SYMPLECTIC SINGULARITIES AND GEOMETRY OF GAUGE FIELDS
BANACH CENTER PUBLICATIONS, VOLUME 39
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 1997

MULTIPLE-SCALE ANALYSIS
FOR PAINLEVE TRANSCENDENTS
WITH A LARGE PARAMETER

TAKASHI AOKI
Department of Mathematics and Physics, Kinki University
Higashi-Osaka, 577 Japan
E-mail: aoki@math.kindai.ac.jp

1. Introduction. The purpose of this note is to give a survey of a part of the article
[AKT3] which is concerned with the exact WKB analysis of Painlevé transcendents with
a large parameter. The exact WKB analysis is an analysis based on the systematic use
of WKB solutions and Borel resummed WKB solutions of differential equations. A WKB
solution is a kind of formal solution that is expanded in the (negative) power series of
a large parameter. Such a series is divergent in general, but is easily constructed. By
taking Borel resummation of a WKB solution, we get a holomorphic solution to the
original equation. The correspondence between WKB solutions to holomorphic solutions
obtained by Borel resummation is, however, not so simple (connection problems). If
one knows the correspondence completely, then one can obtain large amount of global
information about the solutions. In fact, we know the correspondence, at least generically,
in the case of second order linear ordinary differential equations of Fuchsian type (with
a large parameter) and we can calculate the monodromy groups of the equations (cf.
[AKT?2]). In [AKT3], we investigate the Painlevé equations from such a point of view (cf.
[KT] also). Thus we are interested in

(i) constructing formal solutions of Painlevé equations,
(ii) solving the connection problems for these formal solutions.

In this note, we focus on the former problem and we give an outline of the construction
of formal solutions of the Painlevé equations.

2. Formal solutions of the first Painlevé equation.

2.1 Formal solution without free parameter.
Let us consider the first Painlevé equation with a large parameter 7:
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To begin with, we look for a formal solution that has an expansion in the negative powers

of . Put the expression

P[!
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into P and compare the coefficients of the powers of 7 of the both sides:
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Then we have the following recursive relation:

t
(2) Ao = ~5
R VI ,
(3) Aj:m/\o T —6ZAkAj,k (j>2).
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Thus we have

THEOREM 2.1 ([KT]). There exists a formal solution X of the form (1) of Pr. Such a
solution is unique up to the choice of the branch of the square root in A\g. Moreover, Agj_1
vanishes identically for every 7 =1,2,3,....

It is easy to see that Ag; (j =1,2,3,...) has the form

i

where ¢; is a constant that has the order of (2j)!cg (for some ¢g). Hence the series A does
not converge. But it is pre-Borel summable in the sense of [AKT1].

Aoj = —

(SN

2.2 Formal solutions with two free parameters. The formal solution constructed in Sec-
tion 2.1 is a counterpart of a WKB solution in the exact WKB analysis of Schrédinger
equations (cf. [AKT2], [V]). It is a basic object in the exact WKB analysis of Painlevé
equations (cf. [KT]) and plays an important role. Our next step is to construct a family
of formal solutions that have two free parameters. To find such a family is a natural
problem because the Painlevé equations are of second order. We will employ the method
of multi-scale analysis. We note that it is [JK] that first used this method in the analysis
of the first and the second Painlevé equations. Our analysis is not limited in the first and
the second cases (cf. [AKT3]) and we can treat not only the leading parts but also all
the terms of formal solutions.

We take the following change of unknown function in P;:

A=s+nT7 A,
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t
where s = s Then we have an equation for A:
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We introduce a new variable 7 by

! 48 o~ 5
T=rn 12/ dt=—77€\/§54
and look for a solution A of (4) in the form

A= A(tv T) |T:T(t)~

d
This is the first step in the multiple-scale analysis (cf. [BO], for example). Since i
g dr 90

% + T A(t,7) should satisfy, as a function of two independent variables (¢, 7), the
T
following equation:
S CRY G S
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Suppose that A has an expansion

A= ZT)*gAg.
k=0

Put this into (5) and compare the coefficients of the both sides. Then we get the following
series of equations for {A k }s:
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If we find a sequence of functions {Ag (t,7)} that satisfy (6)—(10), we obtain a formal
solution
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of (4). One can solve Eq. (6) easily:

Ao = a(lo)e + a(o) T,

where a(if = a(ioz( t) are arbitrary functions of t. They will be determined later. Since the

right-hand side of (7) is known (if a(ﬂ are given), we can find a solution Ay of (7) of the

form
1 1
A% = 52) —&—a(() )—i-a(_22)67277
where
02
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2 6 (8)7 (0)
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0
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Hence the right-hand side of (7) is known. Now we impose the condition of non-secularity
on the right-hand side: the coefficients of e*™ must vanish. This yields a system of ordinary
differential equations for ag:

L L R

0
ot 634 48s ’
8(1(_0) 5\/§ a(_of —0
ot 654 48s o

This system can be solved easily and we find

0 1

ag ) — c+85\/§c+c, 5,

a‘(_O% p— 6_8—5\/§C+C_—% .

Here ¢4 and c_ are arbitrary constants. Hence we have obtained Ay and A1 .

Suppose we have Aj_ 1 then we can determine Ay except for the coefﬁ01ents a( ) of
e*7. They are determined by the non-secularity condition of the equation for Ay ;:

(k) 5\/5(: c_ (k)
d +
<5 - A) (a(lk)) =g ak- < 8_5\/56 c fl(lc)) )
ds a>y s e

A— 5\fc+c, % 5\/50?F
—5v/3¢2 —5\/§c+c, — %

and fikl) are written in terms of al(j) (j <k—1). We can find ag_fl) in the form

(k) S—%k— 35\/§c+c_ bgk)
(k) PVELE b(fl) .

Hence we get Ay and A, 1. Thus we have the following

00\»—!

where we set

ool

THEOREM 2.2. There is a two-parameter family of formal solutions to Py of the form

S

k=0

m\»—A
w\x‘

Al = = +n Ak

7
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Each Ag has the form

5k+1

TLEE! )

_ 3 k+1—20)®

Ag = “EEat E :bkil—zl e 2,
$ % =0

t
Here e® = s5V3c+c- e"; cy and c_ are arbitrary constants, T = 77/ \/124/sdt (s = —%)

k
and b;?) ’s are constants depending on ci.

Remark. If we set c; = c_ = 0 in the above solution, we recover the formal solution
without free parameter constructed in Section 2.1.

3. Formal solution of the J-th Painlevé equation.

3.1 Formal solution without free parameter. We list up the Painlevé equations with the
large parameter 7:

a2\
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a2
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Each Painlevé equation has quite a complicated form, but regarding n dependence, all
the Painlevé equations have a common structure. That is, the J-th Painlevé equation can
be expressed in the form

DY dA
11 Pr: — =G\ —,t 2Er(\t
( ) J dt2 J(vdta>+77 J(7)7
where F'; and G; are rational functions. Let us note that F; does not contain %. We

seek a formal solution of P; that has the following form:
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(12) A=Atn) = 0N 0.
=0

Put this expression into (11) and compare the coefficients of the powers of  of the both
sides. Then we easily see the following:

THEOREM 3.1 ([KT]). There exists a formal solution A of the form (12) that satisfies
the followings:
(i) The leading term A\o(t) is a solution of the algebraic equation

Fr(o(t), t) = 0.

(ii) Each \j(t) is uniquely determined recursively once \o(t) is fized.
(ii) Aoj_1(t) =0 for all j=1,2,3,. ...

This particular solution is denoted by
0 0 —2j
NS =27 6 =30 (1),
j=0

3.2 General formal solution of Py. In a similar manner as in Section 2.2, we can con-
struct a family of formal solutions of P; that have two arbitrary parameters:

THEOREM 3.2. There is a family of formal solutions of Py that contain two free param-
eters of the form

ik
Ar=Ajo0+n 2 § n 2A§7
k=0

where Ay s a solution of Fy(Ajo,t) =0 and each A% has the form

k+1

(%) k+1—20)®

Ag = Zakikzl(t)e( +H-2)e,
1=0

Here ® = cyc_0(t) + 7; ¢4 and c_ being arbitrary constants, 0 is a function determined

t k
by Fy and Gy, 7 =n[" 4/ aai" (Aso(t),t)dt, and each a§2)
t and on cy that does not contain exponential terms.

(t) is a function depending on

We denote these formal solutions by
Ay =As(t,m;eq,02).

If we set ¢y = c_ = 0, then we recover the formal solution ASO) without free parameter:

A (t,m;0,0) = AP (8, 7m).

4. Remarks. Our discussion is quite formal and giving some analytic meaning to the
formal solutions constructed in Sections 2.2 and 3.2 is our next problem. But this formal
objects are interesting from various points of view. Starting from the formal solution
without free parameter (constructed in Sections 2.1 and 3.1), we have a formal solution
of the form

)‘J(ta 7, C+, 0)
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after crossing a “Stokes curve” (non-linear Stokes phenomena). In fact, we can formally
reduce all the A;(t,n;¢y,é-)s (J = I1,...,VI) to A\(t,m;cq,c—) (for some ci) and
analyzing the non-linear Stokes phenomena for P; can be reduced to that for P;. In the
case of the reduction of Py to Pr, we see that the following relation of constants must
hold:

V2VBey = (2°83 )%+ gy,
V2V3 el = (2°330) 2+
See [AKT3] for the details.
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