
APPLICATIONES MATHEMATICAE
24,1 (1996), pp. 1–15

D. D. BAINOV (Sofia)
Z. KAMONT (Gdańsk)
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Abstract. Theorems on differential inequalities generated by an initial-
boundary value problem for impulsive parabolic functional differential equa-
tions are considered. Comparison results implying uniqueness criteria are
proved.

1. Introduction. The theory of impulsive ordinary differential equa-
tions made its start in [10] and it was an object of many investigations in
the last three decades ([3], [4]). This theory is richer than the corresponding
theory without impulses due to some new features and phenomena such as:
“beating”, “merging”, “dying” of solutions, loss of autonomy, etc.

In the recent years the theory of impulsive partial differential equations
began to emerge ([1], [5], [7], [8]). It gives greater possibilities for mathe-
matical simulation of evolutional processes in theoretical physics, chemistry,
population dynamics, biotechnology, etc., which are characterized by the
fact that the system parameters are subject to short term perturbations
in time. The authors believe that this new theory will undergo a rapid
development in the coming years.

In the present paper impulsive parabolic functional differential inequal-
ities are considered. It is shown that the impulsive ordinary functional
differential inequalities find application in the proofs of theorems concern-
ing the estimates of solutions and in the uniqueness theory for impulsive
parabolic functional differential equations.
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We note that parabolic differential and functional differential inequalities
with impulses are investigated in [2], [5], [6], [8].

2. Preliminaries. Let E = [0, a)×(−b, b), a > 0, b = (b1, . . . , bn) ∈ Rn
+,

R+ = [0,∞) and B = [−τ0, 0] × [−τ, τ ], where τ0 ∈ R+, τ = (τ1, . . . , τn)
∈ Rn

+. We define c = b+ τ , E0 = [−τ0, 0]× [−c, c], ∂0E = [0, a)× ([−c, c] \
(−b, b)), E∗ = E ∪ E0 ∪ ∂0E. For τ0 > 0 we put B(−) = [−τ0, 0)× [−τ, τ ].

Suppose that 0 < x1 < . . . < xk < a are given numbers. We define

J0 = [−τ0, 0], J = [0, a), Jimp = {x1, . . . , xk},
Eimp = {(x, y) ∈ E:x ∈ Jimp},

∂0Eimp = {(x, y) ∈ ∂0E:x ∈ Jimp},

E∗
imp = {(x, y) ∈ E∗:x ∈ Jimp}.

Let Cimp[E∗,R] be the class of all functions z : E∗ → R such that:

(i) the restriction of z to E∗ \ E∗
imp is continuous,

(ii) for each (x, y) ∈ Eimp, the limits

lim
(t,s)→(x,y)

t<x

z(t, s) = z(x−, y),(1)

lim
(t,s)→(x,y)

t>x

z(t, s) = z(x+, y)(2)

exist and z(x, y) = z(x+, y) for (x, y) ∈ Eimp.
In the same way we define the set Cimp[∂0E,R]. If z ∈ Cimp[E∗,R] and

(x, y) ∈ Eimp then we write ∆z(x, y) = z(x, y)− z(x−, y).
Suppose that z : E∗ → R and (x, y) = (x, y1, . . . , yn) ∈ E, the closure

of E. We define a function z(x,y) : B → R as follows:

z(x,y)(t, s) = z(x+ t, y + s), (t, s) ∈ B.

Suppose that τ0 > 0. For the above z and (x, y) we also define z(x−,y) :
B(−) → R by

z(x−,y)(t, s) = z(x+ t, y + s), (t, s) ∈ B(−).

Assume that we have a sequence {t1, . . . , tr} such that −τ0 ≤ t1 < . . . <
tr ≤ 0. Let Γi = (ti, ti+1)× [−τ, τ ], i = 1, . . . , r − 1 and

Γ0 =
{
∅ if −τ0 = t1,
(−τ0, t1)× [−τ, τ ] if −τ0 < t1,

Γr =
{
∅ if tr = 0,
(tr, 0)× [−τ, τ ] if tr < 0.
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Let t0 = −τ0 if t1 > −τ0 and tr+1 = 0 if tr < 0. We denote by
C∗

imp[B,R] the class of all functions w : B → R such that there exists a
sequence {t1, . . . , tr} (r and t1, . . . , tr depend on w) satisfying:

(i) the functions w|Γi
, i = 0, 1, . . . , r, are continuous,

(ii) for each i, i = 1, . . . , r + 1 with (ti, s) ∈ B, ti > −τ0, the limit

lim
(t,y)→(ti,s)

t<ti

w(t, y) = w(t−i , s)

exists,
(iii) for each i, i = 0, 1, . . . , r with (ti, s) ∈ B, ti < 0, the limit

lim
(t,y)→(ti,s)

t>ti

w(t, y) = w(t+i , s)

exists,
(iv) for each (ti, s) ∈ B, i = 0, 1, . . . , r − 1, and for i = r if tr < 0, we

have w(ti, s) = w(t+i , s).

Let C∗
imp[B(−),R] = {w|B(−) : w ∈ C∗

imp[B,R]} in the case τ0 > 0.
Elements of the sets C∗

imp[B,R] and C∗
imp[B(−),R] will be denoted by the

same symbols. It is easy to see that if z ∈ Cimp[E∗,R] and (x, y) ∈ E, then
z(x,y) ∈ C∗

imp[B,R] and z(x−,y) ∈ C∗
imp[B(−),R] in the case τ0 > 0.

For w ∈ C∗
imp[B,R] we define ‖w‖B = sup{|w(t, s)| : (t, s) ∈ B}. We

denote by ‖ · ‖B(−) the supremum norm in the space C∗
imp[B(−),R].

Let M [n] be the class of all matrices γ = [γij ]1≤i,j≤n, where γij ∈ R and
γij = γji.

Suppose that

Ω = (E \ Eimp)× R× C∗
imp[B,R]× Rn ×M [n],

Ωimp = (Eimp ∪ ∂0Eimp)× R× C∗
imp[B(−),R]

and f : Ω → R, g : Ωimp → R and ϕ : E0 ∪ ∂0E → R, where ϕ|∂0E ∈
Cimp[∂0E,R], are given functions.

A function z ∈ Cimp[E∗,R] will be called a function of class C(1,2)
imp [E∗,R]

if z has continuous derivatives Dxz(x, y), Dyz(x, y) and Dyyz(x, y) for (x, y)
∈ E \ Eimp, where

Dyz = (Dy1z, . . . ,Dynz), Dyyz = [Dyiyjz]1≤i,j≤n.

A function f : Ω → R is said to be parabolic with respect to z ∈
C

(1,2)
imp [E∗,R] in E \ Eimp if for (x, y) ∈ E \ Eimp and for any γ, s ∈ M [n]

such that
n∑

i,j=1

(γij − sij)λiλj ≤ 0, λ = (λ1, . . . , λn) ∈ Rn,
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we have

f(x, y, z(x, y), z(x,y), Dyz(x, y), γ) ≤ f(x, y, z(x, y), z(x,y), Dyz(x, y), s).

We consider the initial-boundary value problem:

(3) Dxz(x, y) = f(x, y, z(x, y), z(x,y), Dyz(x, y), Dyyz(x, y)),
(x, y) ∈ E \ Eimp,

(4) z(x, y) = ϕ(x, y), (x, y) ∈ E0 ∪ ∂0E,

(5) ∆z(x, y) = g(x, y, z(x−, y), z(x−,y)), (x, y) ∈ Eimp ∪ ∂0Eimp.

For f : Ω → R, g : Ωimp → R and z ∈ C(1,2)
imp [E∗,R] we write

F [z](x, y) = Dxz(x, y)− f(x, y, z(x, y), z(x,y), Dyz(x, y), Dyyz(x, y)),
(x, y) ∈ E \ Eimp,

and

G[z](x, y) = ∆z(x, y)− g(x, y, z(x−, y), z(x−,y)), (x, y) ∈ Eimp.

3. Main results

3.1. Impulsive parabolic functional differential inequalities. We intro-
duce

Assumption H1. Suppose that:

1. the function f : Ω → R of the variables (x, y, p, w, q, s) is non-
decreasing with respect to the functional argument w,

2. the function g : Ωimp → R of (x, y, p, w) is non-decreasing with
respect to w and for each (x, y) ∈ Eimp and w ∈ C∗

imp[B(−),R] the function
δ(p) = p+ g(x, y, p, w), p ∈ R, is non-decreasing on R.

Theorem 1. Suppose that :

1. Assumption H1 holds,
2. u, v ∈ C(1,2)

imp [E∗,R] satisfy the initial-boundary inequality

(6) u(x, y) < v(x, y), (x, y) ∈ E0 ∪ ∂0E,

3. the functional differential inequality

(7) F [u](x, y) < F [v](x, y), (x, y) ∈ E \ Eimp,

and the inequality for impulses

(8) G[u](x, y) < G[v](x, y), (x, y) ∈ Eimp,

are satisfied ,
4. f is parabolic with respect to u in E \ Eimp.

Then

(9) u(x, y) < v(x, y) on E∗.
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P r o o f. If (9) is false then the set Z = {x ∈ [0, a) : there exists y ∈
(−b, b) such that u(x, y) ≥ v(x, y)} is non-empty. Defining x̃ = inf Z it
follows from (6) that x̃ > 0 and there exists ỹ ∈ (−b, b) such that

(10)
u(x, y) < v(x, y), (x, y) ∈ E∗ ∩ ([−τ0, x̃)× Rn),
u(x̃, ỹ) = v(x̃, ỹ).

There are two cases to be distinguished:

C a s e 1: (x̃, ỹ) ∈ E \ Eimp. Then

Dx(u− v)(x̃, ỹ) ≥ 0, Dy(u− v)(x̃, ỹ) = 0

and
n∑

i,j=1

Dyiyj (u− v)(x̃, ỹ)λiλj ≤ 0,

for λ = (λ1, . . . , λn) ∈ Rn, which leads to a contradiction with (7).

C a s e 2: (x̃, ỹ) ∈ Eimp. Then there exists i, 1 ≤ i ≤ k, such that x̃ = xi.
From (10) we have

(11) u(x̃−, ỹ) ≤ v(x̃−, ỹ).

It follows from (8) and (11) that

u(x̃, ỹ)− v(x̃, ỹ) < u(x̃−, ỹ) + g(x̃, ỹ, u(x̃−, ỹ), u(x̃−,ỹ))

− v(x̃−, ỹ)− g(x̃, ỹ, v(x̃−, ỹ), v(x̃−,ỹ)) ≤ 0,

which contradicts (10).
Hence Z is empty and the statement (9) follows.

R e m a r k 1. In Theorem 1 we can assume instead of (7), (8) that

F [u](x, y) < F [v](x, y) for (x, y) ∈ T \ Eimp,
G[u](x, y) < G[v](x, y) for (x, y) ∈ T ∩ Eimp,

where

T = {(x, y) ∈ E : u(t, s) < v(t, s) for (t, s) ∈ E, t ∈ [0, x), u(x, y) = v(x, y)}.

Now we consider weak impulsive parabolic functional differential inequal-
ities.

Assumption H2. Suppose that:

1. σ : ([0, a] \ Jimp) × R+ → R+ is continuous and σ(x, 0) = 0 for
x ∈ [0, a] \ Jimp,
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2. σ0 : Jimp ×R+ → R+ is continuous, σ0(x, 0) = 0 for x ∈ Jimp and the
right-hand maximal solution of the problem

α′(x) = σ(x, α(x)), x ∈ J \ Jimp,

α(0) = 0,
∆α(x) = σ0(x, α(x−)), x ∈ Jimp,

is α(x) = 0, x ∈ J ,
3. f : Ω → R satisfies the inequality

f(x, y, p, w, q, s)− f(x, y, p, w, q, s)
≥ −σ(x,max{p− p, ‖w̄ − w‖B}) on Ω,

where p ≤ p and w ≤ w,
4. for (x, y, p, w) ∈ Eimp × R× C∗

imp[B(−),R] we have

g(x, y, p, w)− g(x, y, p, w) ≥ −σ0(x,max{p− p, ‖w − w‖B(−)}),
where p ≤ p, w ≤ w.

Theorem 2. Suppose that :

1. Assumptions H1 and H2 hold ,
2. u, v ∈ C(1,2)

imp [E∗,R] and

(12) u(x, y) ≤ v(x, y) on E0 ∪ ∂0E,

3. the functional differential inequality

(13) F [u](x, y) ≤ F [v](x, y), (x, y) ∈ E \ Eimp,

and the inequality for impulses

(14) G[u](x, y) ≤ G[v](x, y), (x, y) ∈ Eimp,

are satisfied ,
4. f is parabolic with respect to u in E \ Eimp.

Then u(x, y) ≤ v(x, y) on E∗.

P r o o f. Suppose that a0 ∈ (xk, a). We prove that

(15) u(x, y) ≤ v(x, y)

for (x, y) ∈ ([−τ0, a0)× Rn) ∩ E∗.
Consider the problem

(16)
α′(x) = σ(x, α(x)) + ε0, x ∈ J \ Jimp,

α(0) = ε1,

∆α(x) = σ0(x, α(x−)) + ε2, x ∈ Jimp.

There exists ε̃ > 0 such that for 0 < εi < ε̃, i = 0, 1, 2, there exists a solution
ω(·; ε), ε = (ε0, ε1, ε2), of (16) and this solution is defined on [0, a0).
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Let

ṽ(x, y) =
{
v(x, y) + ε0, (x, y) ∈ E0,
v(x, y) + ω(x; ε), (x, y) ∈ ([0, a0)× Rn) ∩ (E ∪ ∂0E).

We prove that

(17) u(x, y) < ṽ(x, y) on ([0, a0)× Rn) ∩ (E ∪ ∂0E).

We have

F [u](x, y)− F [ṽ](x, y)
= F [u](x, y)−Dxv(x, y)− ω′(x; ε)

+ f(x, y, ṽ(x, y), ṽ(x,y), Dyv(x, y), Dyyv(x, y))

≤ F [u](x, y)−Dxv(x, y)− ω′(x; ε)

+ f(x, y, v(x, y), v(x,y), Dyv(x, y), Dyyv(x, y)) + σ(x, ω(x; ε))

= F [u](x, y)− F [v](x, y)− ε0 < 0, (x, y) ∈ (E \ Eimp) ∩ ([0, a0)× Rn).

For (x, y) ∈ Eimp we have

G[u](x, y)−G[ṽ](x, y)
= G[u](x, y)−∆ṽ(x, y) + g(x, y, ṽ(x−, y), ṽ(x−,y))

≤ G[u](x, y)−∆v(x, y)−∆ω(x; ε) + g(x, y, v(x−, y), v(x−,y))

+ σ0(x, ω(x−; ε))

= G[u](x, y)−G[v](x, y)− ε2 < 0.

Since u(x, y) < ṽ(x, y) on (E0∪∂0E)∩([0, a0)×Rn), from Theorem 1 we
have assertion (17). Since limε→0 ω(x; ε) = 0 uniformly with respect to x on
[0, a0), we obtain (15). The constant a0 ∈ (xk, a) is arbitrary and therefore
the proof is complete.

Assumption H3. Suppose that:

1. σ̃ : ([0, a]\Jimp)×R− → R+, R− = (−∞, 0], is continuous, σ̃(x, 0) = 0
for x ∈ [0, a] \ Jimp and for p ≤ p we have

f(x, y, p, w, q, s)− f(x, y, p, w, q, s) ≤ σ̃(x, p− p) on Ω,

2. σ̃0 : Jimp ×R− → R+ is continuous, σ̃0(x, 0) = 0 for x ∈ Jimp and for
p ≤ p we have

g(x, y, p, w)− g(x, y, p, w) ≤ σ̃0(x, p− p) on Eimp × R× C∗
imp[B(−),R],
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3. the left-hand minimal solution of the problem

α′(x) = σ̃(x, α(x)), x ∈ J \ Jimp,

∆α(x) = σ̃0(x, α(x−)), x ∈ Jimp,

lim
x→a−

α(x) = 0

is α(x) = 0, x ∈ J .

Theorem 3. Suppose that :
1. Assumptions H1 and H3 hold ,
2. u, v ∈ C(1,2)

imp [E∗,R] satisfy the initial-boundary inequality (6), and the
functional differential inequality (13) holds on E \ Eimp,

3. estimate (14) is satisfied ,
4. f is parabolic with respect to v in E \ Eimp.

Then

(18) u(x, y) < v(x, y) on E∗.

P r o o f. First we prove (18) for (x, y) ∈ ([0, a − ε) × Rn) ∩ E, where
a−xk > ε > 0. Let 0 < p0 < min{v(x, y)−u(x, y) : (x, y) ∈ E0∪∂0E}. For
δ > 0 denote by ω(·; δ) the right-hand minimal solution of the problem

(19)
α′(x) = −σ̃(x,−α(x))− δ, x ∈ J \ Jimp,

α(0) = p0,

∆α(x) = −σ̃0(x,−α(x−))− δ, x ∈ Jimp.

If p0 > 0 is fixed then to every ε > 0 corresponds δ0 > 0 such that for 0 <
δ < δ0 the solution ω(·; δ) of (19) exists and is positive on [0, a−ε). Suppose
that δ > 0 is a constant such that ω(·; δ) satisfies the above conditions. Let

ũ(x, y) =
{
u(x, y) + p0, (x, y) ∈ E0,
u(x, y) + ω(x; δ), (x, y) ∈ (E ∪ ∂0E) ∩ ([0, a− ε)× Rn).

We will prove that

(20) ũ(x, y) < v(x, y) on E ∩ ([0, a− ε)× Rn).

It follows from H1 and H3 that
F [ũ](x, y)− F [v](x, y) ≤ Dxu(x, y) + ω′(x; δ)

− f(x, y, u(x, y), u(x,y), Dyu(x, y), Dyyu(x, y))

+ σ̃(x,−ω(x; δ))− F [v](x, y)
= F [u](x, y)− F [v](x, y)− δ < 0

for (x, y) ∈ (E \ Eimp) ∩ ([0, a− ε)× Rn).
Now we prove that

(21) G[ũ](x, y) < G[v](x, y), (x, y) ∈ Eimp.
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It follows from H3, (14) and (19) that

G[ũ](x, y)−G[v](x, y) ≤ ∆u(x, y) +∆ω(x; δ)− g(x, y, u(x−, y), u(x−,y))

+ σ̃0(x,−ω(x−; δ))−G[v](x, y)
= G[u](x, y)−G[v](x, y)− δ < 0, (x, y) ∈ Eimp,

which completes the proof of (21). Since ũ(x, y) < v(x, y) for (x, y) ∈
(E0 ∪ ∂0E) ∩ ([0, a − ε) × Rn), we have estimate (20) from Theorem 1. It
follows from (20) that u(x, y) < v(x, y) on ([0, a− ε)×Rn)∩E. Since ε > 0
is arbitrary, inequality (18) holds on E∗.

3.2. Comparison theorems for parabolic functional differential inequal-
ities. In this section we prove estimates of functions satisfying impulsive
parabolic functional differential inequalities by means of solutions of impul-
sive ordinary functional differential equations.

Let Cimp[J0∪J,R] be the class of all functions α : J0∪J → R such that:

(i) the restriction of α to J0 ∪ J \ Jimp is continuous,
(ii) for each x ∈ Jimp the limits

lim
t→x
t<x

α(t) = α(x−), lim
t→x
t>x

α(t) = α(x+)

exist and α(x) = α(x+) for x ∈ Jimp.

Suppose that we have a sequence {t1, . . . , tr} such that −τ0 ≤ t1 < t2 <
. . . < tr ≤ 0. For t1 > −τ0 we also define t0 = −τ0 and for tr < 0 we put
tr+1 = 0. Let J (i) = (ti, ti+1), i = 0, 1, . . . , r.

We denote by C∗
imp[J0,R] the class of all functions η : J0 → R such that

there exists a sequence {t0, t1, . . . , tr, tr+1} depending on η such that:

(i) the functions η|J(i) , i = 0, 1, . . . , r, are continuous,
(ii) for each i, i = 2, . . . , r + 1, and for t1 > −τ0, the limit

lim
t→ti
t<ti

η(t) = η(t−i )

exists,
(iii) for each i, i = 0, 1, . . . , r − 1, and for tr < 0, the limit

lim
t→ti
t>ti

η(t) = η(t+i )

exists and η(ti) = η(t+i ).

For τ0 > 0 we put J (−)
0 = [−τ0, 0) and C∗

imp[J (−)
0 ,R] = {η|J(−)

0
: η ∈

C∗
imp[J0,R]}. We will denote the elements of C∗

imp[J0,R] and C∗
imp[J (−)

0 ,R]
by the same symbols. We denote by ‖ · ‖0 the supremum norm in the space
C∗

imp[J0,R] and in the space C∗
imp[J (−)

0 ,R]. For z ∈ Cimp[E∗,R] we define
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Tz : J0 ∪ J → R+ by

(Tz)(x) = max{|z(x, y)| : y ∈ [−c, c]}, x ∈ [−τ0, a).

If α : J0 ∪ J → R and x ∈ J then we define α(x) : J0 → R by α(x)(t) =
α(x + t), t ∈ J0. For the above α and x we define α(x−) : J (−)

0 → R by
α(x−)(t) = α(x+ t) for t ∈ J (−)

0 . For w ∈ C∗
imp[B,R] we define T ∗w : J0 →

R+ by

(T ∗w)(t) = max{|w(t, s)| : s ∈ [−τ, τ ]}.

Lemma 1. If z ∈ Cimp[E∗,R] then Tz ∈ Cimp[J0 ∪ J,R+]. If w ∈
C∗

imp[B,R] then T ∗w ∈ C∗
imp[J0,R+].

We omit the proof.

Assumption H4. Suppose that:

1. the functions σ : ([0, a) \ Jimp) × R+ × C∗
imp[J0,R+] → R+ and

σ̃ : Jimp × R+ × C∗
imp[J (−)

0 ,R+] → R+ are continuous and non-decreasing
with respect to the functional argument,

2. for each (x, η) ∈ J ×C∗
imp[J (−)

0 ,R+] the function γ(p) = p+ σ̃(x, p, η),
p ∈ R+, is non-decreasing on R+.

Lemma 2. Suppose that :

1. Assumption H4 holds and ψ ∈ Cimp[J0 ∪ J,R],
2. η̃ ∈ C(J0,R+) and ω(·; η̃) : [−τ0, a) → R+ is the maximal solution of

the problem

(22)

α′(x) = σ(x, α(x), α(x)), x ∈ J \ Jimp,

α(x) = η̃(x), x ∈ J0,

∆α(x) = σ̃(x, α(x−), α(x−)), x ∈ Jimp,

3. the function ψ satisfies

ψ(x) ≤ η̃(x), x ∈ J0,

∆ψ(x) ≤ σ̃(x, ψ(x−), ψ(x−)), x ∈ Jimp,

4. for x ∈ P+ = {x > 0, x ∈ J \ Jimp : ψ(x) > ω(x; η̃)} we have

D−ψ(x) ≤ σ(x, ψ(x), ψ(x)),

where D− is the left-hand lower Dini derivative.

Then ψ(x) ≤ ω(x; η̃) for x ∈ [−τ0, a).

We omit the proof.
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Theorem 4. Suppose that :

1. Assumption H4 holds, f ∈ C(Ω,R) and for each (x, y, p, w) ∈ (E \
Eimp)× R× C∗

imp[B,R] we have

(23) f(x, y, p, w, 0, 0) sign p ≤ σ(x, |p|, T ∗w),

where sign p denotes 1 if p ≥ 0 and −1 if p < 0,
2. u ∈ C(1,2)

imp [E∗,R] and

(24) Dxu(x, y) = f(x, y, u(x, y), u(x,y), Dyu(x, y), Dyyu(x, y)),

for (x, y) ∈ E \ Eimp,
3. η̃ ∈ C(J0,R+) and

(25) |u(x, y)| ≤ η̃(x), (x, y) ∈ E0,

4. ω(·; η̃) : [−τ0, a) → R+ is the maximal solution of the problem (22),
5. the boundary estimate

(26) |u(x, y)| ≤ ω(x; η̃), (x, y) ∈ ∂0E

and the impulsive estimate

(27) |u(x, y)|
≤ |u(x−, y)|+ σ̃(x, |u(x−, y)|, (T ∗u)(x−)), (x, y) ∈ Eimp ∪ ∂0Eimp,

are satisfied ,
6. f is parabolic with respect to u in E \ Eimp.

Then

(28) |u(x, y)| ≤ ω(x; η̃) for (x, y) ∈ E∗.

P r o o f. We prove that the function ψ = Tu satisfies all conditions of
Lemma 2. It follows from (25) and (27) that condition 3 of Lemma 2 holds.
Suppose that x ∈ P+. There exists y ∈ [−c, c] such that ψ(x) = |u(x, y)|. It
follows from (26) that y ∈ (−b, b). There are two possibilities: either

(29a) ψ(x) = u(x, y)

or

(29b) ψ(x) = −u(x, y).
Suppose that (29b) holds. Then Dyu(x, y) = 0,

n∑
i,j=1

Dyiyj
u(x, y)λiλj ≥ 0, λ = (λ1, . . . λn) ∈ Rn,

and

D−ψ(x) ≤ −Dxu(x, y)
= −f(x, y, u(x, y), u(x,y), Dyu(x, y), Dyyu(x, y))
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≤ −f(x, y, u(x, y), u(x,y), 0, 0)
= f(x, y, u(x, y), u(x,y), 0, 0) signu(x, y)
≤ σ(x, |u(x, y)|, (Tu)(x)).

Thus ψ satisfies condition 4 of Lemma 2. The case when (29a) holds is
analogous. Thus all conditions of Lemma 2 are satisfied and (28) follows.

Let us consider two problems: the problem (3)–(5) and the problem

Dxz(x, y) = f̃(x, y, z(x, y), z(x,y), Dyz(x, y), Dyyz(x, y)),(30)
(x, y) ∈ E \ Eimp,

z(x, y) = ϕ̃(x, y), (x, y) ∈ E0 ∪ ∂0E,(31)
∆z(x, y) = g̃(x, y, z(x−, y), z(x−,y)), (x, y) ∈ Eimp ∪ ∂0Eimp,(32)

where f̃ : Ω → R and g̃ : Ωimp → R and ϕ̃ : E0 ∪ ∂0E → R, where
ϕ̃|∂0E ∈ Cimp[∂0E,R], are given functions.

We prove an estimate of the difference between solutions of (3)–(5) and
(30)–(32).

Theorem 5. Suppose that :

1. Assumption H4 holds,
2. f, f̃ ∈ C(Ω,R), g, g̃ ∈ C(Ωimp,R) satisfy the inequalities

(33)
(f(x, y, p, w, q, s)− f̃(x, y, p, w, q, s)) sign(p− p)

≤ σ(x, |p− p|, T ∗(w − w)) on Ω,

|g(x, y, p, w)− g̃(x, y, p, w)| ≤ σ̃(x, |p− p|, T ∗(w − w)) on Ωimp,

3. ϕ, ϕ̃ : E0 ∪ ∂0E → R, η̃ ∈ C(J0,R+), ϕ|E0 , ϕ̃|E0 ∈ C(E0,R), ϕ|∂0E ,
ϕ̃|∂0E ∈ Cimp[∂0E,R], and

|ϕ(x, y)− ϕ̃(x, y)| ≤ η̃(x), (x, y) ∈ E0,

4. the maximal solution ω(·; η̃) of (22) is defined on [−τ0, a) and
u, ũ ∈ C(1,2)

imp [E∗,R] are solutions of (3)–(5) and (28)–(30), respectively ,
5. |ϕ(x, y)− ϕ̃(x, y)| ≤ ω(x; η̃) on ∂0E,
6. f is parabolic with respect to u in E \ Eimp.

Then |u(x, y)− ũ(x, y)| ≤ ω(x; η̃) for (x, y) ∈ E∗.

P r o o f. We prove that the function ψ = T (u− ũ) satisfies all conditions
of Lemma 2. It is easy to see that condition 3 of Lemma 2 holds. Suppose
that x ∈ P+. There exists y ∈ [−c, c] such that ψ(x) = |u(x, y) − ũ(x, y)|.
From condition 5 of the theorem it follows that y ∈ (−b, b). There are two
possibilities: either

(34a) ψ(x) = u(x, y)− ũ(x, y)
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or

(34b) ψ(x) = −(u(x, y)− ũ(x, y)).

Suppose that (34a) holds. Then Dy(u− ũ)(x, y) = 0,
n∑

i,j=1

Dyiyj (u− ũ)(x, y)λiλj ≤ 0, λ = (λ1, . . . , λn) ∈ Rn,

and

D−ψ(x) ≤ Dxu(x, y)−Dxũ(x, y)
= [f(x, y, u(x, y), u(x,y), Dyu(x, y), Dyyu(x, y))

− f(x, y, u(x, y), u(x,y), Dyu(x, y), Dyyũ(x, y))]
+ [f(x, y, u(x, y), u(x,y), Dyu(x, y), Dyyũ(x, y))

− f̃(x, y, ũ(x, y), ũ(x,y), Dyu(x, y), Dyyũ(x, y))].

The first difference in brackets is non-positive by the parabolicity of f with
respect to u. Since u(x, y) ≥ ũ(x, y) by (34a), in view of condition 2 we get

D−ψ(x) ≤ σ(x, ψ(x), (Tψ)(x)), x ∈ P+.

The case when (34b) holds is analogous. Thus all conditions of Lemma 2
are satisfied and the statement of the theorem follows.

Theorem 6. Suppose that :

1. Assumption H4 holds,
2. f ∈ C(Ω,R), g ∈ C(Ωimp,R) and

(f(x, y, p, w, q, s)− f(x, y, p̄, w, q, s)) sign(p− p)
≤ σ(x, |p− p|, T ∗(w − w)) on Ω,

|g(x, y, p, w)− g(x, y, p̄, w)| ≤ σ̃(x, |p− p|, T ∗(w − w)) on Ωimp,

3. σ(x, 0, θ) = 0 for x ∈ J \ Jimp and σ̃(x, 0, θ) = 0 for x ∈ Jimp, where
θ(t) = 0 for t ∈ J0,

4. the maximal solution of the problem

α′(x) = σ(x, α(x), α(x)), x ∈ J \ Jimp,

α(x) = 0, x ∈ J0,

∆α(x) = σ̃(x, α(x−), α(x−)), x ∈ Jimp,

is α(x) = 0, x ∈ J0 ∪ J .

Then the problem (3)–(5) admits at most one solution in C
(1,2)
imp [E∗,R].

P r o o f. Put f̃ = f and g̃ = g and apply Theorem 5.

R e m a r k 2. Suppose that % : ([0, a) \ Jimp) × R+ × R+ → R+ and
%̃ : Jimp ×R+ ×R+ → R+ are given functions and σ : ([0, a) \ Jimp)×R+ ×
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C∗
imp[J0,R+] → R+ and σ̃ : Jimp×R+×C∗

imp[J (−)
0 ,R+] → R+ are defined by

σ(x, p, η) = %(x, p, sup{η(t) : t ∈ J0}),

σ̃(x, p, η) = %̃(x, p, sup{η(t) : t ∈ J (−)
0 }).

Then:

1. Inequality (27) is equivalent to

|u(x, y)| ≤ |u(x−, y)|+ %̃(x, |u(x−, y)|, ‖u(x−,y)‖0), (x, y) ∈ Eimp∪∂0Eimp.

2. Estimates (23) and (33) are equivalent to

f(x, y, p, w, 0, 0) sign p ≤ %(x, |p|, ‖w‖0),

(f(x, y, p, w, q, s)− f̃(x, y, p, w, q, s)) sign(p− p) ≤ %(x, |p− p|, ‖w − w‖0),
|g(x, y, p, w)− g̃(x, y, p̄, w)| ≤ %̃(x, |p− p|, ‖w − w‖0).

3. If we assume that η̃ ∈ C(J0,R+) is non-decreasing on J0 then the
problem (22) is equivalent to

α′(x) = %(x, α(x), α(x)), x ∈ J \ Jimp,

α(0) = η̃(0),
∆α(x) = %̃(x, α(x−), α(x−)), x ∈ Jimp.
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