0

χΦ(j)(i)
)−1( t−1

∑

i=0

ciχΦ(j)(i)
)

t−1
t−1
∑

i=0

χΦ(j)(i).
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By (2.4) for every ε0 > 0 there exists t0 such that for t ≥ t0 and j = 1, . . . ,N
we have

(2.7)
∣

∣

∣

(

t−1
∑

i=0

χΦ(j)(i)
)(

t−1
∑

i=0

ciχΦ(j)(i)
)

− gt
j

∣

∣

∣
≤ ε + ε0.

Then for t ≥ t0, from (2.6) and (2.7) we obtain

lim sup
t→∞

∣

∣

∣
t−1

t−1
∑

i=0

ci −
N

∑

j=1

gt
jt

−1
t−1
∑

i=0

χΦ(j)(i)
∣

∣

∣

≤ lim sup
t→∞

N
∑

j=1

∣

∣

∣

(

t−1
∑

i=0

χΦ(j)(i)

)−1 t−1
∑

i=0

ciχΦ(j)(i) − gt
j

∣

∣

∣
t−1

t−1
∑

i=0

χΦ(j)(i)

≤ (ε + ε0) lim sup
t→∞

t−1
N

∑

j=1

t−1
∑

i=0

χΦ(j)(i) ≤ ε + ε0.

Since ε0 can be chosen arbitrarily small, we obtain (2.5).

R e m a r k 2.1. From (2.5), under (2.4) in particular we have

(2.8)
∣

∣

∣
lim sup

t→∞
t−1

t−1
∑

i=0

ci − lim sup
t→∞

N
∑

j=1

gt
jt

−1
t−1
∑

i=0

χΦ(j)(i)
∣

∣

∣
≤ ε.

Lemma 2.2. Let ci, i = 0, 1, . . . , be a bounded sequence of numbers.

Then

lim sup
t→∞

t−1
t−1
∑

i=0

ci = lim sup
t→∞

(tκ)−1
t−1
∑

i=0

(i+1)κ−1
∑

k=iκ

ck.

P r o o f. The right hand side of the above equation satisfies

lim sup
t→∞

(tκ)−1
t−1
∑

i=0

(i+1)κ−1
∑

k=iκ

ck = lim sup
t→∞

t−1
tκ−1
∑

i=0

ci.

Hence

lim sup
t→∞

t−1
t−1
∑

i=0

ci ≥ lim sup
t→∞

(tκ)−1
t−1
∑

i=0

(i+1)κ−1
∑

k=iκ

ck.

We can select tk → ∞ such that

lim sup
t→∞

t−1
t−1
∑

i=0

ci = lim
k→∞

t−1
k

tk−1
∑

i=0

ci.



456 E. Drabik

Let nk be such that tk ∈ [nkκ, (nk + 1)κ[. Then we have

1

nkκ

nkκ−1
∑

i=0

ci =
1

nkκ

(

tk−1
∑

i=0

ci −
tk−1
∑

i=nkκ

ci

)

=
tk

nkκ
·

1

tk

(

tk−1
∑

i=0

ci −
tk−1
∑

i=nkκ

ci

)

→ lim
k→∞

tk−1
∑

i=0

ci.

The above convergence follows from the facts that

(a) tk/(nkκ) → 1 as tk → ∞ and

(b) the second term of the sum has at most k terms and it does not affect
the whole sum for sufficiently large t, because ci’s are bounded. Therefore

lim
k→∞

1

nkκ

nkκ−1
∑

i=0

ci = lim sup
t→∞

t−1
∑

i=0

ci = lim sup
t→∞

tκ−1
∑

i=0

ci,

which completes the proof.

Lemma 2.3. Let (xi) be a controlled Markov chain with controls vl. Then

Zt :=
tκ−1
∑

i=0

c(xi, vi) −
t−1
∑

i=0

E
{

(i+1)κ−1
∑

l=iκ

c(xl, vl)
∣

∣

∣
Fiκ

}

is a martingale with respect to the σ-field Fiκ = σ{x0, . . . , xtκ} and (1/t)Zt

→ 0 as t → ∞ P -a.e.

P r o o f. In order to prove that (1/t)Zt → 0 we use the law of large
numbers for martingales ([6], Vol. II, VII, Th. 2). We show first that Zt

is a martingale and that the assumptions of the law of large numbers for
martingales are satisfied. Let Zt =

∑t−1
i=0 Xi with

Xi =

(i+1)κ−1
∑

l=iκ

c(xl, vl) − E
{

(i+1)κ−1
∑

l=iκ

c(xl, vl)
∣

∣

∣
Fiκ

}

.

We have

E{Xi | Fiκ} = E
{

(i+1)κ−1
∑

l=iκ

c(xl, vl) − E
{

(i+1)κ−1
∑

l=iκ

c(xl, vl)
∣

∣

∣
Fiκ

} ∣

∣

∣
Fiκ

}

= E
{

(i+1)κ−1
∑

l=iκ

c(xl, vl)
∣

∣

∣
Fiκ

}

−E
{{

(i+1)κ−1
∑

l=iκ

c(xl, vl)
∣

∣

∣
Fiκ

}
∣

∣

∣
Fiκ

}

= 0.
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Therefore Zt is a martingale. Since

|Xi| =
∣

∣

∣

(i+1)κ−1
∑

l=iκ

c(xl, vl) − E
{

(i+1)κ−1
∑

l=iκ

c(xl, vl)
∣

∣

∣
Fiκ

}∣

∣

∣

≤
∣

∣

∣

(i+1)κ−1
∑

l=iκ

c(xl, vl)
∣

∣

∣
+

∣

∣

∣
E

{

(i+1)κ−1
∑

l=iκ

c(xl, vl)
∣

∣

∣
Fiκ

}∣

∣

∣
≤ κ‖c‖ + κ‖c‖

= 2κ‖c‖,

we have supi |Xi| ≤ 2κ‖c‖ and
∑∞

i=0 E2{Xi}/i
2 < ∞. Consequently, the

assumptions of the law for large numbers of martingales are satisfied and
(1/t)Zt → 0 as t → ∞ P -a.e.

From Lemma 2.3 we immediately have

Corollary 2.1. For k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . ,N} we have

lim sup
t→∞

(T k
j (tκ))−1

{

tκ−1
∑

i=0

c(xj
i , uk(xj

i ))Sk
j (i)

−
t−1
∑

i=0

E
{

(i+1)κ−1
∑

l=iκ

c(xj
l , uk(xj

l ))Sk
j (iκ)

∣

∣

∣
Fiκ

}}

= 0 P-a.e.

By the choice of the decision horizon κ (see (1.4)) we get

Proposition 2.1. There exists C ⊂ Ω such that P (C) = 0 and for

ω ∈ Ω \ C, k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . ,N} we have

(2.9) lim sup
t→∞

|Jk
j (t)(ω) − Jθ0,j

(uk)| ≤ ε.

P r o o f. To simplify notations set Jk
j (t)(ω) =: Jk

j (t) and πθj

uk
=: πj

k.
Notice first that by Lemma 2.2,

lim sup
t→∞

Jk
j (t) = lim sup

t→∞
Jk

j (tκ).

By Corollary 2.1 and the definition of κ (see (1.4)) for ω ∈ Ω \ C, where
P (C) = 0, we have

lim sup
t→∞

∣

∣

∣
Jk

j (tκ) −
∫

E

c(x, u(x)) πj
k(dx)

∣

∣

∣
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≤ lim sup
t→∞

∣

∣

∣
Jk

j (tκ) − (T k
j (tκ))−1

t−1
∑

i=0

E
{

(i+1)κ−1
∑

l=iκ

c(xj
l , uk(xj

l ))Sk
j (l)

∣

∣

∣
Fiκ

}∣

∣

∣

+ lim sup
t→∞

∣

∣

∣
(T k

j (tκ))−1
t−1
∑

i=0

E
{

(i+1)κ−1
∑

l=iκ

c(xj
l , uk(xj

l ))Sk
j (l)

∣

∣

∣
Fiκ

}

− (T k
j (tκ))−1

tκ−1
∑

i=0

Sk
j (i)
∫

E

c(x, u(x)) πj
k(dx)

∣

∣

∣

≤ lim sup
t→∞

∣

∣

∣
(T k

j (tκ))−1
t−1
∑

i=0

Sk
j (iκ)E

{

(i+1)κ−1
∑

l=iκ

c(xj
l , uk(xj

l ))Sk
j (l)

∣

∣

∣
Fiκ

}

−κ
∫

E

c(x, u(x)) πj
k(dx)

∣

∣

∣
≤ ε.

Since Jθ0,j

(uk) =
∫

E
c(x, u(x)) πj

k(dx) we obtain (2.9) and the proof of
Proposition 2.1 is complete.

R e m a r k 2.2. It immediately follows from (2.9) that lim supt→∞ Jk
j ≤

Jθ0,j

(uk) + ε P -a.e.

Combining Lemma 2.1 and Proposition 2.1 we obtain

Corollary 2.2. For ω ∈ Ω \C, with C as in Proposition 2.1, and every

k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . , N} we have

(2.10) lim sup
t→∞

∣

∣

∣
Jj(t) −

r(ε)
∑

k=1

Jθ0,j

(uk)(Tj(t))−1(T k
j (t))

∣

∣

∣
≤ ε

and consequently

(2.11)
∣

∣

∣
lim sup

t→∞
Jj(t) − lim sup

t→∞

r(ε)
∑

k=1

Jθ0,j

(uk)(Tj(t))−1(T k
j (t))

∣

∣

∣
≤ ε.

P r o o f. Observe that by Proposition 2.1 the assumptions of Lemma 2.1
are satisfied, that is,

lim sup
t→∞

∣

∣

∣
(T k

j (t))−1
t−1
∑

i=0

c(xi, vi)S
k
j (i) − Jθ0,j

(uk)
∣

∣

∣
≤ ε.

Therefore from (2.5) we have

lim sup
t→∞

∣

∣

∣
(Tj(t))−1

t−1
∑

i=0

c(xi, vi)S
k
j (i) −

r(ε)
∑

k=1

Jθ0,j

(uk)(Tj(t))−1
t−1
∑

i=0

Sk
j (i)

∣

∣

∣
≤ ε.
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Since
∑t−1

i=0 Sk
j (i) = T k

j (t) we obtain (2.10). The inequality (2.11) follows
immediately from (2.10).

Furthermore, we have

Corollary 2.3. For ω ∈ Ω \C, with C as in Proposition 2.1, and every

k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . , N} we have

(2.12) lim sup
t→∞

∣

∣

∣
J(t) −

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)t−1(T k
j (t))

∣

∣

∣
≤ ε

and consequently

(2.13)
∣

∣

∣
lim sup

t→∞
J(t) − lim sup

t→∞

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)t−1(T k
j (t))

∣

∣

∣
≤ ε.

P r o o f. By (2.10) and Lemma 2.1 we obtain

lim sup
t→∞

∣

∣

∣
J(t) −

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)(Tj(t))−1(Tj(t))(T k
j (t))t−1

∣

∣

∣
≤ ε.

Hence we have (2.12) and, as a consequence, (2.13).

We can now formulate the main result of this section.

Theorem 2.1. There exists C ⊂ Ω such that P (C) = 0 and for ω ∈ Ω\C,
k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . , N} we have

lim sup
t→∞

J(t) ≤ min
j=1,...,N

min
k=1,...,r(ε)

Jθ0,j

(uk) + 2ε(2.14)

≤ min
j=1,...,N

λ(θ0,j) + 3ε.

P r o o f. By Corollary 2.3 we have to estimate

lim sup
t→∞

t−1
N

∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)(T k
j (t)).

For this purpose we define

(2.15) Z = {(j, k) ∈ {1, . . . , N} × {1, . . . , r(ε)} :

|Jθ0,j

(uk) − min
l=1,...,N

min
i=1,...,r(ε)

Jθ0,l

(ui)| ≤ 2ε}.

We shall need the following lemma.

Lemma 2.4. If (j, k) 6∈ Z, then with probability 1 there is no sequence

tn, tn → ∞, tn 6∈ F , such that at time tn we select the jth arm and the

control function uk.
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P r o o f. Assume (j, k) 6∈ Z and at time tn, tn → ∞, tn 6∈ F being a
multiple of κ, we select the jth arm, j ∈ {1, . . . ,N}, and the control func-
tion uk. Then Jk

j (tn) ≤ J i
l (tn) for all l ∈ {1, . . . ,N} and i ∈ {1, . . . , r(ε)}.

Letting n → ∞ and by Proposition 2.1 with probability 1 we obtain

−ε + Jθ0,j

(uk) ≤ Jθ0,j

(ui) + ε

for all l ∈ {1, . . . , N} and i ∈ {1, . . . , r(ε)}. Therefore (j, k) ∈ Z, and we
have a contradiction.

We are now in a position to complete the proof of Theorem 2.1. Namely,
from Lemma 2.4 it follows that for each pair (j, k) 6∈ Z the jth arm and the
control function uk are played, with probability 1, at the forcing times only.
On the other hand, we know that the forcing times are Cesàro rare. Denote
by χZ(j, k) the characteristic function of the set Z. Then we have

lim sup
t→∞

t−1
N

∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)(T k
j (t))

= lim sup
t→∞

t−1
N

∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)χZ(j, k)(T k
j (t))

≤ ( min
l=1,...,N

min
i=1,...,r(ε)

Jθ0,l

(ui) + 2ε) lim sup
t→∞

N
∑

j=1

r(ε)
∑

k=1

χZ(j, k)(T k
j (t))t−1

≤ min
l=1,...,N

min
i=1,...,r(ε)

Jθ0,l

(ui) + 2ε ≤ min
l=1,...,N

λ(θ0,j) + 3ε,

which completes the proof.

3. Strategy with forcing and increasing decision horizon. We
now present a strategy with forcing and increasing decision horizon which
enables us to obtain a better accuracy of approximation.

The difference between the strategy considered in Section 2 and the
one presented below consists in the consideration of an increasing decision
horizon. The remaining elements of the strategy are similar.

We start with an auxiliary lemma.

Lemma 3.1. Let ci, i = 0, 1, . . . , be a bounded sequence. Assume that

the set N of nonnegative integers is partitioned into disjoint infinite subsets

Φ(i), i = 1, . . . , N . If for every j ∈ {1, . . . ,N} there exist gt
j , t = 0, 1, . . . ,

such that

(3.1) lim sup
t→∞

∣

∣

∣

(

t−1
∑

i=0

χΦ(j)(i)
)−1

t−1
∑

i=0

ciχΦ(j)(i) − gt
j

∣

∣

∣
= 0
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then

(3.2) lim sup
t→∞

t−1
t−1
∑

i=0

ci = lim sup
t→∞

N
∑

j=1

gt
jt

−1
t−1
∑

i=0

χΦ(j)(i).

P r o o f. We recall formula (2.6):

t−1
t−1
∑

i=0

ci =

N
∑

j=1

(

t−1
∑

i=0

χΦ(j)(i)
)−1

t−1
∑

i=0

ciχΦ(j)(i)t
−1

t−1
∑

i=0

χΦ(j)(i).

By (3.1) for every ε0 > 0 there exists t0 such that for t ≥ t0 and j = 1, . . . ,N
we have

∣

∣

∣

(

t−1
∑

i=0

χΦ(j)(i)
)−1

t−1
∑

i=0

ciχΦ(j)(i) − gt
j

∣

∣

∣
≤ ε0.

Then for t ≥ t0,

lim sup
t→∞

∣

∣

∣
t−1

t−1
∑

i=0

ci −
N

∑

j=1

gt
jt

−1
t−1
∑

i=0

χΦ(j)(i)
∣

∣

∣

≤ lim sup
t→∞

N
∑

j=1

{
∣

∣

∣

(

t−1
∑

i=0

χΦ(j)(i)
)−1

t−1
∑

i=0

ciχΦ(j)(i) − gt
j

∣

∣

∣
t−1

t−1
∑

i=0

χΦ(j)(i)
}

≤ ε0 lim sup
t→∞

t−1
N

∑

j=1

t−1
∑

i=0

χΦ(j)(i) = ε0.

Since ε0 can be chosen arbitrarily small, we obtain (3.2).

By analogy to Section 2 we define a set F ′ of forcing times

F ′ = {0, 1, . . . , Nr(ε)κ, a′
1, a

′
1 + 1, . . . , a′

1 + 2Nr(ε)κ − 1, . . .

. . . , a′
i, a

′
i + 1, . . . , a′

i + 2iNr(ε)κ − 1, . . . (i = 1, 2, . . .)}.

We assume that the sequence a′
i is such that

1) lim supt→∞ t−1
∑t−1

i=0 χF ′(i) = 0,

2) a′
i+1 > a′

i + 2iNr(ε)κ − 1.

The modification of our control strategy consists now in the fact that we
have an increasing decision horizon. First, until a′

1 the changes of arms and
control functions take place every κ units of time, from a′

1 till a′
2 every 2κ

units of time; and inductively from a′
i till a′

i+1 every 2iκ units.

To construct the sequence a′
i let

S(t) = t−1
t−1
∑

i=0

χF ′(i)
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and define a′
i such that

S(a′
1 + 2κNr(ε)) = 1/2, . . . , S(a′

i + 2iκNr(ε)) = 1/2i.

Then a′
i = κNr(ε)2i+1(2i − 1).

We divide the time axis into the Nr(ε) disjoint subsets Φ(k, j), k =
1, . . . , r, j = 1, . . . , N , such that Φ(k, j) = {τ1(k, j), τ2(k, j), . . .} with
τ1(k, j), τ2(k, j), . . . indicating the successive times at which the control func-
tion uk is used and the jth arm is played.

We have

Proposition 3.1. There exists C such that P (C) = 0 and for ω ∈ Ω\C,
k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . , N} we have

lim
t→∞

t−1
t−1
∑

i=0

c(xj
τi(k,j), uk(xj

τi(k,j))) =
∫

E

c(x, uk(x)) πj
k(dx)(3.3)

= Jθ0,j

(uk).

P r o o f. For n = 1, 2, . . . , k = 1, . . . , r(ε) and j = 1, . . . ,N define

d(k, j, n) = inf{i = 1, 2, . . . : τi(k, j) ≥ ai
n}.

By the strong law of large numbers for martingales, for n = 1, 2, . . . , k =
1, 2, . . . , r(ε) and j = 1, . . . , N we have (Lemma 2.3)

(3.4) t−1
t−1
∑

i=0

{

d(k,j,n)+(i+1)2n−1
∑

l=d(k,j,n)+i2n

c(xj
τl(k,j), uk(xj

τl(k,j)))

−E
{

d(k,j,n)+(i+1)2n−1
∑

l=d(k,j,n)+i2n

c(xj
τl(k,j), uk(xj

τl(k,j)))
∣

∣

∣

Fτd(k,j,n)+i2n

}}

→ 0 P -a.e.

Using the uniform ergodicity (1.1) we obtain

(3.5)
∣

∣

∣
E

{

d(k,j,n)+(i+1)2n−1
∑

l=d(k,j,n)+i2n

c(xj
τl(k,j), uk(xj

τl(k,j)))
∣

∣

∣
Fτd(k,j,n)+i2n

}

−2n
∫

c(x, uk(x)) πj
k(dx)

∣

∣

∣
≤ 2‖c‖(1 − γ)−1.

Since c is a bounded function for k = 1, 2, . . . we have (compare to Lemma 2.2
and its proof)

(3.6) lim sup
t→∞

t−1
t−1
∑

i=0

c(xj
τi(k,j), uk(xj

τi(k,j)))
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= lim sup
t→∞

t−1
t−1
∑

i=0

1

2n

{

d(k,j,n)+(i+1)2n−1
∑

l=d(k,j,n)+i2n

c(xj
τl(k,j), uk(xj

τl(k,j)))
}

and also

(3.7) lim inf
t→∞

t−1
t−1
∑

i=0

c(xj
τi(k,j), uk(xj

τi(k,j)))

= lim inf
t→∞

t−1
t−1
∑

i=0

1

2n

{

d(k,j,n)+(i+1)2n−1
∑

l=d(k,j,n)+i2n

c(xj
τl(k,j), uk(xj

τl(k,j)))
}

.

Therefore, in order to prove (3.3) it is sufficient to show that for every
ε0 > 0 there exists n0 such that for n ≥ n0,

(3.8) lim sup
t→∞

t−1
t−1
∑

i=0

1

2n

{

d(k,j,n)+(i+1)2n−1
∑

l=d(k,j,n)+i2n

c(xj
τl(k,j), uk(xj

τl(k,j)))
}

≤
∫

E

c(x, uk(x)) πj
k(dx) + ε0

and

(3.9) lim inf
t→∞

t−1
t−1
∑

i=0

1

2n

{

d(k,j,n)+(i+1)2n−1
∑

l=d(k,j,n)+i2n

c(xj
τl(k,j), uk(xj

τl(k,j)))
}

≥
∫

E

c(x, uk(x)) πj
k(dx) − ε0.

Let n be such that 2−n2‖c‖(1 − γ)−1 ≤ ε0. Then from (3.4) and (3.5) we
obtain (3.8) and (3.9), which completes the proof.

From Proposition 3.1 and Lemma 3.1 we almost immediately obtain the
following corollary:

Corollary 3.1. There exists C such that P (C) = 0 and for ω ∈ Ω \C,
k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . , N} we have

(3.10) lim sup
t→∞

t−1
t−1
∑

i=0

N
∑

j=1

c(xj
i , vi)Sj(i)

= lim sup
t→∞

r(ε)
∑

k=1

N
∑

j=1

( ∫

E

c(x, uk(x)) πj
k(dx)

)

t−1
t−1
∑

i=0

Sk
j (i),

where Sk
j (i) is as in (2.1).

Outside the forcing moments we use the arm and the control function
for which the average cost per unit time over the trajectory is minimal.
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Therefore by Proposition 3.1, for sufficiently large t we choose the jth arm
and the control function uk such that

∫

E

c(x, uk(x)) πj
k(dx) = min

l=1,...,r(ε)

∫

E

c(x, ul(x)) πj
l (dx).

From the construction of F ′ it follows that the forcing moments are
Cesàro rare, so that from Corollary 3.1 we have

Corollary 3.2. There exists C such that P (C) = 0 and for ω ∈ Ω \C,
k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . , N} we have

lim sup
t→∞

t−1

r(ε)
∑

k=1

N
∑

j=1

t−1
∑

i=0

c(xj
i , uk(xj

i ))Sk
j (i)

= min
j=1,...,N

min
k=1,...,r(ε)

∫

E

c(x, uk(x)) πj
k(dx)

= min
j=1,...,N

min
k=1,...,r(ε)

Jθ0,j

(uk).

From the above corollary in view of the definition of the class ϑ we obtain

Theorem 3.1. There exists C such that P (C) = 0 and for ω ∈ Ω \ C,
k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . , N} we have

(3.11) lim sup
t→∞

J(t) = min
j=1,...,N

min
k=1,...,r(ε)

Jθ0,j

(uk) ≤ min
j=1,...,N

λ(θ0,j) + ε.

4. Strategy with randomization. In this section we consider a
strategy with randomization. It consists in a randomized choice of arms
and control functions. The probabilities in the randomized choice depend
on successive calculation of average costs.

The strategy is defined as follows.

1. First for κ (with κ as in (1.4)) moments of time we test every arm
and every control function.

2. Let J(t) denote the matrix Jk
j (t), k = 1, . . . , r(ε), j = 1, . . . ,N ,

defined in (2.1). Define the function η : R
Nr(ε) → N

2 by

η([J(t)]) = (η1([J(t)]), η2([J(t)])) = (jt(ω), kt(ω)) = (j, k),

where j, k are such that

Jk
j (t) = min

l=1,...,N
min

i=1,...,r(ε)
J i

l (t)

and if Jk
j (t) = J i

l (t) then either j < l or j = l and k ≤ i.
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2a. Let t∗ = Nr(ε)κ. Define the random variable ξt∗ by the conditional
distribution

P{ξt∗(ω) = η([J(t∗)]) | Ft∗} = 1 − ε,

where for t ≥ 0, ξt(ω) ∈ {1, . . . , N} × {1, . . . , r(ε)} and Ft = σ(x0, . . . , xt),
and for (j, k) 6= η([J(t∗)]),

P{ξt∗(ω) = (j, k) | Ft∗} =
1

Nr(ε) − 1
.

For the next κ moments of time we choose the pair: arm + number of a
control function according to the value of the random variable ξt∗(ω).

2b. Let t ≥ (Nr(ε) + 1)κ. Let ξt(ω) = ξ[t/κ]κ(ω), where [ ] de-
notes the integer part, and ξ0(ω) = 0 if t < Nr(ε)κ. Define the σ-field
Gt(ω) = σ(ξ0, . . . , ξt−1). For t > Nr(ε)κ such that t = [t/κ]κ define ξt by
the conditional distribution

(4.1) P{ξt∗(ω) = η([J(t)]) | Ft ∨ Gt} = 1 − ε,

where Ft ∨ Gt = σ(x0, . . . , xt, ξ0, . . . , ξt−1) and for (j, k) 6= η([J(t)]),

(4.2) P{ξt(ω) = (j, k) | Ft ∨ Gt} =
1

Nr(ε) − 1
.

For the next κ units of time the arm and the control function are chosen
according to the value of ξt(ω).

Let

Zt =
tκ−1
∑

i=0

N
∑

j=1

c(xj
i , vi)Sj(i)

−
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

{

χ(j,k)=η([J(iκ)])(1 − ε)Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}

+ χ(j,k)6=η([J(iκ)])
ε

Nr(ε) − 1
Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}}

,

where χ(j,k)=η([J(iκ)]) = 1 if (j, k) = η([J(t)]) and 0 otherwise, and
χ(j,k)6=η([J(iκ)]) = 1 if (j, k) 6= η([J(t)]) and 0 otherwise.

Lemma 4.1. Zt is a square integrable martingale with respect to the σ-

field Ftκ ∨ Gtκ and (1/(tκ))Zt → 0 P -a.e. as t → ∞.

P r o o f. Notice first that

(4.3)
t−1
∑

i=0

N
∑

j=1

E
{

(i+1)κ−1
∑

l=iκ

c(xj
l , vl)Sj(l)

∣

∣

∣
Fiκ ∨ Giκ

}
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=
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

{

χ(j,k)=η([J(iκ)])(1 − ε)Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
∣

∣

∣
Fiκ ∨ Giκ

}}

+ χ(j,k)6=η([J(iκ)])
ε

Nr(ε) − 1
Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
∣

∣

∣
Fiκ ∨ Giκ

}}

.

In fact,

t−1
∑

i=0

N
∑

j=1

E
{

(i+1)κ−1
∑

l=iκ

c(xj
l , vl)Sj(l)

∣

∣

∣
Fiκ ∨ Giκ

}

=
t−1
∑

i=0

N
∑

j=1

(i+1)κ−1
∑

l=iκ

E{c(xj
l , vl)Sj(l) | Fiκ ∨ Giκ}

=

t−1
∑

i=0

N
∑

j=1

(i+1)κ−1
∑

l=iκ

E{E{c(xj
l , vl)Sj(iκ) | Fiκ ∨ Giκ+1} | Fiκ ∨ Giκ}

=

t−1
∑

i=0

N
∑

j=1

(i+1)κ−1
∑

l=iκ

E{Sj(iκ)E{c(xj
l , vl) | Fiκ ∨ Giκ+1} | Fiκ ∨ Giκ}

since Sj(iκ) is a measurable function with respect to the σ-field Ftκ ∨ Gtκ.
Moreover, for iκ ≤ l ≤ (i + 1)κ,

E{c(xj
l , vl) | Fiκ ∨ Giκ+1} = Exiκ

{c(xj
l−iκ, uk(xj

l−iκ))}

provided ξiκ(ω) = (j, k), and

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

E
{

Sk
j (iκ)Exiκ

{

(i+1)κ−1
∑

l=iκ

c(xj
l−iκ, uk(xj

l−iκ))
}

∣

∣

∣
Fiκ ∨ Giκ

}

=
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

E
{

χξiκ=(j,k)Exiκ

{

(i+1)κ−1
∑

l=iκ

c(xj
l−iκ, uk(xj

l−iκ))
} ∣

∣

∣
Fiκ ∨ Giκ

}

=

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

Exiκ

{

(i+1)κ−1
∑

l=iκ

c(xj
l−iκ, uk(xj

l−iκ))
}

P{ξiκ = (j, k) | Fiκ ∨ Giκ}

=

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

{

χ(j,k)=η([J(iκ)])(1 − ε)Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}

+ χ(j,k)6=η([J(iκ)])
ε

Nr(ε) − 1
Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}}

.
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Therefore (4.3) holds.

Similarly to the proof of Lemma 2.3, we can now show that Zt is a square
integrable martingale and (1/(tκ))Zt → 0 P -a.e. as t → ∞.

From Lemma 4.1 we obtain

Corollary 4.1. The total average cost

J = lim sup
t→∞

(tκ)−1
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

c(xj
i , uk(xj

i ))Sk
j (i)

is equal to

J = lim sup
t→∞

t−1
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

κ−1
{

χ(j,k)=η([J(iκ)])(1 − ε)

× Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}

+ χ(j,k)6=η([J(iκ)])

×
ε

Nr(ε) − 1
Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}}

P -a.e.

Moreover, by (1.4) we have

Corollary 4.2. For Jθ0,j

(uk) =
∫

E
c(x, uk(x)) πj

k(dx) we have

lim sup
t→∞

∣

∣

∣
J(t)− t−1

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)χ(j,k)=η([J(t)])

∣

∣

∣
≤ ε(2‖c‖+1) P -a.e.

P r o o f. Let

I1(t) = t−1
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

κ−1
{

χ(j,k)=η([J(t)])Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}}

,

I2(t) = t−1
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

κ−1
{

χ(j,k)6=η([J(t)])Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}}

.

We have

lim sup
t→∞

∣

∣

∣

∣

(1−ε)I1(t)+
ε

Nr(ε) − 1
I2(t)−t−1

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)χ(j,k)=η([J(t)])

∣

∣

∣

∣
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≤ lim sup
t→∞

∣

∣

∣
I1(t) − t−1

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)χ(j,k)=η([J(t)])

∣

∣

∣

+ ε lim sup
t→∞

|I1(t)| +
ε

Nr(ε) − 1
lim sup

t→∞
|I2(t)|

≤ lim sup
t→∞

∣

∣

∣
I1(t) − t−1

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)χ(j,k)=η([J(t)])

∣

∣

∣
+ 2ε‖c‖.

Moreover, by uniform ergodicity and the definition of κ,

lim sup
t→∞

∣

∣

∣
I1(t) − t−1

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)χ(j,k)=η([J(t)])

∣

∣

∣

≤ lim sup
t→∞

∣

∣

∣
t−1

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

κ−1
{

χ(j,k)=η([J(t)])Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}}

− t−1
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

χ(j,k)=η([J(t)])

∫

E

c(x, uk(x)) πk
j (dx)

∣

∣

∣

≤ lim sup
t→∞

∣

∣

∣
t−1

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

χ(j,k)=η([J(t)])κ
−1

{

Exiκ

{

κ−1
∑

l=0

c(xj
l , uk(xj

l ))
}}

−
∫

E

c(x, uk(x)) πk
j (dx)

∣

∣

∣
≤ ε

and the proof is complete.

To show the near optimality of the randomized strategy defined above
we prove the following auxiliary lemmas:

Lemma 4.2. For every k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . ,N}, under the

randomized strategy we have

lim sup
t→∞

t−1T k
j (t) ≥

ε

Nr(ε) − 1
P -a.e.

P r o o f. By the definition of the strategy we play the pair (j, k) at
each moment of time t ≥ Nr(ε)κ with probability greater than or equal to
ε/(Nr(ε) − 1). Let

bt =

t−1
∑

i=0

(χ(j,k)=η([J(t)]) − P{ξiκ(ω) = (j, k) | Fiκ ∨ Giκ}).

Clearly bt is a square integrable martingale and therefore (1/t)bt → 0 P -a.e.,
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i.e.

lim
t→∞

t−1
t−1
∑

i=0

(χ(j,k)=η([J(iκ)]) − P{ξiκ(ω) = (j, k) | Fiκ ∨ Giκ}) = 0 P -a.e.

Consequently,

lim inf
t→∞

t−1
t−1
∑

i=0

χ(j,k)=η([J(iκ)])

= lim inf
t→∞

t−1
t−1
∑

i=0

P{ξiκ(ω) = (j, k) | Fiκ ∨ Giκ}

≥ ε/(Nr(ε) − 1) P -a.e.

and the conclusion of Lemma 4.2 holds.

Lemma 4.3. For k ∈ {1, . . . , r(ε)} and j ∈ {1, . . . ,N}, there exists C
such that P (C) = 0 and for ω ∈ Ω \ C we have

(4.4) lim sup
t→∞

|Jk
j (t) − Jθ0,j

(uk)| ≤ ε.

P r o o f. The proof parallels that of Proposition 2.1. Observe first that

Zt =

tκ−1
∑

i=0

c(xj
i , vi)S

k
j (i) −

t−1
∑

i=0

E
{

(i+1)κ−1
∑

l=iκ

c(xj
i , vl)S

k
j (i)

∣

∣

∣
Fiκ ∨ Giκ

}

is a square integrable martingale with respect to the σ-field Fiκ∨Giκ. Hence
(1/(tκ))Zt > 0 as t → ∞ P -a.e. Therefore from Lemma 4.2, (T k

j (tκ))−1Zt

→ 0 P -a.e., i.e.

lim sup
t→∞

(T k
j (tκ))−1

∣

∣

∣

tκ−1
∑

i=0

c(xj
i , vi)S

k
j (i)

−
t−1
∑

i=0

E
{

(i+1)κ−1
∑

l=iκ

c(xj
i , vl)S

k
j (i)

∣

∣

∣
Fiκ ∨ Giκ

}
∣

∣

∣
→ 0 P -a.e.

Since

lim sup
t→∞

∣

∣

∣
(T k

j (tκ))−1
t−1
∑

i=0

E
{

(i+1)κ−1
∑

l=iκ

c(xj
l , vl)S

k
j (l)

∣

∣

∣
Fiκ ∨ Giκ

}

−κSk
j (tκ)
∫

E

c(x, uk(x)) πj
k(dx)

∣

∣

∣
≤ ε

and Jθ0,j

(uk) =
∫

E
c(x, uk(x)) πj

k(dx) we obtain (4.4).
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Lemma 4.4. Let Z be the set of pairs defined in (2.15). There exists C
such that P (C) = 0 and for ω ∈ Ω \ C if ξtn

(ω) = (j, k) = η([J(tn)]) for

some (j, k) ∈ {1, . . . , N} × {1, . . . , r(ε)} and tn → ∞ then (j, k) ∈ Z.

P r o o f. Let ξtn
(ω) = (j, k) = η([J(tn)]) for tn → ∞ and ω ∈ Ω \ C

with C as in Lemma 4.3. Then Jk
j (tn) ≤ J i

l (tn) for l ∈ {1, . . . ,N} and
i ∈ {1, . . . , r(ε)}. Letting n → ∞ by Lemma 4.3 we obtain

−ε + Jθ0,j

(uk) ≤ Jθ0,l

(ui) + ε for l ∈ {1, . . . ,N} and i ∈ {1, . . . , r(ε)}.

Therefore

−ε + Jθ0,j

(uk) ≤ min
l=1,...,N

min
i=1,...,r(ε)

Jθ0,l

(ui) + ε

for l ∈ {1, . . . ,N} and i ∈ {1, . . . , r(ε)}.

Hence (j, k) ∈ Z.

Finally, we have the following theorem.

Theorem 4.1. There exists C such that P (C) = 0 and for ω ∈ Ω \ C,

(4.5) lim sup
t→∞

|J(t) − min
j=1,...,N

min
k=1,...,r(ε)

Jθ0,j

(uk)| ≤ ε(2‖c‖ + 3).

P r o o f. By Corollary 4.2 we have

lim sup
t→∞

∣

∣

∣
J(t) − t−1

t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)χ(j,k)=η([J(t)])

∣

∣

∣
≤ ε(2‖c‖ + 1).

By Lemma 4.4 it remains to estimate

lim sup
t→∞

t−1
t−1
∑

i=0

N
∑

j=1

r(ε)
∑

k=1

Jθ0,j

(uk)χ(j,k)=η([J(t)])χZ(j, k).

For this purpose we repeat the arguments of the proof of Theorem 2.1, and
finally obtain (4.5).

5. Numerical examples. Below we present some simulation results
for the controlled multiarmed bandit problem with the evolution of arms
described by the equation

xj
i+1 = f(xj

i , ui, θ
j) + g(xj

i )wi, xj
0 = x,

where f(x, u, θ) = min{(u(x) · x − θ)2 + θ + 1, const} for θ ∈ [−1, 1], a
compact set of unknown parameters, and wi ∈ N(0, 1) is a white noise. For
simplicity assume that g(xj

i ) = c and the cost function is

c(x, u(x)) = min{x2, const1}, const := 100, const1 := 100.



Multiarmed bandit problems 471

It can easily be shown that for a given θ the optimal control function uθ is

uθ(x) =







1 if θ/x ≥ 1,
θ/x if −1 < θ/x < 1,
−1 if θ/x ≤ −1.

Therefore we consider the class of admissible control functions

ϑ(ε) = {uθ : θ = −1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}.

Below we show the graphs obtained by simulations of the above example.
The first graph presents simulation results for the model with forcing and

constant time decision horizon, and for the strategy with randomization, for
the values of κ, N and θ as indicated.

Graph 1

The optimal average cost for the first arm is J1 ≈ 3.11, for the second
arm it is J2 ≃ 3.86 and for the third arm it is J3 ≈ 1.1. The optimal cost for
the bandit problem is therefore J3 ≈ 1.1 and it indicates that arm 3 should
be played.

As is clear from the graph, the strategy with randomization and the
strategy with forcing (for large t) come close to the optimal cost J3 ≈ 1.1.
It should also be noticed that randomization provides faster convergence
than forcing.
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Graph 2

Graph 3
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Similar convergence properties are also obtained for other data. The
second graph presents simulation results for the model with forcing and
constant decision horizon and for the strategy with randomization, with
κ = 50, N = 5. The values of the true parameters θ are as indicated.
Notice that the optimal value for the multiarmed bandit problem is equal
to 1.1 and corresponds to the 5th arm.

In the third case we also have the optimal cost value for the multiarmed
bandit problem equal to about 1.1 and corresponding to the third arm with
the values of κ, N and θ as indicated.

The numerical results show that both strategies converge to the optimal
cost.
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