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1. Introduction. It is well known that methods of algebraic geometry and, in parti-

cular, Riemann surface techniques are well suited for the solution of nonlinear integrable

equations. For instance, for nonlinear evolution equations, so called “finite gap” solutions

have been found by the help of these methods. In 1989 Korotkin [9] succeeded in applying

these techniques to the Ernst equation, which is equivalent to Einstein’s vacuum equation

for axisymmetric stationary fields. But, the Ernst equation is not an evolution equation

and, due to this fact, one is in this case usually confronted with boundary value problems

which have not been considered there.

On the other hand, Neugebauer and Meinel [10] were able to transform the boundary

value problem for the rigidly rotating disk of dust into a scalar Riemann–Hilbert problem

on a hyperelliptic Riemann surface and gave the solution to this problem in terms of theta

functions. The methods they used were suited to the particular problem and one may

ask to which extent algebro-geometric methods are useful for the solution of boundary

value problems of the Ernst equation. In order to tackle this problem one should at first

develop the Riemann–Hilbert technique on Riemann surfaces in detail and then apply

this method in order to find solutions to the Ernst equation.

The first of these two papers is devoted to the brief introduction into Riemann surface

techniques (for a more detailed exposition see the cited literature). The second paper

shows how the developed methods apply to the Ernst equation.

2. Riemann surfaces and abelian differentials. First we give the following

Definition. A compact Riemann surface Σg of genus g is a non-singular surface in

C
2 given by an equation of the form
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f(K,µ) = µn + a1(K)µn−1 + · · ·+ an(K) = 0 , (1)

with ai being polynomials in K.

The term non-singular means that

gradf = (
∂f

∂K
,
∂f

∂µ
) 6= 0 . (2)

We call a Riemann surface hyperelliptic if f is of the form

f(K,µ) = µ2 − Pn(K) =

n∏

i=1

(K − Ei) , (3)

with Pn(K) being a polynomial without multiple roots. The points (Ei, 0) (or simply Ei)

are the branch points of the hyperelliptic surface. If the branch points are either real or

complex conjugated one speaks of a real surface. There is an interesting structure theorem

Theorem 1. A hyperelliptic Riemann surface of a function of the form µ2 = Pn(K)

is diffeomorphic to a sphere with g handles where n = 2g + 1 or n = 2g + 2.

For Σg being hyperelliptic we define the hyperelliptic involution σ by

σ : Σg ∋ P = (K,µ) → σ(P ) ≡ P σ = (K,−µ) , (4)

i.e. σ interchanges the two sheets of a hyperelliptic Riemann surface. If Σg is in addition

real then we may define a further (antiholomorphic) involution τ by

τ : Σg ∋ P = (K,µ) → τ(P ) ≡ P̄ = (K̄, µ̄) , (5)

i.e. real hyperelliptic Riemann surfaces allow for an (at least) four dimensional (Abelian)

automorphism group Aut(Σg) with generators {σ, τ}.

For the physical application we have in mind, the structure of branch points of the

real hyperelliptic Riemann surface, denoted by LH , is given by

f(K,µ) = µ2 − (K + iz)(K − iz̄)

g
∏

i=1

(K − Ei)(K − Fi) , (6)

with either Ei, Fi ∈ R or Ei = F̄i and z = ρ + iζ. We mention that the above equation

has two varying branch points z and z̄, representing a family of Riemann surfaces. We

will return to the mathematical problems related to this property later.

Let us now introduce a basis for the homology of Σg. Because Σg is topologically a

sphere with g handles it is a connected, 2g+1-connected manifold and its first homology

group is given by H1(Σg,Z) = Z⊕ · · · ⊕ Z
︸ ︷︷ ︸

2g times

. A standard basis of generators of H1(Σg,Z)

consists of g pairs of onecycles (a1, b1), . . . , (ag, bg) where a pair (ai, bi) encircles the i-th

handle (or surrounds the i-th hole) so that ai intersects bi orthogonally. The mathematical

notion for the statement “one circle intersects another” is the notion of an intersection

number. In the figure above we show for two cycles γ1 and γ2 under which circumstance

the intersection number γ1 ·γ2 is +1 or −1. A canonical basis of H1(Σg,Z) is now defined

as a set of closed curves with intersection numbers

ai · aj = bi · bj = 0
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γ1

γ2

γ2

γ1

γ1 · γ2 = +1 γ1 · γ2 = −1

Figure 1: The orientation dependence of the intersection numbers

ai · bj = −bi · aj = δij . (7)

Canonical bases are transformed into each other by integer symplectic transformations,

i.e. integer transformations keeping the intersection form

Q =

(
0 Ig×g

−Ig×g 0

)

(8)

invariant. Let us choose for LH a canonical basis as shown in the figure below. We indicate

the parts of the cycles on the upper sheet by solid lines and those on the lower sheet by

broken lines.

P0

P̄0

u
a1

. . . u
ak

u ak+1

. . .

u ag

ub1

u bk

bk+1u

bgu

Figure 2: The homology basis for LH

Let us now turn to the differentials on a Riemann surface. A differential (or one form)

is called an Abelian differential if it can be written in the neighbourhood of each point in

the form

dω = f(K) dK , (9)

with f being a meromorphic function. Abelian differentials are always closed. They may

be decomposed into a sum of differentials of the following three classes:

(i) Abelian differentials of the first kind (holomorphic differentials) dωi (i = 1, . . . , g):

f(z) is a holomorphic function;

(ii) differentials of the second kind dωP : the residue of f at P is zero;

(iii) differentials of the third kind dωPQ: f has two poles with residues ±1.

The “integrated version” of the Abelian differentials are the Abelian integrals on Riemann

surfaces which are given by
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I(K,µ) =

(K,µ)∫

(ξ,η)

P (K ′, µ′) dK ′ , (10)

with P (K ′, µ′) being a rational function of K and µ′ (subject to condition (1)) and

(ξ, η) ∈ Σg is fixed. The above classification of Abelian differentials leads immediately to

the following classification of Abelian integrals:

(i) Integrals of the first kind: I(K,µ) is holomorphic on Σg.

(ii) Integrals of the second kind: I(K,µ) has only algebraic poles,

(iii) Integrals of the third kind: I(K,µ) has two logarithmic poles.

For a closed differential dω we define its periods on the cycles a1, . . . , ag, b1, . . . , bg by
∮

ai

dω = Ai,

∮

bi

dω = Bi , (11)

(i = 1, . . . , g).

Let us now introduce a normalized basis of holomorphic one forms, defined by the

requirement
∮

ak

dωj = 2πiδjk , (12)

j, k = 1, . . . , g. The basis of holomorphic one forms is used to define the so called Abel–

Jacobi mapping

ω(P ) =





P∫

P0

dω1, . . . ,

P∫

P0

dωg



 , (13)

with P0 – fixed.

Using the normalized holomorphic differentials we define a g×g matrix – the Riemann

matrix – Π with entries Πjk given by

Πjk =

∮

bk

dωj . (14)

One has

Proposition 2. The matrix Π is symmetric and has negative definite real part.

Another important property is stated in the following (with dω = (dω1, . . . , dωg)):

Proposition 3. The vectors 2πie(i) =
∮

ai

dω and Π(j) =
∮

bj

dω are in Cg = R2g linearly

independent over the field R.

This proposition allows us to introduce the notion of a characteristic. Any e ∈ R2g

can be written uniquely in the form

e = (ε′, ε′′)

(
2πiIg×g

Π

)

, (15)
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with ε
′, ε′′ ∈ Rg. We denote by

[e] =

[
ε
′

ε
′′

]

=

[
ε′1, . . . , ε

′
g

ε′′1 , . . . , ε
′′
g

]

, (16)

the characteristic of e.

In section 2 we noticed that real hyperelliptic Riemann surfaces admit an antiinvo-

lution τ generalizing the operation of complex conjugation to Riemann surfaces. Let us

now consider the action of τ on the homology basis, the normalized differentials, and the

Riemann matrix of Riemann surfaces of the form (6). One finds for the transformation

of the basis elements of H1(Σg)

τ(ai) = −ai ,

τ(bi) = bi +
∑

k 6=i

ak ,

τ(bi) = bi +

g
∑

k=1

ak . (17)

Here the second line is true for b-cycles whose corresponding a-cycle surround two complex

conjugated branch points whereas the third line is valid for a b-cycle whose corresponding

a-cycle surrounds two real branch points. For the normalized differentials we have

τ∗(dωi) = dωi , (18)

and the components of the Riemann matrix transform according to

Π̄ij = Πij + 2πi
∑

l 6=i

δjl , (19)

for ovals ai surrounding two complex conjugated branch points, and

Π̄ij = Πij + 2πi , (20)

for ovals ai surrounding two real branch points.

3. Picard–Fuchs equations and Gauß–Manin connection. We recall that the

spectral parameter of the linear system of the Ernst equation “lives” on a Riemann sphere

with variable branch points. This implies that also the real hyperelliptic Riemann sur-

face LH , on which we are looking for solutions has variable branch points. The property

that the entries of the Riemann matrix of LH fulfil certain differential equations – the

Picard–Fuchs equations – is due to this fact. These equations turn out to be ordinary dif-

ferential equations of Fuchsian type, i.e. these equations have only regular singular points.

The geometrical interpretation of these equations leads to the concept of a Gauß–Manin

connection in the bundle of cohomologies associated with a so called Milnor fibration.

For a discussion of these items see [7]. Here we discuss a simple example from [6] which

shows already the essential features. Let Γ be a closed contour on S2 and define

π(λ) =

∮

Γ

1

z(z − λ)
dz . (21)

We have



200 O. RICHTER AND C. KLEIN

dπ(λ)

dλ
=

∮

Γ

1

z(z − λ)2
dz , (22)

and find

λ
dπ(λ)

dλ
+ π(λ) =

∮

Γ

{
λ

z(z − λ)2
+

1

z(z − λ)

}

dz =

∮

Γ

dz

(z − λ)2

=

∮

Γ

d

(
1

λ− z

)

= 0 ,

i.e. π(λ) is a solution to an ordinary homogeneous differential equation of Fuchsian type.

4. Divisors and quasi divisors on compact Riemann surfaces. The Riemann–

Hilbert problem on Riemann surfaces can be stated and solved very elegantly in terms

of divisors and quasi divisors.

Definition. A divisor is a formal symbol A of the form

A = α1P1 + · · ·+ αkPk , (23)

with Pi ∈ Σg and αi ∈ Z.

The degree of A is defined by deg(A) = α1 + · · · + αk. A divisor is called integral

(A ≥ 1) provided αi ≥ 0 ∀i. We may introduce a partial ordering on divisors by saying

A ≥ B ⇐⇒ A −B ≥ 1. Let f be a meromorphic function on Σg and let K(Σg) denote

the set of meromorphic functions on Σg. We associate to f a so called principal divisor

by (f) =
∑

P∈Σg
ordP f P and may define for a divisor A a vector space L(A) by L(A)

.
=

{f ∈ K(Σg)| (f) ≥ A}. The Abel–Jacobi mapping introduced above can be extended to

divisors as follows. Let A =
∑

i αiPi be a divisor and P0 ∈ Σg be fixed. We define

ω(A) ≡




∑

i

αi

Pi∫

P0

dω1, . . . ,
∑

i

αi

Pi∫

P0

dωg



 .

Definition. A quasi divisor on Σg is a formal symbol

A = n1P1 + n2P2 + · · ·+ nkPk ,

with Pi ∈ Σg and ni ∈ R.

5. Theta functions associated with a Riemann surface. With the above intro-

duced homology and cohomology basis we may define the building block for the construc-

tion of meromorphic functions, the theta function Θ(z,Π) with half integer characteristic

associated to a given Riemann surface Σg with homology basis (a1 . . . , ag, b1, . . . , bg).

Definition. The Riemann theta function with half integer characteristic
[
ε

′

ε′′

]

is

given by

Θ

[
ε
′

ε
′′

]

(z,Π) =
∑

N∈Zg

exp

{
1

2
〈Π (N + ε

′) , N + ε
′〉+ 〈z + 2πiε′′, N + ε

′〉

}

,

with z ∈ Cg and ε
′, ε′′ ∈ 1

2Z
g.
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We denote the theta function with characteristic
[
0
0

]

by Θ(z,Π).

Let us now discuss the zero divisor of the theta functions. We have

Proposition 4. Let Θ
[
ε

′

ε′′

]

(z,Π) be the theta function with characteristic
[
ε

′

ε′′

]

as-

sociated to (Σg, {a, b}) and let ω be the Abel–Jacobi map. Then the function

Θ

[
ε
′

ε
′′

]

(z,Π) ◦ ω ,

is either identically zero or has precisely g zeroes. Let for this case be D = P1 + · · ·+ Pg

the divisor of zeroes. Then we have

ω(D) = −Πε
′ − 2πiε′′ +ΠN + 2πiIM − ~K , (24)

with M,N ∈ Zg and ~K being the vector of Riemann constants with components

Kj =
2πi +Πjj

2
−

1

2

∑

l 6=j

∮

al



dωl(P )

P∫

P0

dωj



 , (25)

(j = 1, . . . , g).

Rema r k 1. The Riemann vector ~K depends upon the canonical homology class and

the base point of the Abel–Jacobi map.

6. The scalar Riemann–Hilbert problem on a Riemann surface. We follow

in this section the exposition in [13]. Let on Σg be given a closed, piece wise smooth

contour Γ. Let there on Γ be given a divisor Λ = t1+ · · ·+ tr consisting of a finite number

of pair wise different points such that Γ \ Λ decomposes into a finite set of connected

components Γj (j = 1, . . . , N), each of which is homeomorphic to the interval (0, 1). We

call Γj a curve of the contour Γ. Each Γj has a starting and end point, given by two of

the points of Λ. The starting respectively end points of curves may coincide. We define a

function

α(t,Γj) =

{
1 if t ∈ Γj

0 otherwise
, (26)

(j = 1, . . . , N), i.e. α(t,Γj) is only non vanishing when t ∈ Γj . On each curve Γj let there

be defined a Höldercontinuous function Gj(t), which is finite and nonzero. We denote

G(t) =
N∑

j=1

α(t,Γj)Gj(t) , (27)

t ∈ Γ \ Λ.

Let there be given a divisor A of degree m, consisting of the points of the divisor Λ,

taken at arbitrary degree. Let on Σg \Γ be given another divisor B of degree n. We now

formulate the

Homogeneous scalar Riemann–Hilbert problem: Solve

χ+(t) = G(t)χ−(t) , (28)

with (χ) ∈ L(A−1B−1).
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6.1. The solution of the homogeneous Riemann–Hilbert problem. The solution of the

Riemann–Hilbert problem proceeds in several steps. First we need an analog of the Cau-

chy kernel. We will make use of the kernel, presented already by Weierstrass [12]

K(τ, ν) =
f(K, ν)

(ν − µ)f ′
ν(τ, ν)

, (29)

with f(K,µ) = 0 and f(τ, ν) = 0.

Next we introduce the canonical function X(P ), P ∈ Σg. On each curve Γj of Γ the

logarithm of the above introduced functions Gj(t) is well defined. Denoting

lnG(t) =

N∑

j=1

α(t,Γj) lnGj(t) , (30)

we define a piecewise analytic function function, the canonical function, by

X(P ) = eY (P ) , (31)

with

Y (P ) =
1

2πi

∫

Γ

lnG(τ) dωPP0
(τ) . (32)

Here dωPP0
(τ) is the normalized analog of the Cauchy kernel, P0 6∈ Γ and the integration

goes over the whole contour Γ.

We denote by (X) the principal divisor of the canonical function and want to cha-

racterize this divisor more in detail. First we investigate the behaviour of X in the ne-

ighbourhood of the starting and end points of the curves of the contour. Let Γj be a

curve of the contour Γ which starts at tk and ends at tl of Λ. Let Gj(tk +0) respectively

Gj(tk − 0) denote the limits of Gj(t) in the starting respectively end points of Γj . Let x

be a local parameter in the neighbourhood of tk and P = P (x) a parametric homeomor-

phism such that tk = P (0). We obtain the following asymptotic expansion for X(P ) in

the neighbourhood of tk

X [P (x)] = Xk(x) exp

{
1

2πi

(∑′′

j
lnGj(tk − 0)−

∑′

j
lnGj(tk + 0)

)

lnx

}

, (33)

where |Xk(x)| is a function of bounded variation for x → 0. The summation is over all

curves beginning at tk (
∑′

) respectively ending at tk (
∑′′

). We denote by argGj(tk ± 0)

the argument of lnGj(tk ± 0), define

κk =
1

2π

(∑′′

j
argGj(tk − 0)−

∑′

j
argGj(tk + 0)

)

, (34)

and obtain for the asymptotical behaviour of X(P ) at tk

X [P (x)] ≃ xκk . (35)

From the definition of X(P ) it follows that on Σg \Γ the canonical function is everywhere

finite and different from zero, such that we obtain the following form for the principal

divisor

(X) = tκ1

1 + tκ2

2 + · · ·+ tκr

r , (36)
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with κi being, in general, real numbers, i.e. (X) is a quasi divisor. Taking the integer

part of κi and summing up gives the index of G(t)

κ =

r∑

i=1

[κi] . (37)

We want to make the following

R ema r k 2. For G(t) being a real function we have

κ(G(t)) = 0 . (38)

The proof is rather simple. The argument of ln(G(t)) vanishes up to a multiple of 2πi.

Fixing a sheet on each curve Γj of the contour Γ and summing up gives just the desired

result.

By the help of the canonical function we are able to give the solution to the homoge-

neous Riemann–Hilbert problem. We have

χ(P ) = γ(P ) exp







1

2πi

∫

Γ

lnG(τ)dωPP0
(τ) −

g
∑

j=1

P̂j∫

P̃j

dωPP0
(τ)







, (39)

with γ(P ) ∈ K(Σg), P̃j (j = 1, . . . , g) – fixed and the points P̂i being defined as solutions

of the so called Jacobi inversion problem
g

∑

j=1

ωk(P̂j) =

∫

Γ

lnG(τ)dωk(τ) , (40)

with

ωk(P̂j) =

P̂j∫

P0

dωk(τ) , (41)

where Q ∈ Σg is fixed. The second term can be expressed in terms of theta functions and

thus we obtain (independent of the chosen characteristic of the theta function)

χ(P ) = γ(P )
Θ(ω(P0)− ω(P̃ )− ~K)Θ(ω(P )− ω(P̂ )− ~K)

Θ(ω(P0)− ω(P̂ )− ~K)Θ(ω(P )− ω(P̃ )− ~K)
exp







1

2πi

∫

Γ

lnG(τ)dωPP0
(τ)







(42)

with P̂ = P̂1 + · · ·+ P̂g, P̃ = P̃1 + · · ·+ P̃g, ω(P ) = (ω1(P ), . . . , ωg(P )) and ~K being the

vector of Riemann constants.

R ema r k 3. If Γ is a closed smooth contour and deg(B) = 0 then the solution to

the homogeneous Riemann–Hilbert problem is unique.
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