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ROBUST CONTROL OF LINEAR STOCHASTIC SYSTEMS

WITH FULLY OBSERVABLE STATE

Abstract. We consider a multidimensional linear system with additive
inputs (control) and Brownian noise. There is a cost associated with each
control. The aim is to minimize the cost. However, we work with the
model in which the parameters of the system may change in time and in
addition the exact form of these parameters is not known, only intervals
within which they vary are given. In the situation where minimization of
a functional over the class of admissible controls makes no sense since the
value of such a functional is different for different systems within the class,
we should deal not with a single problem but with a family of problems. The
objective in such a setting is twofold. First, we intend to establish existence
of a state feedback linear robust control which stabilizes any system within
the class. Then among all robust controls we find the one which yields the
lowest bound on the cost within the class of all systems under consideration.
We give the answer in terms of a solution to a matrix Riccati equation and
we present necessary and sufficient conditions for such a solution to exist.
We also state a criterion when the obtained bound on the cost is sharp, that
is, the control we construct is actually a solution to the minimax problem.

1. Introduction. The classical stochastic control theory deals with
a stochastic system in which the uncertainty is of exogenous type and is
described by a stochastic process with known characteristics. In addition
to the exogenous stochastic process the dynamics of such a system depends
on the control functional (policy) which can be chosen within an a priori
known class. Usually there is a cost associated with each control functional.
The objective is to find the minimal cost and the minimizing (optimal)
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functional. By and large such problems are solved by dynamic programming
methods and by analyzing the corresponding Bellman equation ([2], [5]).

However, there are a lot of applications in which the main uncertainty is
not of a probabilistic type. It is of internal nature, lying with one’s inability
to determine explicitly the parameters of the system. Usually this uncer-
tainty is specified by the intervals which the coefficients of the system belong
to. Optimizing the value of the cost functional for the system whose param-
eters are unknown (and therefore the value to be optimized is unknown as
well) makes no sense. Rather it is reasonable to look at the largest possi-
ble cost corresponding to different values of the system parameters. Thus
one can seek the control which stabilizes the system for any values of the
parameters and whose performance for the worst case scenario is the best.
In other words, one looks for a control which is robust for a whole class of
systems. This is where the notion of robust control comes from ([11], [3],
[7], [12].)

In many dynamical systems, however, both of the above features are
present. Namely, there are exogenous random disturbances as well as un-
certainties in the parameters (the so-called mixed uncertainties [4], [6]). The
novelty of this paper is in developing robust control for the systems with
mixed uncertainties, which will be called stochastic robust control in the
sequel. We consider the case with the exogenous stochastic process being
Brownian motion and the state equation being linear with unknown time
dependent coefficients. However, the intervals which the values of these
coefficients belong to are known.

The cost associated with a control is given by an integral functional.
As always due to the uncertainty in the state equation coefficients, one
cannot find an unequivocal expression for the value of the cost functional
for such a problem. Instead we consider the whole class of problems with
state equation coefficients subject to the same constraints as in our original
problem. We are able to identify the control within the class of linear state
feedback strategies and calculate a bound on its performance. We also find
the control with minimal bound. The obtained policy is determined via a
nonnegative solution of an algebraic matrix Riccati equation. We use the
results of [10] to give necessary and sufficient conditions for existence of such
a solution. These conditions are described in terms of data of the problem
and allow one to identify those problems for which linear state feedback
stochastic robust control can be constructed.

In the next section we introduce the basic definitions and formulate
the main result. We also give a bound on the cost. Our main tools are
martingale techniques, stochastic integration and algebraic matrix Riccati
equations. In the last section we study the criterion for existence of a non-
negative solution to the matrix Riccati equation. This enables us to specify
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those sets of data for which one can guarantee existence of a robust control.
We also present a condition on “sharpness” of the upper bound obtained in
the previous section.

2. Basic notions and formulation of the main result. We start
with a probability space (Ω,Ft,P) and a q-dimensional Ft-adapted Brown-
ian motion w(t) on this space. The dynamics of the system under control is
given by the following stochastic differential equation:

dx(t) = [A(t)x(t) + B1(t)u(t)] dt + B2(t)dw(t),(1)

z(t) = C(t)x(t), t ≥ 0,(2)

x(0) = x0 ∈ R
n.(3)

Here

• x(t) ∈ R
n is the state of the system at time t ∈ R+ := {t : t ≥ 0},

• x0 is a known initial position,

• {u(t)}t∈R+
∈ R

m is an Ft-adapted stochastic process called a policy,
which represents the controllable input into the system,

• z(t) ∈ R
r is the output, characterizing the current value of the perfor-

mance index,

• A(t) ∈ R
n×n, B1(t) ∈ R

n×m, B2(t) ∈ R
n×q, C(t) ∈ R

r×n are real-
valued matrix functions defined for any t ≥ 0,

• {w(t)}t∈R+
is a q-dimensional Brownian motion which plays a role of

random disturbance input into the system and for which

[w(t) − w(s)] ∼ N (0, Θ(t − s)), Θ = ΘT > 0.

Let A0 ∈ R
n×n, B10 ∈ R

n×m, ∆A ∈ R
n×n, ∆B1

∈ R
n×n, B2 ∈ R

n×n,
C0, C ∈ R

n×n, ηA ∈ R
n×n, ηB1

∈ R
n×n (ηA = ηT

A > 0, ηB1
= ηT

B1
> 0) be

given. Let K be the class of 4-tuples of matrix functions defined below:

K = {(A(t), B1(t), B2(t), C(t)) : A(t) = A0 + ∆A(t), ∀t

∆A(t)ηA∆A(t)T ≤ ∆A,

B1(t) = B10 + ∆B1(t),

∆B1(t)ηB1
∆B1(t)

T ≤ ∆B1
,

B2(t)B2(t)
T ≤ B2,

0 < C0 ≤ C(t)T C(t) ≤ C}.

The matrix functions A(t), B1(t), B2(t), C(t) in the equations (1), (2) are
not known. It is only assumed that they are measurable functions of t

and (A(t), B1(t), B2(t), C(t)) ∈ K. With each such system and each policy
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{u(t)}t∈R+
we associate the costs

Ja
x0

(u) := lim sup
T→∞

E

{

1

T

T\
0

[z(t)T z(t) + u(t)T Λu(t)] dt

}

,

Jp
x0

(u) := lim sup
T→∞

1

T

T\
0

[z(t)T z(t) + u(t)T Λu(t)] dt.

Here Λ = ΛT > 0 is an a priori given constant matrix which characterizes
weights of control actions in the general cost (5) and E{·} is the expectation
operator with respect to the measure P.

Our aim is to minimize the maximum (or supremum) of this cost func-
tional over the class of problems with matrix function coefficients belonging
to the class K. However, in this minimax problem we will consider not all
policies {u(t)}t∈R+

but only those which at each moment t ≥ 0 can be rep-
resented as a linear function of the state x(t) of the system given by (1). (In
this case the classical theory of stochastic differential equations [1] guaran-
tees existence and uniqueness of an Ft-adapted solution x(t) to (1)). Such
type of control will be called state feedback linear control.

In addition we require our policies to be stabilizing according to the
definitions below.

Definition 1. A policy {u(t)}t∈R+
is called stabilizing on average if

lim sup
T→∞

E

{

1

T

T\
0

x(t)T x(t) dt

}

< ∞.

Definition 2. A policy {u(t)}t∈R+
is called stabilizing almost surely if

lim sup
T→∞

1

T

T\
0

x(t)T x(t) dt
a.s.
< ∞.

We denote by Ua the class of all linear feedback policies by U , the class
of all linear feedback policies stabilizing on average, and by Up the class of
all linear feedback stabilizing almost surely.

Define

J∗
a := inf

{u(t)}t∈R+
∈Ua

sup
K

Ja
x0

(u),(6)

J∗
p := inf

{u(t)}t∈R+
∈Up

sup
K

Jp
x0

(u).(7)

The objective is:

• to obtain an upper bound on J∗
a and J∗

p , i.e.

J∗
a ≤ C1(Θ), J∗

p

a.s.
≤ C2(Θ),
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• to find the conditions when it is sharp, i.e.

J∗
a = C1(Θ), J∗

p
a.s.
= C2(Θ).

Theorem 1. Suppose that

(8) R0 := BT
10Λ

−1B10 − ∆A − ∆B1
> 0.

If there exists a symmetric nonnegative matrix solution P = PT ≥ 0 of the

matrix Riccati equation

(9) PA0 + AT
0 P + PR0P + Q0 = 0,

where

(10) Q0 := η−1
A + C,

then the policy

(11) u(t) = u(t) := −(Λ + η−1
B1

)−1BT
10Px(t)

is stabilizing on average and almost surely. In addition, the following upper

bounds hold :

(12) J∗
a ≤ C1(Θ), J∗

p

a.s.
≤ C2(Θ)

with

(13) C1(Θ) = C2(Θ) = lim sup
T→∞

1

2T

T\
0

tr{B2(t)ΘB2(t)
T P} dt.

P r o o f. Using Ito’s formula we calculate the differential of the Lyapunov
function V (x) = xT Px:

(14) dV (x(t))

= 2x(t)T Pdx(t) + I(t)dt

= 2x(t)T P [A0x(t) + B10u(t)]dt + I(t)dt

+ 2x(t)T PB2(t)dw(t) + 2x(t)T P [∆A(t)x(t) + ∆B1(t)u(t)]dt,

where

I(t) := 1
2 tr{B2(t)ΘB2(t)

T P}.

The following matrix inequality is true for any matrices X,Y and Λ= ΛT >0:

(15) XT Y + Y T X ≤ XT ΛX + Y T Λ−1Y.

From (15) we get (the matrix Λ0 below will be chosen later)

2x(t)T P∆A(t)x(t) = 2(∆A(t)T
Px(t), x(t))

≤ x(t)T [P∆A(t)ηA∆A(t)
T
P ]x(t) + x(t)T η−1

A x(t)

≤ x(t)T [P∆AP + η−1
A ]x(t),
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2x(t)T P∆B1(t)u(t) = 2(∆B1(t)
T
Px(t), u(t))

≤ x(t)T P∆B1(t)ηB1
∆B1(t)

T
Px(t) + u(t)T η−1

B1
u(t)

≤ x(t)T P∆B1
Px(t) + u(t)T η−1

B1
u(t),

and also

2x(t)T PA0x(t) = x(t)T [PA0 + AT
0 P ]x(t),

2x(t)T PB10u(t) = ‖Λ
−1/2
0 BT

10Px(t) + Λ
1/2
0 u(t)‖2

− x(t)T PB10Λ
−1
0 BT

10Px(t) − u(t)T Λ0u(t).

Substituting these relations into (14), we derive

dV (x(t)) = 2x(t)T Pdx(t) + I(t)dt(16)

≤ x(t)T [PA0 + AT
0 P + PR0P + Q0]x(t)dt + I(t)dt

+ ‖Λ
−1/2
0 BT

10Px + Λ
1/2
0 u‖2dt + 2x(t)T PB2(t)dw(t)

− ‖z(t)‖2dt + u(t)T [η−1
B1

− Λ0]u(t)dt.

Choose Λ0 := η−1
B1

+ Λ. Then, in view of (9), in (16) we have

x(t)T (PA0 + AT
0 P + PR0P + Q0)x(t) = 0.

Also, the choice of the matrix Λ0 and the control (11) implies

‖Λ
−1/2
0 BT

10Px + Λ
1/2
0 u‖2 = 0.

Hence,

(17) dV (x(t)) ≤ I(t)dt + 2x(t)T PB2(t)dw(t) − ‖z(t)‖2dt − u(t)T Λu(t)dt.

Integrating (17) from 0 to T and taking into account that V (x(T )) ≥ 0, we
deduce

(18)
1

T

T\
0

[‖z(t)‖2 + u(t)T Λu(t)] dt

≤
1

T

T\
0

I(t) dt +
1

T

T\
0

2x(t)T PB2(t) dw(t) −
1

T
V (x(T )) +

1

T
V (x(0))

≤
1

T

T\
0

I(t) dt +
1

T

T\
0

2x(t)T PB2(t) dw(t) +
1

T
V (x(0)).

Hence,

(19) lim sup
T→∞

E

{

1

T

T\
0

[‖z(t)‖2 + u(t)T Λu(t)] dt

}

≤ lim sup
T→∞

1

T

T\
0

I(t) dt
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and

(20) lim sup
T→∞

1

T

T\
0

[‖z(t)‖2 + u(t)T Λu(t)] dt
a.s.
≤ lim sup

T→∞

1

T

T\
0

I(t) dt + I0,

where

I0 := lim sup
T→∞

1

T

T\
0

2x(t)T PB2(t) dw(t).

Inequalities (19)–(20) imply that our policy is stabilizing on average and

(21) J∗
a ≤ C1(Θ), J∗

p

a.s.
≤ C2(Θ) + I0.

To conclude the proof we need to show

(22) I0
a.s.
= 0.

First notice that from the inequality (19) and the assumption (4) it
follows that

lim sup
T→∞

1

T

T\
0

E{‖x(t)‖2} dt ≤ λ−1
min(C0) lim sup

T→∞

1

T

T\
0

E{‖z(t)‖2} dt(23)

≤ λmax(C0)
−1 lim sup

T→∞

1

T

T\
0

I(t) dt < ∞

(here λmin(·) and λmax(·) are the minimal and maximal eigenvalues of the
relevant matrices). Therefore there exists a constant k > 0 such that

(24) F (T ) :=

T\
0

E{‖x(t)‖2} dt ≤ k(T + 1).

Notice that

tr{B2(t)ΘB2(t)
T P} ≤ λmax(Θ) tr{B2P} = const < ∞.

Hence, we can conclude from (19), (21), (23) that J∗
a ≤ const < ∞ uni-

formly in the class K. Thus the policy {u(t)}t∈R+
is stabilizing on average,

i.e., {u(t)}t∈R+
∈ Ua.

Now consider
T\
0

(t + 1)−2
E{‖x(t)‖2} dt =

T\
0

(t + 1)−2dF (t)(25)

= (T + 1)−2F (T ) + 2

T\
0

(t + 1)−3F (t) dt.

In view of (24) the right hand side of (25) does not exceed
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k(T + 1)−1 + 2k

T\
0

(t + 1)−2 dt.

Letting T → ∞ yields

(26)

∞\
0

(t + 1)−2
E{‖x(t)‖2} dt < ∞.

Define the process

(27) S(t) :=
1

t

t\
0

2x(τ)T PB2(τ) dw(τ)

and consider the sequence sn := S(n). Note that

sn =

(

n − 1

n

)

1

n − 1

[

n−1\
0

2x(τ)T PB2(τ) dw(τ)

+

n\
n−1

2x(τ)T PB2(τ) dw(τ)
]

=

(

1 −
1

n

)

sn−1 +
1

n

n\
n−1

2x(τ)T PB2(τ) dw(τ).

Therefore

E{s2
n | Fn−1}

a.s.
≤

(

1 −
1

n

)

s2
n−1

+
4

n2

n\
n−1

E{x(τ)T PB2(τ)ΘB2(τ)T Px(τ) | Fn−1} dτ,

where Fn−1 = σ(w(τ), τ ≤ n − 1). Notice that
∞
∑

n=1

1

n2

n\
n−1

E{x(τ)T PB2(τ)ΘB2(τ)T Px(τ) | Fn−1} dτ
a.s.
< ∞.

if

(28)

∞
∑

n=1

1

n2

n\
n−1

E{x(τ)T PB2(τ)ΘB2(τ)T Px(τ)} dτ < ∞.

Since
∞
∑

n=1

1

n2

n\
n−1

E{x(τ)T PB2(τ)ΘB2(τ)T Px(τ)} dτ

≤ sup
t

λmax(PB2(t)ΘB2(t)
T P )

∞
∑

n=1

1

n2

n\
n−1

E{‖x(τ)‖2} dτ
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≤ const

∞
∑

n=1

(

1 +
1

n

)2
1

(n + 1)2

n\
n−1

E{‖x(τ)‖2} dτ

≤ const

∞
∑

n=1

4

n\
n−1

1

(τ + 1)2
E{‖x(τ)‖2} dτ

= 4const

∞\
0

1

(τ + 1)2
E{‖x(τ)‖2} dτ,

inequality (28) follows from (26).

Let us now use the following Robbins–Siegmund lemma (see [8]).

Lemma 1. Let {Fn} be a sequence of σ-algebras and xn(ω), αn(ω), βn(ω)
and ξn(ω) be Fn-measurable nonnegative random variables on a probabil-

ity space (Ω,F ,P) such that for all n = 1, 2, . . . , E{xn+1(ω) | Fn} exists

and

E{xn+1(ω) | Fn} ≤ xn(ω)(1 + αn(ω)) + βn(ω) − ξn(ω)

with probability 1. Then, for all ω ∈ Ω0, where

Ω0 =
{

ω ∈ Ω
∣

∣

∣

∞
∑

n=1

αn(ω) < ∞,

∞
∑

n=1

βn(ω) < ∞
}

the limit limn→∞ xn(ω) = x∗(ω) exists and

∞
∑

n=1

ξn(ω) < ∞.

The lemma implies the existence of s∗
a.s.
< ∞ such that limn→∞ sn = s∗.

In addition, the same lemma yields

∞
∑

n=1

1

n
s2

n−1

a.s.
< ∞.

Since the harmonic series is divergent, there exists a subsequence nk (maybe
depending on ω ∈ Ω) such that limk→∞ snk

= 0. Hence

(29) s∗
a.s.
= 0.

Now we prove that

(30) lim
t→∞

S(t)
a.s.
= 0.

Put
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ζn := sup
t∈[n,n+1)

|S(t) − sn|

= sup
t∈[n,n+1)

∣

∣

∣

∣

1

n

t\
n

2x(τ)T PB2(τ) dw(τ)

+

(

1

t
−

1

n

) t\
0

2x(τ)T PB2(τ) dw(τ)

∣

∣

∣

∣

.

Obviously,

ζn ≤ sup
t∈[n,n+1)

∣

∣

∣

∣

1

n

t\
n

2x(τ)T PB2(τ) dw(τ)

∣

∣

∣

∣

+
1

n2
sup

t∈[n,n+1)

∣

∣

∣

t\
0

2x(τ)T PB2(τ) dw(τ)
∣

∣

∣
.

Thus,

P{ζn ≥ ε} ≤ ε−2
E{ζ2

n}(31)

≤ 2ε−2

(

1

n2
E

{[

sup
t∈[n,n+1)

∣

∣

∣

t\
n

2x(τ)T PB2(τ) dw(τ)
∣

∣

∣

]2}

+
1

n4
E

{[

sup
t∈[0,n+1)

∣

∣

∣

t\
0

2x(τ)T PB2(τ) dw(τ)
∣

∣

∣

]2}
)

.

By (24) and Doob’s inequality (see [9]) the right hand side of (31) does not
exceed (below const stands for a generic constant whose value may differ in
different lines)

8ε−2

(

1

n2
E

{

n+1\
n

4x(τ)T PB2(τ)ΘB2(τ)T Px(t) dτ
}

+
1

n4
E

{

n+1\
0

4x(τ)T PB2(τ)ΘB2(τ)T Px(t) dτ
}

)

≤ ε−2 const

[

1

n2

n+1\
n

E{‖x(τ)‖2} dτ +
1

n4

n+1\
0

E{‖x(τ)‖2} dτ

]

= ε−2 const

[

1

n2

n+1\
n

E{‖x(τ)‖2} dτ +
1

n4
F (n + 1)

]

≤ ε−2 const

[(

1 +
2

n

)2
1

(n + 2)2

n+1\
n

E{‖x(τ)‖2} dτ +
1

n4
k(n + 2)

]
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≤ ε−2 const

[

1

(n + 2)2

n+1\
n

E{‖x(τ)‖2} dτ +
1

n3

]

≤ ε−2 const

[ n+1\
n

1

(τ + 1)2
E{‖x(τ)‖2} dτ +

1

n3

]

.

Therefore,

∞
∑

n=1

P{ζn ≥ ε} ≤ ε−2 const

∞
∑

n=1

[ n+1\
n

1

(τ + 1)2
E{‖x(τ)‖2} dτ +

1

n3

]

= ε−2 const

[ ∞\
1

1

(τ + 1)2
E{‖x(τ)‖2} dτ +

∞
∑

n=1

1

n3

]

< ∞,

by (26). The Borel–Cantelli lemma implies limn→∞ ζn
a.s.
= 0. This together

with (29) yields (30).

Since limt→∞ S(t) = I0 we have proved (20). In view of assumption (4),
inequality (20) and equality (22) we conclude that the policy {u(t)}t∈R+

given by (11) is stabilizing almost surely, i.e., {u(t)}t∈R+
∈ Up.

3. Existence of a solution to the Riccati equation. Sharpness

of the bound. The following theorem provides a criterion for existence
of a nonnegative solution for the algebraic matrix Riccati equation of the
previous section.

Theorem 2. Suppose A0 ∈ R
n×n and 0 < R0 = RT

0 ∈ R
n×n and

0 ≤ Q0 = QT
0 ∈ R

n×n are defined by (8) and (10). Let the pair (A0, R
1/2
0 )

be stabilizable and the pair (Q
1/2
0 , A0) be observable. Then the matrix Riccati

equation (9)

PA0 + AT
0 P + PR0P + Q0 = 0

has a unique positive solution 0 < P = PT if and only if the frequency

condition

(32) I − R0
1/2[−iωI + AT

0 ]−1Q0[iωI + A0]
−1R0

1/2 ≥ 0

is satisfied for any ω ∈ (−∞,∞), ω 6= ωj , where iωj (j = 1, . . . ,N) are the

eigenvalues of A0.

This theorem is a direct consequence of Lemma 5 of [10].

Theorem 3. The upper bound (12) is sharp (attainable) if ∅ 6= K0 ⊆ K,
where
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K0 := {(A(t0), B1(t0), B2(t0), C(t0)) : ηA∆AT (t0)P = I,

∆A(t0)ηA∆AT (t0) = ∆A, ηB1
∆BT

1 (t0) = [Λ + η−1
B1

]−1BT
10,

∆B1(t0)ηB1
∆BT

1 (t0) = ∆B1
, CT (t0)C(t0) = C,

B
1/2
2 (B

1/2
2 )T = B2, B2(t0) = B

1/2
2 U, for a unitary matrix U}.

P r o o f. The matrix inequality (15) is tight if Y = ΛX. Repeating
the proof of Theorem 1 with inequalities replaced by equalities we get the
statement of Theorem 2.
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