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ALGORITHM FOR TURNPIKE POLICIES
IN THE DYNAMIC LOT SIZE MODEL

Abstract. This article considers optimization problems in a capacitated
lot sizing model with limited backlogging. Nothing is assumed about the cost
function in the case of finite restrictions of the size on the stock and backlogs.
The holding and backlogging costs are functions assumed to be stationary
or nearly stationary in time. In both cases, it is shown that there exists
an optimal infinite inverse policy and a periodical turnpike policy. Some
forward and backward procedures are adopted that determine an optimal
infinite inverse policy and a strong turnpike policy relative to the class of
standard or batch ordering type policies. Some remarks on the existence of
planning and forecast horizons are also given.

1. Introduction. The classic lot size model (Wagner and Whitin
[15]) involves the production of a single product, storage in a warehouse
of unlimited capacity and without backlogging. Various modifications have
been made to this classic model. Some of them include the introduction
of upper bounds on production (on size of the order) or inventory and the
backlogging or stockouts of orders. In the general case, policies of standard
(with Wagner–Whitin property) type and batch ordering type are known
to be “suboptimal”. However, for several reasons these policies are still
attractive and deserve research attention. Under a batch policy, only an
integer multiple of base lot size can be ordered. The more restricted order
size accommodates easy packaging and transportation.

The classical EOQ (economic order quantity) formula is perhaps the
best known decision formula in the production inventory literature. See,
for example, Ackoff et al. [1] for explicit formulas for linear holding and
backlogging cost functions both in backlogging and no backlogging cases.

1991 Mathematics Subject Classification: Primary 90B05; Secondary 90C39.
Key words and phrases: lot size models, forecast horizon, turnpike, networks.

[57]



58 S. Bylka

The stationarity assumption which underlies the EOQ model is that of the
stationary demands and cost parameters over all (infinitely many) periods.
An answer to the question of how many initial periods with stationarity are
sufficient to assure optimality of the EOQ formula for the amount to be
produced in period one, in the case without backlogging, is given by Chand,
Sethi and Proth [6] for linear holding cost. A general answer is that it is
H periods if and only if H is a forecast horizon in the family of all finite
problems with stationarity in the first H periods. The minimal horizon for
the case of nondecreasing holding cost has been found by Bylka and Sethi
[5]. A generalization of the EOQ formula can be given through a turnpike
policy (see also [4]). The purpose of this paper is to show how a forecast
horizon may be obtained for turnpike policies in the capacitated dynamic
lot size model.

Problems of existence of a horizon and a horizontal decision for a family
of dynamic programming problems have been considered in operations re-
search for a long time, in many specialized models, more intuitively or more
precisely. A horizon was formally defined first in a little known but precur-
sory paper of  Loś [10] as well as in the papers of Hinderer and Hübner [8],
Lundin and Morton [12], Lee and Denardo [9] for the deterministic case and
Bes and Sethi [3] for the stochastic case. The ideas presented here can be
combined with their results. Horizon algorithms typically consist of solving
problems of increasing length until some stopping criterion is satisfied. We
refer to Bensoussan, Proth and Queyranne [2]; Ryan, Bean and Smith [13];
and Federgruen and Tzur [7] for a detailed literature review of algorithms in
dynamic models. The problem of finding planning horizons for a single item
capacitated lot size model has been considered by Sandbothe and Thompson
[14] and Lotfi and Yoon [11]. They obtain a forecast horizon for stationary
cost parameters in the case with limitations on production capacity when
stockouts are permitted.

For convenience, we use a graph theory framework in our formulation.
In the network presentation of the model, the EOQ formula corresponds
to a cycle with minimal average cost, i.e. a turnpike. We present a natu-
ral generalization of the EOQ formula in the model with limited backlog-
ging, stockouts and with quantized ordering (see also [16] for the stochastic
case). Additionally, we omit the assumption of linearity of the cost func-
tions. We show that the decision given by turnpike policies can be used
as rolling horizontal procedure with a finite horizon. Moreover, we formu-
late a simple and efficient algorithm to obtain the minimal forecast hori-
zon which has linear time complexity. For those familiar with the theory
of forecast horizons the paper presents an examination of the assumption
of 0-initial inventory and some perturbations of stationarity of initial de-
mands.
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The formulation of the model under study is presented in Section 2. In
Section 3, the networks for stationary cost of arcs are presented. We use
them for finding optimal standard plans and optimal batch ordering plans.
In Section 4 we present definitions and study interaction between turnpike
policies, optimal infinite inverse policies and rolling horizontal plans. Two
algorithms that utilize both the optimality conditions and the turnpike hori-
zon theorems are presented in Sections 5 and 6. The first applies to problems
with stationary cost functions. The second treats the nearly stationary case.
Computational results with the algorithms are given through examples and
in the tables.

2. The dynamic lot size model with limited backlogging. For the
purpose of this paper, we introduce the following version of the capacitated
dynamic lot size model. As usual, Z denotes the set of all integers, while N
is the set of positive integers.

• A demand function for a single product is defined by a sequence
d1, d2, . . . with dt ≥ 0. The demand dt is assumed to occur in time
period t, t ∈ N, and must be satisfied instantaneously.

• The other variables of the model are:
I0 = the initial inventory (at the beginning of period 1),
It = the final inventory in period t and also the initial inventory in
period t + 1,
St = the amount of stockouts incurred in period t,
ut = the amount of production (or ordering) in period t,

• For an infinite production sequence u = (u1, u2, . . .) we write:
u|T = (u1, . . . , uT ), the T -truncation of u (the production T -plan),
T |u = (uT+1, uT+2, . . . , ) the “tail” without the first T coordinates.

A single lot

(1) 0 ≤ ut ≤ u

may be launched in any period t, and inventory is replenished in the same
period t: there is no lead time in production or delivery of the product. The
inventory balance equations are

It = max{−β, It−1 + ut − dt},(2)
−β ≤ It ≤ B,(3)

where β ≥ 0 is the limitation of the size of backlogs and B ≥ 0 is the
limitation of the stock. The shortages of size up to β are allowed and
backordered, so the inventory positions may assume negative values not less
than −β. The part of shortages above β is lost (stockouts).

(4) St = It − (It−1 + ut − dt).
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We set β = +∞ or B = +∞ in the unlimited case. A production plan
u = (u1, u2, . . .) is feasible if (1)–(4) are satisfied.

Finally, we assume that some preferences for the final inventory IT are
given by a function V0 which values final inventories. As an example, if we
want to have IT = 0 then we define

(5) V0(I) =
{ 0 for I = 0,

+∞ otherwise.
In order to define the objective function, we need to introduce the fol-

lowing production and inventory cost functions:

• gt(ut) = the production cost (including the set up cost) in period t,
• ht(It) = the holding cost if It ≥ 0 or the backlogging cost if It < 0 in

period t,
• st(St) = the stockout cost.

The T -periods optimization problem is to find

(6) VT (I0) = min
u|T

{ T∑
t=1

[gt(ut) + ht(It) + st(St)] + V0(IT )
}

subject to (1)–(4) with a given initial inventory I0 and a function V0. The
quantities (u1, . . . , ut) are decision variables. Every plan u|T which realizes
this minimum is called an optimal T -plan. A feasible infinite plan is optimal
if it realizes the minimum of average cost per period.

Let us denote the data in period t as

ξt = (dt, gt, ht, st).

The infinite sequence ξ = (ξ1, ξ2, . . .) will be termed the dynamic parame-
ter of the problem [(ξ|I0), u, (β, B), V0]. The T -truncation ξ|T = (ξ1, . . . , ξT )
with the initial inventory I0, the function V0 and with a given pair (β, B)
of uniform lower and upper bounds on inventories define the problem (6),
(1)–(4) completely. We refer to the problem as the dynamic programming
problem, (d.p.p. (ξ|T, I0) if we investigate finite programs with given other
data).

Definition 1 (of types of production plans). Let u be a feasible pro-
duction plan.

1. Let I0 =
∑i0

t=1 dt for some i0 ≥ 0. If for every t = 1, 2, . . . there exists
it ∈ N such that i0 ≤ i1 ≤ i2 ≤ . . . and

t∑
τ=1

uτ =
it∑

τ=1

dτ

then we say that u is a standard plan.
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2. Let I0 = 0 or let I0 be a multiple of a quantity q (a batch q). If no
partial fill is allowed, i.e. ut ∈ {0, q, 2q, 3q, . . .} for every t = 1, 2, . . . , then
we say that u is q-batch production plan.

We say that a function φ is a production decision function if φ(I) ≥ I
for every I ∈ [−β, B].

A T -tuple f = (f1, . . . , fT ) of production decision functions is called a
T -policy whenever ft is used as the decision function in period t. It is a
feasible policy if the production plan (uf

1 , . . . , uf
T ), where

(7) uf
t = ft(It−1)− It−1 for t = 1, . . . , T ,

is feasible. A policy f is called an optimal T -period policy for ξ if for every
initial inventory I0 its production sequence (uf

1 , . . . , uf
T ) is an optimal T -

plan.
Every feasible standard production plan or batch production plan can

be expressed as a path in a finite directed graph.
We use as assumptions some of the properties given below:

Property 1. There exist two numbers b < 0 < b such that for every
optimal T -plan we have b ≤ It ≤ b for each t ≤ T . Of course, we can take
b = −β, b = B if β or B is finite.

Property 2 (The Wagner–Whitin Property). Every optimal produc-
tion plan is a standard production plan. We then speak of a standard type
problem.

Property 3 (Batch production or ordering). All demands of a dynamic
parameter ξ as well as I0, u, β and B are multiples of a quantity q and every
feasible production plan is a q-batch production plan. We then speak of a
q-batch ordering type problem.

Property 4 (Stationarity). For every t = 1, 2, . . . we have ξt =
(dt, gt, ht, st) = (d, g, h, s).

Property 5 (Nearly stationarity). There exists t0 ∈ N such that for
every t = t0 + 1, t0 + 2, . . . we have ξt = (dt, gt, ht, st) = (d, g, h, s).

Property 6 (Linearity and monotonicity). The production cost is linear
with a given set up cost K ≥ 0 and a given unit cost c ≥ 0. The holding
inventory cost function h(x) is nonincreasing for x ≤ 0 (nondecreasing cost
of backlogging), nondecreasing for x ≥ 0, h(0) = 0 and lim|x|→∞ h(x) =
+∞.

We first observe that Properties 1 and 2 are well known properties of
solutions of lot size models. Properties 4 and 6 imply Property 1 (and also
Property 2 if additionally h is convex). The set of all dynamic programming
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problems [ξ, u, (β, B), V0] which have Property n will be denoted by Ξn for
n = 1, . . . , 6.

3. Networks with stationary costs of arcs. Consider an optimiza-
tion problem with a stationary dynamic parameter ξt = (d, g, h, s). It can
be represented as a shortest path problem. More precisely, it is the problem
of finding a cheapest path of given length in:

1) a network Gξ whose paths corespond to standard production plans,
and

2) a network Gq
ξ whose paths corespond to q-batch production plans.

Assume the problem has Properties 1 and 3 with

(8) d = i∗q, for some natural i∗, and I0 = i0q, u = kq, b = mq, b = Mq

for some natural i0, k, m and M . We define the network Gq
ξ such that

W q
ξ = {i ∈ Z | m ≤ i ≤ M}

and
Eq

ξ = {(i, j) ∈ W q
ξ ×W q

ξ | 0 ≤ j − i + i∗ ≤ k}
are the set of nodes and the set of arcs, respectively. It is easy to see that
in nontrivial cases all these networks have loops, i.e. (i, i) ∈ Eq

ξ for each
node i.

Each arc (i, j) has arc cost value

(9) Cq
ξ (i, j)

=

{
g[(j − i)q + d] + h(jq) for j > m,

min
0≤k≤m−i+i∗

[g(kq) + s((m− i + i∗ − k)q) + h(mq) for j = m.

If P = (i0, i1, . . . , iT ) is a path of length T and it > m for each t, then
it coresponds to the production T -plan

u|T = ((i1 − i0 + i∗)q, (i2 − i1 + i∗)q, . . . , (iT − iT−1 + i∗)q).

Each node it corresponds to the inventory It = itq. If it = m for some t then
the production ut may be less than (it − it−1 + i∗)q because of stockouts.
The cost value of the path P is defined as usual to be the sum

(10) Cq
ξ (P ) =

T∑
t=1

Cq
(t−1)|ξ(it−1, it)

and it is equal to the cost of the corresponding production T -plan.
It is easy to see that if q = d then standard production plans correspond

to paths in the network Gd
ξ . We have Gξ = Gd

ξ in the stationary parameter
case.
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R e m a r k 1. Assume the problem has Property 1. Then:

1) Every problem of standard type or q-batch production type is equiva-
lent to the problem of finding an optimal path of given length in the network
Gξ or Gq

ξ, respectively.
2) We can use the network Gξ or Gq

ξ even if the problem is neither
of standard type or q-batch type. Optimal paths correspond to the best
standard plans or the best q-batch production plans, respectively.

Assume that we have a network Gq
ξ and i∗ satisfies (8). A decision

function is a function φ such that (similarly to (7)) (i, max{φ(i) − i∗,m})
is an arc for each node i ∈ W q

ξ . Therefore, every T -policy f = (f1, . . . , fT )
determines the path i0, . . . , iT such that

it = max{ft(it−1)− i∗,m} for t = 1, . . . , T

for any given node i0.

R e m a r k 2. In fact, the decision in the network is the arc (i, max{φ(i)−
i∗,m}). It is convenient to speak of φ as a decision function because poli-
cies in networks correspond to standard or batch ordering policies in the
inventory model.

Example 1. Consider the d.p.p. [(ξ, I0), u, (β, B), V0] ∈ Ξ4∩Ξ6. Specif-
ically, β = 2, B = +∞, d = 2, I0 = 0, V0 is defined by (5), s(x) = x + 2,
g(x) = 5 if x > 0 and g(0) = 0 and

h(x) =
{

x for x ≥ 0,
x2 for −2 ≤ x ≤ 0.

We have [(ξ, I0), u, (β, B), V0] ∈ Ξ1 because Property 1 is satisfied for b = −2
and b = 6. We can use the network G1

ξ with W 1
ξ = {i ∈ Z | −2 ≤ i ≤ 6}.

For u = 3 we have

E1
ξ = {(i, j) | −2 ≤ i ≤ 6, −2 ≤ j ≤ 6 and |j − i| ≤ 1 or j = 2}.

with costs of edges

C1
ξ ((i, j)) =


|i| for j = i− 2, j 6= −2,
5 + |i| for j ≥ i− 1, j 6= −2,
6− i for j = −2, i < 0,
4 for (i, j) = (0,−2).

4. Turnpike policies and infinite inverse optimal policies. All
notions which will be defined below can be considered with respect to stan-
dard policies or batch policies in the model (optimal relatively to the class
of standard policies or batch policies, respectively).

Definition 2. An infinite sequence π = (π1, π2, . . .) of decision func-
tions is a (T0, T

0)-turnpike policy if for every T ≥ T0 + T 0 there exist
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0 ≤ T1 ≤ T0 and 0 ≤ T 1 ≤ T 0 such that

(f1, . . . , fT1 , π1, . . . , πT−T1−T 1 , fT1+1, . . . , fT1+T 1)

is an optimal T -policy for some decision functions f1, . . . , fT1+T 1 . If ad-
ditionally T0 = 0 then we say π = (π1, π2, . . .) is a rolling T 0-horizontal
policy.

The notions defined above can be considered with respect to production
policies in an inventory model or to policies in the network. In the stationary
case, a sequence of quantities u∗ = (u∗1, u

∗
2, . . .) is a rolling T 0-horizontal

plan (see also Lee and Denardo [9]) for (ξ, I0) iff for every T ≥ T 0 there
exists an optimal T -plan u = (u1, . . . , uT ) such that u|(T − T 0) = u∗|(T −
T 0). Analogously to the notion of rolling T 0-horizontal plan, one can define
a rolling T 0-horizontal path for a node i0 in networks. It is easy to see
that every rolling horizontal policy defines rolling horizontal paths for every
node i0.

Definition 3. Let (f1, . . . , fT 0) be a finite sequence of decision func-
tions and n ≥ 0 be an integer. A finite sequence π = (π1, . . . , πτ ) of decision
functions will be called an (n, T 0)-strong turnpike policy if there exists a
collection of sequences (fr

1 , . . . , fr
n) for r = 1, . . . , τ such that for every T if

T = T 0 + n + kτ + r for some nonnegative integer k, then the policy

(fr
1 , . . . , fr

n, πτ−r+1, . . . , πτ , π1, . . . , πτ , . . . , π1, . . . , πτ , f1, . . . , fT 0)

is an optimal T -policy.

Also, we write briefly (π1, . . . , πτ , π1, . . . , πτ , . . . , ) ≡ (π, π, . . .).
In the stationary forecast case, infinite inverse policies are very useful.

Definition 4. We say that an infinite sequence f = (f1, f2, . . .) of
decision functions is an infinite inverse optimal policy for a d.p.p. ξ iff for
every T ∈ N, the policy (fT , tT−1, . . . , f1) is an optimal T -policy for the
d.p.p. ξ.

Immediately from the definitions given above we have:

Proposition 1. If π∗ = (π∗1 , . . . , π∗τ ) is an (n, T 0)-strong turnpike policy
for a d.p.p. ξ then the infinite sequence π = (π∗, π∗, . . .) is an (n + τ, T 0)-
turnpike policy for ξ.

Proposition 2. If π = (π1, π2, . . .) is an infinite inverse optimal policy
for a d.p.p. ξ, ξ ∈ Ξ4, and a “tail” of π is periodical , i.e. πt+τ = πt

for every t ≥ T 0, then the finite sequence π∗ = (π∗T 0+τ , . . . , π∗T 0+1) is a
(0, T 0)-strong turnpike policy for the d.p.p. ξ. If additionally τ = 1 then
π = (π∗, π∗, . . .) is a rolling T 0-horizontal policy.

Turnpike policies are closely connected with cycles with minimal average
cost. In the case without backlogs Chand et al. [6] (see also [5]) show that
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there exists a forecast horizon for the EOQ formula determined by simple
cycles with minimal average cost (also named turnpikes).

5. A simple algorithm for finding infinite inverse optimal poli-
cies in the stationary case. Assume [ξ, u, (β, B), V0] ∈ Ξ4 ∩ Ξ6 and
ξt = (d, g, h, s) for every t = 1, 2, . . . As above d = i∗q and u = kq, b = mq,
b = Mq as in (8). We use the network Gq

ξ.
Let

• Vt(i) be the total cost of an optimal t-policy as a function of the initial
node i (the initial inventory iq),

• f0 be the “passive” decision function, i.e. f0(i) = max{i− i∗,m},
• Lt(i) express the total cost when we use the following t-policy: in the

first period f0 is used (no order is placed), in subsequent periods an
optimal (t− 1)-policy is used.

We have for t = 1, 2, . . . ,

(11) Lt(i) = Cq
ξ (i, f0(i)) + Vt−1(f0(i)) = h̃(f0(i)q) + Vt−1(f0(i)),

where

h̃(x) =
{

h(x) for x ≥ mq,
h(m) + s(mq − x) for x < mq,

and the total cost

Vt(i) = min
0≤k≤k

Cq
ξ (i, i + k − i∗) + Lt(i + k − i∗)(12)

= min
0≤j−i≤k

[g((j − i)q) + Lt(j − i∗)].

Lemma 1. Assume Property 4. If for every t, the policy f t = (f t
t , . . . , f

t
1)

is an optimal t-policy for ξ then the sequence (f1
1 , f2

2 , f3
3 , . . .) is an infinite

inverse optimal policy for ξ.

P r o o f. The policy k|f t = (f t
t−k, . . . , f t

1) is an optimal (t− k)-policy for
k|ξ = ξ for every natural k < t. Therefore, for every natural t, the policy
(f t

t , f
t−1
t−1 , . . . , f1

1 ) is an optimal t-policy for ξ and the sequence (f1
1 , f2

2 , f3
3 , . . .)

is an infinite inverse optimal policy for ξ.

Theorem 1. Assume Properties 4 and 6 are satisfied. If a decision
function πt realizes the minimum in (12), i.e.

(13) Vt(i) = g((πt(i)− i)q) + Lt(πt(i)− i∗)) for every t = 1, 2, . . . ,

then the sequence π = (π1, π2, . . .) is an infinite inverse optimal policy in
the network Gq

ξ.

P r o o f. It is enough to prove that for every t, the policy πt = (πt, . . . , π1)
is an optimal t-policy for ξ. The proof is by induction with respect to t.
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If t = 1, then π1 is an optimal 1-policy for ξ because (13) holds for t = 1.
Assume that πt−1 is an optimal (t− 1)-policy. From (13) and (11) we have

Vt(i) = g((πt(i)− i)q) + h̃((πt(i)− i∗)q) + Vt−1(πt(i)− i∗).

This implies that for every optimal (t−1)-policy (f1, . . . , ft−1), the policy
(πt, f1, . . . , ft−1) is an optimal t-policy for ξ. From the induction hypothesis
(πt, π

t−1) = πt is also an optimal t-policy. From Lemma 1 the sequence
π = (π1, π2, . . .) is an infinite inverse optimal policy for ξ.

Algorithm 1. Consider the network Gq
ξ with i∗ = (1/q)d. The integers

m,M and k are also given. Calculate

R(i) =
{

h((i− i∗)q) for i = m + i∗, . . . ,M + i∗,
h(mq) + s((m− i + i∗)q) for i = m, . . . ,m + i∗ − 1,

and set Q0(i) = V0(i).

S t e p t (for t = 1, 2, . . .):

1. Compute

Rt(i) =
{

R(i)−Qt−1(i− i∗) for i = m + i∗, . . . ,M + i∗,
R(i)−Qt−1(m) for i = m, . . . ,m + i∗ − 1.

2. Compute
εt = min

m≤j≤M+i∗
Rt(j).

3. Compute, for each i = m, . . . ,M ,

Qt(i) = −εt + min
0≤j−i≤k

[g((j − i)q) + Rt(j)].

4. Define Jt(i) to be the set of all decisions j such that

Qt(i) = −εt + g((j − i)q) + Rt(j) for i = m, . . . ,M.

5. Define Πt to be the set of all decision functions ft such that

ft(i) ∈ Jt(i) for each i = m, . . . ,M.

Every sequence πT = (πT , . . . , π1) of decision functions such that πt ∈ Πt

for each t = 1, . . . , T is an optimal T -policy.

If Qt(i) = Qt′(i) for some t′ < t and for each i = m, . . . ,M then set
τ = t− t′, T 0 = t′ and Stop.

We have QT+τ ≡ QT for every T ≤ T 0. Otherwise go to Step t + 1.

Theorem 2. Algorithm 1 terminates in a finite number of steps. If
QT+τ ≡ QT and πt ∈ ΠT for t = 1, . . . , T 0 + τ then the sequence is a
(0, T 0)-strong turnpike policy in the network Gq

ξ.

P r o o f. Let ∆ be the set of all simple cycles in Gq
ξ with minimal average

cost, say r∗. There exists a natural number T ∗ such that for each node i
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of the network and for every T ≥ T ∗ there exists an optimal T -path of the
following form:

P (i, T ) = (i, i1, . . . , iT ′ , δ, . . . , δ, iT−T ′′ , . . . , iT ),

where δ ∈ ∆ and T ′ + T ′′ < T ∗. Let λ be a multiple of the lengths of all
cycles of ∆. For every T ≥ T ∗ and each node i we have

(14) Cq
ξ (P (i, T + λ)) = Cq

ξ (P (i, T )) + λr∗.

On the other hand (see Steps 2 and 3 of Algorithm 1), we have

(15) VT (i) = QT (i) +
T∑

t=1

εt.

From (14) and (15), for T ≥ T ∗ we have

VT+λ(i) = VT (i) + λr∗

and

QT+λ(i) = VT+λ(i)−
T+λ∑
t=1

εt = QT (i) + λr∗ −
T+λ∑

t=T+1

εt.

If a number j∗ satisfies QT (j∗) = mini QT (i) then

0 = min
i

QT+λ(i) = QT+λ(j∗) = QT (j∗)

and this implies

λr∗ −
T+λ∑

t=T+1

εt = 0.

Therefore, QT (i) = QT+λ(i) for each i = m, . . . ,M , τ = λ and the algorithm
stops. The second part of the theorem follows from Theorem 1. Namely, the
infinite sequence (π1, . . . , πT 0 , π∗, π∗, . . .), where π∗ = (πT 0+1, . . . , πT 0+τ )
and πt ∈ Πt for every t = 1, 2, . . . , is an infinite inverse optimal policy. In
the same manner we can see that for T = T 0 + kτ + r, 1 ≤ r ≤ τ , the policy
(πT 0+r, . . . , πT 0+1, π

∗, . . . , π∗, πT 0 , . . . , π1) is an optimal T -policy. Thus, π∗

is a (0, T 0)-strong turnpike policy, which ends the proof of the theorem.

Actually, the proof above gives more, namely:

Corollary 1. If Algorithm 1 terminates with QT+τ ≡ QT then the
minimal average cost of the infinite horizon problem is equal to

r∗ =
1
τ

T 0+τ∑
t=T 0+1

εt.

Because Algorithm 1 enables us to find all optimal finite stage policies
we can solve the problem of the existence of planning and forecast horizons
(introduced in  Loś [10] and Lundin and Morton [12]). We can now formulate:
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Corollary 2. Let the stationary problem be of standard type (Prop-
erty 2) or q-batch ordering type with an arbitrary q (Property 3). Suppose
Algorithm 1 terminates in step T 0 + τ . Let I0 = i0q be a given initial
inventory position. If there exist ft ∈ Πt such that

ft(i0)q = I0 + u∗1 for each t = T 0 + 1, . . . , T 0 + τ

then u∗1 is a planning horizontal lot size with T 0 as its forecast horizon. On
the other hand , if it is not possible to choose such decision functions then
there is no finite forecast horizon.

Example 1 (continued). Let u = 6 and all other parameters as before.

C a s e 1. We look for optimal policies in the network Gξ = G2
ξ . In this

case k = 3, m = −1 and we can set M = 4.

T A B L E 1

i −1 0 1 2 3 4
R(i) 8 4 0 2 6 8
Q0(i) +∞ 0 +∞ +∞ +∞ +∞
R1(i) +∞ +∞ 0 +∞ +∞ +∞ ε1 = 0
Q1(i) 5∗1 5∗1 0 +∞ +∞ +∞
R2(i) 13 9 5 2 +∞ +∞ ε2 = 2
Q2(i) 5∗2 5∗2 3 0 +∞ +∞
R3(i) 13 9 5 5 4 +∞ ε3 = 4
Q3(i) 6∗1,2 5∗∗3 1 1 0 +∞
R4(i) 14 10 5 3 5 6 ε4 = 3
Q4(i) 5∗2 5∗2 2 0 2 3
R5(i) 13 9 5 4 4 8 ε5 = 4
Q5(i) 5∗2 5∗∗2,3 1 0 0 4
R6(i) 13 9 5 3 4 6 ε6 = 3
Q6(i) 5∗2 5∗2 2 0 1 3

R7+2k(i) 13 9 5 4 4 7 ε7+2k = 4
Q7+2k(i) 5∗2 5∗∗2,3 1 0 0 3
R8+2k(i) 13 9 5 3 4 6 ε8+2k = 3
Q8+2k(i) 5∗2 5∗2 2 0 1 3 ≡ Q6

T A B L E 2

i −1 0 1 2 3 4 > 4
J1(i) {1} {1} {1} {2} {3} {4} {i}
J2(i) {2} {2} {1} {2} {3} {4} {i}
J3(i) {1, 2} {0, 3} {1} {2} {3} {4} {i}
J4(i) {2} {0, 2, 3} {1} {2} {3} {4} {i}
J5(i) {2} {0, 2, 3} {1} {2} {3} {4} {i}
J6(i) {2} {2} {1} {2} {3} {4} {i}

J7+2k(i) {2} {0, 2, 3} {1} {2} {3} {4} {i}
J7+2k(i) {2} {2} {1} {2} {3} {4} {i}
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The steps of Algorithm 1 are presented in Table 1 (Qt(i) = x∗j means
that the decision j > i has already been chosen, Qt(i) = x∗∗j means that
additionally j = i has already been chosen). The sets of all decisions used
in optimal policies in Case 1 are presented in Table 2.

We have Πt+2 = Πt for all t ≥ 4. Let us define π∗ = (π∗1 , π∗2), where the
decision functions have been chosen from Π7 and Π8 as follows:

π∗1(i) =
{

2 for i = −1,
i for i ≥ 0,

and

π∗2(i) =
{

2 for i ∈ {−1, 0},
i for i ≥ 1.

It is easy to see that (π1, π
∗
2 , π∗1 , π∗2 , π∗1 , . . .), π1 ∈ Π1, is an infinite in-

verse optimal policy and, moreover, π∗ is a (0, 1)-strong turnpike policy
in the network Gξ. On the other hand, each policy (π1, π2, π3, π

∗
2 , π∗2 , . . .),

πt ∈ Πt for t = 1, 2, 3, is also infinite inverse optimal. Therefore, π̃ = (π̃1),
where π̃1 = π∗2 is a stationary (0, 3)-strong turnpike policy in Gξ. This turn-
pike policy determines a turnpike of the network—the simple cycle (0, 1, 0)
with minimal average cost 3 1

2 . It also determines the standard production
(0, 3)-strong turnpike policy f∗ = (f∗1 ), where f∗1 (I) = 2π∗2( 1

2I). In fact, it
is a policy for d.p.p.’s with the initial inventory I0 which is a multiple of the
demand d = 2.

Using f∗, for I0 = 0 we obtain the 4-rolling horizon standard production
(ordering) plan (4, 0, 4, 0, . . .).

C a s e 2. We look for optimal policies in the network G1
ξ . In this case

k = 6, m = −2 and we can set M = 7. Steps of Algorithm 1 and the sets
of decisions used in optimal policies are presented in Table 3 and Table 4,
respectively.

We have Πt+3 = Πt for all t ≥ 8. Let us define π∗ = (π∗1), where the
decision function has been chosen from Π8 ∩Π9 ∩Π10 as follows:

π∗1(i) =

{ 4 for i = −2,
5 for i = −1, 0,
i for i ≥ 1.

It is easy to see that (π1, π2, . . . , π6, π
∗
1 , π∗1 , . . .), where πt ∈ Πt for each

t = 1, . . . , 6, is an infinite inverse optimal policy for every T > 6. Moreover,
π∗ is a stationary (0, 6)-strong turnpike policy in the network G1

ξ . This
turnpike policy determines the simple cycle (1,−1, 3, 1) with minimal aver-
age cost 3 1

3 . It also determines a (0, 7)-strong turnpike 1-batch production
policy f∗ = (f∗1 ), where f∗1 (I) = π∗1(I), given in (16). In fact, it is a policy
for d.p.p.’s with the initial inventory I0 which are integers. For I0 = 0 we
have the 7-rolling horizon 1-batch production plan (5, 0, 0, 6, 0, 0, 6, 0, 0, . . .).
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T A B L E 3

i −2 −1 0 1 2 3 4 5 6 7 εt
R(i) 8 7 4 1 0 1 2 3 4 5
Q0(i) ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
R1(i) ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 0
Q1(i) 5∗2 5∗2 5∗2 5∗2 0 ∞ ∞ ∞ ∞ ∞
R2(i) 13 12 9 6 5 6 2 ∞ ∞ ∞ 2
Q2(i) 5∗4 5∗4 5∗4 4 3 4 0 ∞ ∞ ∞
R3(i) 13 12 9 6 5 5 5 7 4 ∞ 4
Q3(i) 6∗2,3,4 6∗2,3,4 5∗∗6 2 1 1 1 3 0 ∞
R4(i) 14 14 10 7 5 3 3 4 5 8 3
Q4(i) 5∗3,4 5∗3,4 5∗3,4 4 2 0 0 1 2 5
R5(i) 13 12 9 6 4 5 4 3 4 6 3
Q5(i) 6∗2,4 5∗5 5∗5 3 1 2 1 0 1 3
R6(i) 14 13 10 6 5 4 3 5 5 5 3
Q6(i) 5∗4 5∗4 5∗4 3 2 1 0 2 2 2
R7(i) 13 12 9 6 5 4 4 4 5 5 4
Q7(i) 5∗3,4 5∗∗3,4,5 5∗3,4,5 2 1 0 0 0 1 1

R8+3k(i) 13 12 9 6 5 3 3 3 4 5 3
Q8+3k(i) 5∗3,4 5∗3,4,5 5∗3,4,5 3 2 0 0 0 1 2
R9+3k(i) 13 12 9 6 5 4 4 3 4 5 3
Q9+3k(i) 6∗2,4 5∗5 5∗5 3 2 1 1 0 1 2
R10+3k(i) 14 13 10 6 5 4 4 4 5 5 4
Q10+3k(i) 5∗3,4 5∗3,4,5 5∗3,4,5 2 1 0 0 0 1 1

T A B L E 4

i −2 −1 0 1 2 ≥ 3
J1(i) {2} {2} {2} {2} {2} {i}
J2(i) {4} {4} {4} {1} {2} {i}
J3(i) {2, 3, 4} {2, 3, 4} {0, 6} {1} {2} {i}
J4(i) {3, 4} {3, 4} {3, 4} {1} {2} {i}
J5(i) {2, 4} {5} {5} {1} {2} {i}
J6(i) {4} {4} {4} {1} {2} {i}
J7(i) {3, 4} {3, 4, 5} {0, 3, 4, 5} {1} {2} {i}

J8+3k(i) {3, 4} {5} {5} {1} {2} {i}
J9+3k(i) {3, 4} {3, 4, 5} {3, 4, 5} {1} {2} {i}
J10+3k(i) {3, 4} {3, 4, 5} {3, 4, 5} {1} {2} {i}

6. Turnpike policies for nearly constant dynamic parameter.
In this section we assume [ξ, u, (β, B), V0] ∈ Ξ1 ∩ Ξ5. Now we consider
a more general situation, where the dynamic parameter is stationary ex-
cept in a few first periods, i.e. there exists a positive integer t0 such that
t0|ξ = (ξt0+1, ξt0+2, . . .) is stationary. This is more interesting in practice
because a few first nonstationary periods can simulate an adaptation of a
stationary problem. Note that the networks Gq

ξ with the dynamic cost of
paths (as in (10)) may be used. Therefore, we rewrite all formulas of Step t of
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Algorithm 1 to obtain the following algorithm for finding optimal T -policies
for a nearly stationary dynamic parameter:

Algorithm 2. Consider the network Gq
ξ, ξt = (dt, gt, ht, st) with ξt =

(d, g, h, s) for all t > t0. Define i∗ = (1/q)d and i∗t = (1/q)dt for t = 1, . . . , t0.
The integers m,M and k are also given.

If T > t0 then we use Algorithm 1 for Gq
t0|ξ to calculate Qt(i) and Jt(i)

for t = 1, . . . , T − t0. Set Qt0
0 (i) = QT−t0(i) and perform the algorithm in

the same way as in Algorithm 1 using the following formulas:

S t e p t (for t = 1, . . . , t0):

0. Calculate

Rt(i) =
{

ht0−t+1((i− i∗t0−t+1)q) for i ≥ m + i∗t0−t+1,
ht0−t+1(mq) + st0−t+1((m− i + i∗t0−t+1)q) for i < m + i∗t0−t+1.

1. Compute

Rt0
t (i) =


Rt(i)−Qt0

t−1(f0,t0−t+1(i))
for i = m + i∗t0−t+1, . . . ,M + i∗t0−t+1,

Rt(i)−Qt0
t−1(m) for i = m, . . . ,m + i∗t0−t+1 − 1.

2. Compute
εt0

t = min
j

Rt0
t (j).

3. Compute, for each i = m, . . . ,M ,

Qt0
t (i) = −εt0

t + min
0≤j−i≤k

[gt0−t+1((j − i)q) + Rt0
t (j)].

4. Define J t0
t (i) to be the set of all decisions j such that

Qt0
t (i) = −εt0

t + gt0−t+1((j − i)q) + Rt0
t (j) for i = m, . . . ,M.

and
Πt0

t = {f | f(i) ∈ J t0
t (i), i = m, . . . ,M},

5. Define Πt to be the following set of decision functions:

Πt =
{
{f | f(i) ∈ Jt(i), i = m, . . . ,M} if t ≤ T − t0,
{f | f(i) ∈ J t0

t+t0−T (i), i = m, . . . ,M} if t > T − t0.

Every sequence πT = (πT , . . . , π1) of decision functions such that πt ∈ Πt

for each t = 1, . . . , T is an optimal T -policy.

Theorem 3. Let [ξ, u, (β, B), V0] ∈ Ξ3 ∩ Ξ5 for some q and (t0|ξ) be
stationary for some t0. Then there exists a (t0, T 0)-strong turnpike policy.

P r o o f. We use Algorithm 1 for the network Gq
t0|ξ. From Theorem 2,

there exist two positive integers T 0 and τ such that the algorithm terminates
with QT 0+τ ≡ Q0

T . Pick πt ∈ Πt for t = T 0 + 1, . . . , T 0 + τ . Then π∗ =
(πT 0+τ , . . . , πT 0+1) is a (0, T 0)-strong turnpike policy for (t0|ξ).
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For every T > T 0 if T = T 0 + kτ − r for some 1 ≤ r ≤ τ , then

(πT 0+r, . . . , πT 0+1, π
∗, . . . , π∗, πT 0 , πT 0−1, . . . , π1)

is an optimal T -policy.
For each r = 1, . . . , τ and Qt0

0 ≡ QT 0+r we compute, using Algorithm 2,
the sets of policies Πr

t . Let us choose fr
t ∈ Πr

t for t = 1, . . . , t0. For every
T > T 0 if T = T 0 + kτ − r for some 1 ≤ r ≤ τ , then

(fr
t0 , . . . , f

r
1 , πT 0+r, . . . , πT 0+1, π

∗, . . . , π∗, πT 0 , πT 0−1, . . . , π1)

is an optimal T -policy in the network Gq
ξ with dynamic arc cost. Therefore

π∗ = (πT 0+τ , . . . , πT 0+1) is a (t0, T 0)-strong turnpike policy.

As a corollary, we have the following forecast horizon result (see also
Federgruen and Tzur [7] and Chand, Sethi and Proth [6]):

Corollary 3. Let the problem be of standard type or q-batch type with
arbitrary q. Assume the dynamic parameter ξ to be nearly stationary with
stationary tail (t0|ξ). Let Algorithm 1 be stopped with QT 0+τ ≡ Q0

T and
let the sets of policies Πr

t , t = 1, . . . , t0 and r = 1, . . . , τ , be constructed by
Algorithm 2 for the network Gq

ξ. If for a given initial inventory I0 = i0q
there exist fr ∈ Πr

t0 such that

(fr(i0)− i0)q = u∗1 for each r = 1, . . . , τ

then u∗1 is a planning horizontal lot size with t0 +T 0 as its forecast horizon.
On the other hand , if it is not possible to choose such decision functions
then there is no finite forecast horizon.

Example 2. Let us consider the family of d.p.p.’s with all station-
ary parameters the same as in Example 1. The dynamic parameter ξt =
(dt, gt, ht, st) is as follows: for t ≤ 4 we have gt(0) = 0 and if x > 0 then
gt(x) = Kt, where Kt are given in Table 5.

T A B L E 5

t 1 2 3 4
Kt 5 12 5 12 5 5
dt 2 3 2 1

We specify the values of dt by the data in Table 5 and all other pa-
rameters the same as in Example 1. Note that if we change the dynamic
parameter ξ to (4|ξ) then we have the same stationary problem as in Ex-
ample 1.

We look for optimal policies in the network Gξ1 . In this case k = 6,
m = −2 and we can set M = 7. Using Algorithm 1 we can find strong
turnpike policies in G1

4|ξ (see Tables 3 and 4 in Example 1). Let us perform
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Algorithm 2 for three cases with respect to Qt0
0 , i.e. Q4

0 = Q8, Q4
0 = Q9 and

Q4
0 = Q10. Steps of Algorithm 2 and the sets of decisions used in optimal

policies for the first period are presented in Table 6 and Table 7, respectively.

T A B L E 6

i −2 −1 0 1 2 3 4 5 6 7 εt

R1(i) 7 4 1 0 1 2 3 4 5 6

R2(i) 8 7 4 1 0 1 2 3 4 5

R3(i) 9 8 7 4 1 0 1 2 3 4

R4(i) 8 7 4 1 0 1 2 3 4 5

Q40(i) 5 5 5 3 2 0 0 0 1 2

R41(i) 12 9 6 5 4 4 3 4 5 7 3

Q41(i) 5∗4 5∗4 3 2 1 1 0 1 2 4

R42(i) 13 12 9 6 4 3 3 4 4 6 3

Q42(i) 5∗3,4 5∗3,4 5∗3,4 3 1 0 0 1 1 3

R43(i) 14 13 12 9 6 5 4 3 3 4 3

Q43(i) 6 12
∗4

5 12
∗5

5 12
∗5,6

5 12
5,6

3 2 1 0 0 1

R44(i) 14 12 13 12 10 12 6 12 5 12 6 12 5 5 5 5 5

Q44(i) 5 12
∗4

5 12
∗4,5

5 12
∗4,5,6

1 12
1
2 1 12 0 0 0 0

Q40(i) 6 5 5 3 2 1 1 0 1 2

R41(i) 13 10 6 5 4 4 4 5 5 7 4

Q41(i) 5∗2,3,4 5∗2,3,4 2 1 0 0 0 1 1 3

R42(i) 13 12 9 6 2 2 2 3 4 6 2

Q42(i) 5∗2,3,4 5∗2,3,4 5∗2,3,4 4 0 0 0 1 2 4

R43(i) 14 13 12 9 6 5 5 2 3 4 2

Q43(i) 8 12
∗4

5 12
∗5

5 12
∗5

5 12
5

4 3 3 0 1 2

R44(i) 16 12 15 12 12 12 6 12 5 12 6 12 6 6 7 5 5

Q44(i) 6∗2 6∗2 6∗2 1 12
1
2 1 12 1 1 2 0

Q40(i) 5 5 5 2 1 0 0 0 1 1

R41(i) 12 9 6 5 3 3 3 4 5 7 3

Q41(i) 5∗3,4,5 5∗3,4,5 3 2 0 0 0 1 2 4

R42(i) 13 12 9 6 3 3 2 3 4 6 2

Q42(i) 5∗4 5∗4 5∗4 4 1 1 0 1 2 4

R43(i) 14 13 12 9 6 5 5 3 4 4 3

Q43(i) 7 12
∗4

5 12
∗5

5 12
∗5

5 12
5

3 2 2 0 1 1

R44(i) 15 14 12 11 12 6 12 5 12 6 12 5 5 6 5 5

Q44(i) 5 12
∗4

5 12
∗4,5

5 12
∗4,5

1 12
1
2 1 12 0 0 1 0
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T A B L E 7

i −2 −1 0 1 2 3 ≥ 4

J44 (i)[Q40 = Q8] {4} {4, 5} {4, 5, 6} {1} {2} {3} {i}
J44 (i)[Q40 = Q9] {2} {2} {2} {1} {2} {3} {i}
J44 (i)[Q40 = Q10] {4} {4, 5} {4, 5} {1} {2} {3} {i}

The sequence π∗ = (π∗1) where the decision function has been chosen
from Π8 ∩ Π9 ∩ Π10 (see (16)), with each collection of three sequences of
decision functions (fr

4 , fr
3 , fr

2 , fr
1 ), r = 1, 2, 3, fr

t ∈ Πr
t for t = 1, . . . , 4, is

a (4, 11)-strong turnpike policy in G1
ξ . From Corollary 4 we conclude that

there are no planning and forecast horizons for the initial inventory I0 = 0.

7. Concluding remarks. We have shown the existence of strong
turnpike policies in the capacitated dynamic lot size model with limited
backlogging and stockouts. Algorithms 1 and 2 construct all decision func-
tions for turnpike polices. We also formulate (Corollary 3 and Corollary 4)
an answer about planning and forecast horizons. These results extend those
obtained by Chand, Sethi and Proth [6] and Sandbothe and Thompson [14]
for the capacitated case. In the not capacitated stationary case, Algorithm
1 gives strong turnpike policies such that the indicated re-order quantities
are the same as in the EOQ formulas. By Corollary 3 we can obtain a fore-
cast horizon for this re-order quantity. In general, it may not be a minimal
forecast horizon.
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