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0. Introduction and summary. The analysis of data from the gravitational-wave

detectors that are currently under construction in several countries will be a challenging

problem. The reason is that gravitational-vawe signals are expected to be extremely

weak and often very rare. Therefore it will be of great importance to implement optimal

statistical methods to extract all possible information about the signals from the noisy

data sets. Careful statistical analysis based on correct application of statistical methods

will be essential.

The aim of this series of lectures is to introduce the reader to the contemporary theory

of parameter estimation. Principles of main estimation methods are reviewed and the

properties of the estimators are discussed. The theory of estimation is considered in a

general framework of an appropriate statistical model (Sec. 2). Facing a problem of esti-

mation one can start either with a principle (like “take the value of the parameter which

is the nearest to your data”), which is developed in Sec. 3.1 (“Heuristic methods”) or

with some postulated properties of the estimator (Sec. 3.2, “Optimal estimators”). How

much can properties of the estimator chosen change under violations of the theoretical

model adopted is discussed in Sec. 4, “Robustness”.

1. The problem. Let us begin with two examples.

Example 1 [see Hollander and Wolfe (1973)]. The following seven observations rep-

resent average measurements of θ, the ratio of the mass of the earth to that of the moon,

obtained from seven different spacecrafts.

Mariner 2 81.3001

Mariner 4 81.3015
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Mariner 5 81.3006

Mariner 6 81.3011

Mariner 7 81.2997

Pioneer 6 81.3005

Pioneer 7 81.3021

On the basis of previous Ranger spacecraft findings, the value of θ had been estimated

as approximately equal to 81.3035. What is the “true” value of the ratio of the mass of

the earth to that of the moon?

Example 2 [David and Pearson (1961)]. The following are figures for the length

(mm.) of cuckoo’s eggs which were found in nests belonging to the hedge-sparrow, the

reed-warbler and the wren:

Hedge-sparrow 22.0 23.9 20.9 23.8 25.0 24.0 21.7 23.8 22.8 23.1
23.1 23.5 23.0 23.0 (mean=23.11)

Reed-warbler 23.2 22.0 22.2 21.2 21.6 21.6 22.0 22.9 22.8 (mean=22.14)

Wren 19.8 22.1 21.5 20.9 22.0 21.0 22.3 21.0 20.3 20.9
22.0 20.0 20.8 21.2 21.0 (mean=21.12)

The problem is that the size of the cuckoo’s eggs seems to be associated with the size

of the nest in which it is laid; it is known that the hedge-sparrow has a larger nest than

the reed-warbler and the reed-warbler than the wren. What are the sizes of the cuckoo’s

eggs laid in the hedge-sparrow, reed-warbler, and wren nests?

2. Statistical model. There are many (perhaps infinitely many) statistical models

which can in a more or less adequate way describe a given problem. Let us try the

following.

Example 1 (cont.). We assume, at least for our purpose now, that the mass of the

earth and the mass of the moon are fixed and we denote by θ their ratio. When measuring

θ, we obtain a result, say X, which as we believe differs from θ by a (small) random error

due to measurement devices and techniques, say ε. In consequence, X is considered, e.g.,

as a random variable of the form

(1) X = θ + ε.

To conclude “something” about θ having X at our disposal, we must specify the nature

of ε. For example, we may believe that the random error ε is (a) as likely positive as

negative, or (b) its expectation is equal to zero (Eε = 0), etc.

In case (a) we have the following statistical model of the result X of observation: X

takes on its values in R1 (the set of reals); the probability distribution P , defined on

a σ-field B1 of subsets of R1, is not completely defined but we assume that it is from

a family P of distributions on the measurable space (R1,B1) such that if P ∈ P, then

P{X ≤ θ} ≥ 1/2 and P{X ≥ θ} ≥ 1/2.

The triplet (R1,B1,P) is considered as the statistical model of the observation X.

The unknown θ is a median of the unknown probability distribution of the observation

X. Actually, θ can be viewed as a mapping θ : P → R1 such that θ(P ) is a median of P .
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Any mapping θ̂ from R1, the space of observations, to R1, the space of values of θ such

that θ̂(X) is treated as a “guessed value of θ” is called an estimator of θ.

The case (b) is similar: the difference is that “median” should be replaced be “ex-

pectation”. A comment is however needed: P in the statistical model (R1,B1,P) is now

a family of distributions on the measurable space (R1,B1), for which the expectation

exists.

Sometimes the family P can be specified in a more detailed way, for example as a

family of Gaussian distributions, distributions with continuous and strictly increasing

cumulative distribution function, etc.

Example 2 (cont.). A possible statistical model for the results of measurements pre-

sented in Example 2 is as follows. Define θ1 as a “typical length of cuckoo’s eggs laid in the

hedge-sparrrow nest”. Similarly define θ2 and θ3 for reed-warbler and wren, respectively.

“Typical length” means that the actual result of observation of the size of the cuckoo’s

egg laid in the hedge-sparrow nest is of the form θ1 + ε, where the random variable ε is

modelling the random variability between eggs as well as measurement errors. Assume

that Eε = 0. The parameter to be estimated is (θ1, θ2, θ3). (In the original statement of

the problem the main question to answer was if θ1 > θ2 > θ3 as suggested by observations,

but we are not going to follow this direction of testing statistical hypotheses.)

In general, an observation X is considered as a random element: a real valued random

variable, a random vector, a random function, etc. The space of values ofX, to be denoted

by X , is called the sample space. Building a statistical model for a specified observation

X consists in specifying a sample space X , a σ-field of observable events F and a family

P of distribution functions. The triplet (X ,F ,P) is defined to be a statistical model .

Now, led D be a set and let θ : P → D be a mapping. The value θ(P ), P ∈ P, will

be considered as a parameter of P , and D as the parameter space. Any (measurable)

mapping θ̂ : X → D such that θ̂(X) is viewed as a “guessed value” of θ(P ) is called an

estimator of the parameter θ.

If X = (X1, X2, . . . , Xn), where X1,X2, . . . , Xn are independent identically distri-

buted (i.i.d.) random variables (r.v.’s) according to a distribution P , then the terms a

sample or a random sample from the population P or from the parent population P or

from the distribution P , are used.

3. Estimation. Given a statistical model (X ,F ,P), a parameter θ : P → D with

the parameter space D, the estimation problem consists in constructing an F-measurable

function θ̂ : X → D such that, if X has a distribution P ∈ P, θ̂(X) could be reasonably

considered as an “estimator” of θ(P ) for all P ∈ P.

At this level of discussion the statement of the problem is rather hazy: θ̂(X) could

be reasonably considered as “an estimator” of θ(P ) is not precise but we feel that it is

meant that θ̂(X) should be close to θ(P ). In the long history of statistical inference the

fuzzy concept of such “closeness” was formalized in many different ways which led to the

present situation where we have at our disposal many different estimators even in very

simple statistical models.
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Two main streams of developing the matter are heuristic approaches and theories of

optimal estimators.

3.1. Heuristic approaches

3.1.1. Minimum distance estimators. Suppose that D ⊂ X . Let ρ be a metric in X .

The minimum distance estimator θ̂MDE of θ is defined as

θ̂MDE(X) = argminθ∈Dρ(X, θ).

In typical statistical models θ̂MDE exists and is unique.

This simple, “natural”, and intuitively appealing idea has a long history. For the

case where X = Rn, Gauss (1821) [see Lehmann (1986)] suggested taking for ρ the

Euclidean metric in Rn, which led to the celebrated Least Square Estimators (LSE).

Laplace (1820) [see Lehmann (1986)] proposed the L1 norm which has given us Minimum

Absolute Deviation (MAD) estimators. In the statistical model of repeated measuring

of an unknown quantity θ,

(2) Xi = θ + εi, i = 1, 2, . . . , n,

LSE(θ) is equal to the arithmetic mean
∑n
i=1Xi/n of observations, and MAD(θ) is

equal to a median of X1,X2, . . . , Xn (take the permutation X1:n,X2:n, . . . , Xn:n of X1,

X2, . . . , Xn such that X1:n ≤ X2:n ≤ . . . Xn:n; if n is odd, the median of X1,X2, . . . , Xn

is X(n+1)/2:n; otherwise the median is any value from the interval
(
Xn/2:n, Xn/2+1:n

)
).

Example 3 (nonlinear regression). In signal identification problem, when a signal of

the form

(3) X(t) = A cos(ωt) + noise, t > 0

with unknown (A,ω) is observed at t1, t2, . . . , tn, the LSE of (A,ω) is that of minimizing

(4)

n∑
i=1

(X(ti)−A cos(ωti))
2
.

Example 4 (linear models). Suppose that the observations X are of the form

(5) X(t) = θT t+ noise

where θ = (θ1, θ2, . . . , θk) is an unknown (k-dimensional) parameter, t = (t1, t2, . . . , tk)

and t1,t2, . . . , tk are factors (“independent variables”) influencing the observation, quan-

titative (e.g. t in Example 3) or qualitative (e.g. t1 = hedge-sparrow, t2 = reed-warbler,

and t3 = wren in Example 2). All “vectors” are treated here as one-column matrices and

(·)T denotes transposition. Suppose that the observation is repeated, say n times, each

time at different levels of factors. As a result we obtain the observations

(6) Xi = θ1ti,1 + θ2ti,2 + . . .+ θiti,k + εi, i = 1, 2, . . . , n.

If n ≥ k and the rang of the matrix D = (ti,j)i=1,2,...,n;j=1,2,...,k, known as the matrix

of experimental design, or simply design matrix , is equal to k, then LSE(θ) is θ̂ =(
DTD

)−1
DX, where XT = (X1, X2, . . . , Xk). Examples 1 and 2 are examples of linear

models.
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3.1.2. Maximum likelihood estimators

Example 5. Let X be the number of occurrences of a specified random event A in n

independent experiments (“Bernoulli scheme”). If the probability of A occurring in each

separate trial is equal to (an unknown) θ, then we are dealing with the statistical model

with the set X = {0, 1, . . . , n} as the sample space, 2X (the set of all subsets of X ) as the

(σ-)field of observable events, and the family of binomial distributions

(7) Pθ{X = x} =

(
n

x

)
θx(1− θ)n−x, x = 0, 1, . . . , n; θ ∈ [0, 1]

as the family of all possible distributions. The problem is to estimate θ on the basis of

the observation X.

Observe that Pθ{X = x} is considered here as a function of x under a fixed value of

the parameter θ. Write

(8) lik(θ;x) = Pθ{X = x}

and, for a given observation X = x, consider lik(θ;x) as a function on the parameter

space [0, 1]. Were θ = θ1 for some fixed θ1, the probability of getting the result X = x

would be equal to lik(θ1;x); were θ = θ2 for some fixed θ2, the probability of getting the

result X = x would be equal to lik(θ2;x). Then, if lik(θ1;x) > lik(θ2;x), “it is more

likely that our observation X = x has been obtained under θ1 than θ2”.

Function (8) is called the likelihood function (more precisely: lik(θ;x) is the likelihood

of θ when the result of observation was X = x). The value of θ = θ(X) that maximizes

(8) is called the Maximum Likelihood Estimator (MLE) of the parameter θ.

In general: considering a statistical model (X ,F ,P) we assume that there exists a

σ-finite measure on the measurable space (X ,F) (for example the Lebesgue measure)

such that every distribution P ∈ P has a density (Radon-Nikodym derivative) with

respect to that measure and the density is of the form p(x; θ). In the statistical model

under consideration “everything” except θ is assumed to be known and the problem is

to estimate θ. The likelihood function is defined as

(9) lik(θ;x) = p(x; θ)

where x is the known result of observation. MLE(θ) is the θ which maximizes lik(θ;x).

Example 6. If X = (X1, X2, . . . , Xn) and X1,X2, . . . , Xn are i.i.d. r.v.’s distributed

according to a normal distribution with density function (σ
√

2π)−1 exp{−(x−µ)2/2σ2},
where µ and σ are unknown parameters, then

(10) lik(µ, σ;x) = (σ
√

2π)−n exp{−
n∑
i=1

(xi − µ)2/2σ2}

and MLE(µ, σ) are

(11) µ̂ =
1

n

n∑
i=1

Xi, σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2.

It may happen that MLE does not exist or that MLE is not unique. Another kind of

difficulty may arise when one tries to find the global maximum of the likelihood function.
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3.1.3. Statistical functionals. Let X = (X1, X2, . . . , Xn), where X1,X2, . . . , Xn are

i.i.d. r.v.’s distributed according to a distribution P with cumulative distribution func-

tion F :

(12) F (x) = P{X ≤ x}.

In many common statistical models the parameter θ of interest can be represented in the

form

(13) θ =

∫
h(x)dF (x).

Here and below the integration is meant over the whole real line. Let Fn(x) be the

empirical distribution function:

(14) Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi).

It seems to be “natural” to take

(15) θ̂ =

∫
h(x)dFn(x)

as an estimator of θ.

The approach was initiated by K. Pearson approximately one hundred years ago, in

its original formulation for h(x) of the form xm, m = 1, 2, . . . That was known as the

method of moments. For example, for the expected value θ we have h(x) = x and the

estimator is

(16)

∫
xdFn(x) =

n∑
i=1

Xi/n

which is the sample mean. Similarly the sample variance is an estimator of the variance,

etc.

The following version of the method of moments has been developed. Suppose that

the distribution P depends on a real (“one-dimensional”) parameter θ. Then EθX is a

function of θ. The expectation EθX is estimated by the sample mean. Then an estimator

for θ may be obtained as a solution (with respect to θ) of the equation

(17) Eθ(X) =
1

n

n∑
i=1

Xi.

A somewhat more general case is presented in the following example.

Example 7. If X has gamma distribution with the density

(18) fα,λ(x) =
1

λαΓ(α)
xα−1e−x/λ, x ≥ 0, α ≥ 0, λ > 0,

then the expected value and the variance of X are

(19) Eα,λX = αλ and V arα,λX = αλ2.

Substituting to (19) the sample mean X̄ =
∑n
i=1Xi/n and the sample variance S2 =∑n

i=1(Xi − X̄)2 for the expectation Eα,λX and the variance V arα,λX, respectively, and
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solving the resulting equations we obtain

(20) λ̂ =
S2

X̄
and α̂ =

X̄2

S2

as estimators of the parameters λ and α, respectively.

A warning is needed:
∫
h(x)dFn(x) always exists though

∫
h(x)dF (x) may not be

defined.

3.2. Optimal estimators

3.2.1. Statement of the problem. Let (X ,F ,P) be a given statistical model with a

parameter θ and the parameter space D = θ(P). Given an observation X, we are looking

for an estimator θ̂ : X → D.

From now on we shall use a notation which is more suitable for what we are going to

speak about. A statistical model will be denoted by (X ,F , {Pθ : θ ∈ Θ}), where X is a

sample space, F a σ-field of observable random events, and {Pθ : θ ∈ Θ} is a family of

distributions on the measurable space (X ,F) indexed by a parameter θ ∈ Θ. We assume

that the parameter θ is identifiable, which means that θ1 = θ2 iff Pθ1 = Pθ2 . To clearly

present the main ideas without too many technicalities, we shall consider the problem of

estimating the value g(θ), where g : Θ→ R1 is a given real-valued function. An estimator

of g will be traditionally denoted by ĝ.

To reasonably speak about optimal estimators we have to define an order (at least a

partial order) in the space of estimators; this of course amounts to defining an optimality

criterion. We shall do this as follows.

Let L : Θ × R1 → R1
+ be a given function with the following interpretation: if X

comes from a distribution Pθ and the estimator takes on the value ĝ(X), then our “loss”

is equal to L(θ, ĝ(X)). Under such interpretation it is natural to restrict ourselves to

functions L satisfying the following conditions: 1) L(θ, g(θ′)) = 0 iff g(θ) = g(θ′), and 2)

L ≥ 0. Roughly speaking, the optimal estimator is an estimator which minimizes losses.

A new concept in our considerations has emerged: the loss function. The “loss” may be

considered as a distance between the value of the estimator and what is to be estimated.

Or, in a more general statement of the problem, one can imagine that as a result of

estimation we take an “action”, say a(X), from a space A of actions, and define L as a

function on Θ×A. This is an approach developed in the statistical decision theory (see

e.g. Ferguson (1967), Lehmann (1986)). We confine ourselves to the case A = R1.

The loss function, as it is, is not suitable for ordering estimators first of all due to the

fact that it is a random variable. This is easy to overcome: take the expected value of L

and consider the quantity

(21) R(θ, ĝ) = EθL(θ, ĝ(X)) =

∫
L(θ, ĝ(x))Pθ(dx)

For a fixed estimator ĝ, the function R(·, ĝ) : Θ → R1 is called the risk function of the

estimator ĝ. This gives us a partial ordering in the space of possible estimators: an

estimator ĝ1 is said to be as good as an estimator ĝ2 if

(22) R(θ, ĝ1) ≤ R(θ, ĝ2) for all θ ∈ Θ;
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ĝ1 is said to be better than ĝ2 if it is as good as ĝ2 and

(23) R(θ, ĝ1) < R(θ, ĝ2) for some θ ∈ Θ.

Now it is clear what an optimal estimator (the best estimator) is. A somewhat weaker

concept is that of admissibility: an estimator ĝ is said to be admissible if there exists no

estimator better than ĝ.

Suppose we are interested in the best (under the above partial ordering) estimator in

a class G of estimators under a fixed loss function L. It appears that if G is too large, then

the optimal estimator does not exist. Suppose, for example, that G contains constants.

Take g0 = g(θ0) as an estimator. Then R(θ0, g0) = 0. It follows that for the optimal

estimator ĝopt one should have R(θ, gopt) = 0 for all θ ∈ Θ, which is impossible by the

very definition of L.

There are two ways to deal with the problem. The first possibility is to restrict the

class of estimators under consideration. For example it seems to make sense to eliminate

constants as estimators. This we shall discuss in Sec. 3.2.2 and 3.2.3. Another way is to

define a linear ordering (not partial ordering only) in the set of estimators. The problem is

discussed in Sec. 3.2.4. The basic concept in developing the theory of optimal estimators

is that of sufficiency.

3.2.2. Sufficient statistics

Example 8. Let X1,X2, . . . , Xn be a sample from the two-point distribution

(26) Pθ{X1 = 1} = θ = 1− Pθ{X1 = 0}.

Then

(27) Pθ{X1 = x1, X2 = x2, . . . , Xn = xn} = θs(1− θ)n−s

where s = x1 + x2 + . . . + xn. Define a new random variable: S = X1 + X2 + . . . + Xn.

The distribution of S is given by the formula

(28) Pθ{S = s} =

(
n

s

)
θs(1− θ)n−s, s = 0, 1, . . . , n.

The conditional distribution of the sample (X1,X2, . . . , Xn) if S = s is

Pθ{X1 =x1, X2 =x2, . . . , Xn=xn
∣∣S=s} =

{
1/
(
n
s

)
if
∑n
i=1 xi=s,

0 otherwise.

The point is that the conditional distribution of the sample, under the condition that

S = s, does not depend on θ. An obvious interpretation is: if we want to conclude

something about the unknown value of the parameter θ and we know S, then all other

information about the sample is irrelevant for the conclusion. The statistic S is sufficient.

In general: in a given statistical model (X ,F , {Pθ : θ ∈ Θ}) of the observation X, a

statistic T = T (X) is said to be sufficient if the conditional distribution of X given T = t

is independent of θ for all t.

Typically there are many sufficient statistics in a given statistical model. A statistic

S is said to be a minimal sufficient statistic if for every sufficient statistic T there exists

a function f such that S = f(T ).
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The significance of sufficiency follows from a theorem which states that if T is a

sufficient statistic then for every estimator ĝ(X) there exists an estimator γ̂(T ) based on

T which is as good as ĝ(X).

3.2.3. Minimum variance unbiased estimators. Suppose that we are interested in

estimating g(θ) for a fixed function g : Θ→ R1. Take L(θ, ĝ(X)) = (ĝ(X)−g(θ))2 as the

loss. Then the risk of the estimator ĝ

R(θ, ĝ) =

∫
(ĝ(x)− g(θ))2Pθ(dx)

is called the mean square error (MSE) of the estimator. As above, in the class of all

estimators, there exists no estimator uniformly minimizing the risk.

A possible criterion for restriction of the class of estimators to be considered is based

on the concept of the bias.

Given a loss function L, an estimator ĝ(X) is said to be an unbiased estimator of g(θ)

if for each θ ∈ Θ

(24) EθL(θ, ĝ(X)) ≤ EθL(θ′, ĝ(X)) for all θ′ ∈ Θ.

An equivalent (except some rather special situations) condition in the case of the

MSE is

(25) Eθĝ(X) = g(θ) for all θ ∈ Θ.

When considering the loss as a measure of a distance between the estimator and what

is to be estimated, condition (24) states that an unbiased estimator is that which in mean

is closer to the true value of the parameter than to any other of its values. In the case of

MSE as risk, this amounts to that the expected value of an unbiased estimator is equal

to what is to be estimated.

It could happen that the class of unbiased estimators is empty. Sometimes it contains

exactly one element (it is perhaps a good place to say that in statistics, or more generally

in probability theory, exactly one means that if there exist other elements of a given

property, then they differ from the given element on a set whose probability is equal to

zero). Typically, however, especially in statistical models with repeated observations, it

is not the case.

Observe that if ĝ is an unbiased estimator then its MSE is equal to its variance. Hence

“the minimum variance unbiased estimator” is an unbiased estimator with (uniformly)

minimal risk function. In standard statistical models, under some additional technical

conditions (“completeness”) such estimator can be explicitly constructed; it is an estima-

tor based on the minimal sufficient statistic. A beautiful presentation of the theory and

an abundance of examples can be found in Lehmann (1986).

3.2.4. Best equivariant estimators. Suppose we are interested in estimating the mean

θ = EX of a random variable X. Let X1,X2, . . . , Xn be a sample from the underlying

distribution and let T (X1, X2, . . . , Xn) be an estimator. Now consider a new random

variable X+ c, where c ∈ R1 is a constant. It is obvious that E(X+ c) = EX+ c so that

it is natural to state the condition for the estimator

(29) T (X1 + x,X2 + c, . . . ,Xn + c) = T (X1, X2, . . . , Xn) + c (∀c ∈ R1).
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If L(θ, T ) is the loss when estimating θ by T , then is natural to expect that

(30) L(θ + c, T (X) + c) = L(θ, T ) (∀c ∈ R1).

In general, let (X ,F , {Pθ : θ ∈ Θ}) be a statistical model of an observation X under

consideration and consider the problem of estimating h(θ) for a given transformation

h : Θ → H. Let G be a group of 1 : 1 transformations g of X onto itself. Let gX be the

random variable which takes on the value gx when X = x and let Pθ′ be the distribution

of gX if Pθ is the distribution of X. We assume that θ′ ∈ Θ so that the transformation g

of X onto itself generates a transformation θ′ = ḡθ of Θ into itself. We assume that ḡ is

a transformation of Θ onto itself and that Ḡ = {ḡ : g ∈ G} is a group of transformations.

If we are interested in estimating h(θ) then a natural additional requirement is that for

every fixed ḡ

(31) h(ḡθ1) = h(ḡθ2) whenever h(θ1) = h(θ2).

This induces a transformation g̃ : H → H such that

(32) h(ḡθ) = g̃h(θ) (∀θ ∈ Θ).

Now it is obvious that if T (X) estimates h(θ) then T (gX) should estimate h̃(θ). An

estimator T is said to be equivariant if

(33) T (gX) = g̃T (X) (∀g ∈ G).

It appears that if T is an equivariant estimator then its risk function satisfies

(34) R(ḡθ, T ) = R(θ, T ) (∀θ ∈ Θ)

and if Ḡ is transitive, then the risk function is constant. If this is the case, the best

equivariant estimator is obtained by minimizing that constant.

Though not always the problem may be so dramatically simplified, in many situations

typical for applied statistics the best invariant estimators can be explicitly constructed.

3.2.5. Bayes and minimax estimators. Ordering estimators T ∈ T by their risk func-

tions R(θ, T ) causes some problems generated by the fact that the risk function enables

one to define a partial ordering only. Under some restrictions on T (unbiasedness, invari-

ance) it is sometimes possible to effectively construct uniformly minimum risk estimators

in a given class as we saw in Sec. 3.2.3 and 3.2.4. Other approaches consist in defining

(linear) orders in the set T of estimators under consideration: the best estimator is then

clearly defined though its explicit construction may be difficult.

Consider a statistical model (X ,F , {Pθ : θ ∈ Θ}) of an observation X. Let R : Θ ×
T → R1 be a fixed risk function.

The Bayes approach consists in introducing a probability measure, say π, on the

measurable space (Θ,FΘ), where FΘ is a σ-field of subsets of Θ, averaging the risk of a

given estimator T ∈ T with respect to that probability:

(35) r(T ) =

∫
R(θ, T )π(dθ)

and finding T ∗ such that

(36) r(T ∗) ≤ r(T ) (∀T ∈ T )
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The distribution π is called a prior distribution, T ∗ is called the Bayes estimator (under

given loss function and prior distribution), and r(T ) is called the Bayesian risk of the

estimator T .

The Bayes approach raises some controversies. The prior distribution is sometimes

understood as a description of the state of mind of the statistician facing an estimation

problem: he believes that a priori, i.e. before any observation is performed, some values

of the unknown parameter θ are more plausible than others and he expresses this belief

by putting more probability mass π to those more plausible values. Sometimes the prior

distribution π summarizes all past experience of the statistician. The interpretation plays

a crucial role e.g. in statistical quality control and reliability theory as well as in actuarial

sciences. The Bayes approach may be also considered as a pure mathematical tool like

scalarization in multi-criterion optimization problems. The fact is that except some rather

special situations the Bayes estimators are admissible.

If Pθ is the distribution of the observation X, lik(θ;x) is the likelihood function of θ

when X = x was observed, and π is a prior distribution of the unknown parameter θ,

then

(37) πx(θ ∈ A) =

∫
A

lik(θ;x)π(dθ)

defines the posterior distribution of θ. In many practical problems, construction of the

Bayes estimator is really very simple. For example, under quadratic loss function (MSE

estimators!) the Bayes estimator of a parameter is the expected value of the parameter

with respect to the posterior distribution, and under the absolute deviation loss (MAD

estimators!) it is a median of the posterior distribution. The Bayes estimator may be

viewed as a result of mixing our prior knowledge about the unknown parameter θ with

what we learned from the observation of X; it is of no wonder that the influence of the

former is diminishing when the number of our observations is growing.

The minimax approach is as follows. Given a class T of estimators and a risk function

R : Θ×T ∈ R1, consider the “worst” result for a fixed estimator T : supθ∈ΘR(θ, T ). The

estimator T ∗ which minimizes that quantity is said to be minimax :

(37) sup
θ∈Θ

R(θ, T ∗) ≤ sup
θ∈Θ

R(θ, T ) (∀T ∈ T ).

The problem is that explicit construction of a minimax estimator in most problems is

not easy and in fact each problem has to be treated separately.

4.Robustness. A statistical model adopted for a given real-life problem of estimation

(see Ex. 1 and Ex. 2) should be 1) adequate and 2) mathematically tractable. Typically

the latter prevails: otherwise we might not be able to construct an estimator. The the-

ory of robustness enables one to work in nice and mathematically tractable models, and

to take into account some inadequacies of the given theoretical model. For example we

may assume in Examples 1 and 2 that the noise is Gaussian but we should ask how our

estimator would behave if the noise is “not exactly Gaussian”. Or, in theoretical con-

siderations we would like to assume that repeated observations are independent random

variables but we should answer the question what happens to the estimator constructed
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under such assumptions if the random errors are not independent (for example, when

performing a new measurement the researcher may keep in mind the results of previous

measurements).

There are many different approaches to the problem. Perhaps the most general one

is presented in Zieliński (1983).

Let (X ,F ,P0 = {Pθ : θ ∈ Θ}) be a statistical model under consideration. Let P be

the family of all probability distributions on (X ,F), so that P0 ⊂ P. The nonadequacy

(or violation) of the model may be described by a mapping β : P0 → 2P with the

following interpretation: instead of a given model distribution Pθ ∈ P0, the observation

has an unknown distribution from the set β(Pθ). Suppose that we have constructed an

estimator T and we are interested in its property ρ, e.g. its bias, variance, risk, etc.

The property may be considered as a mapping from
⋃
θ∈Θ β(Pθ) into a metric space (the

real line, Rm, or a more general space). Fix θ ∈ Θ. If the “true” distribution P of

the observation X runs over β(Pθ), then ρ(T, P ) runs over some set and the diameter of

that set, say r(θ, T ), is a measure of stability of the estimator T under violation of the

original model at the point θ ∈ Θ. For a given estimator T , the function r(·, T ) : Θ→ R1

characterizes stability of T in the model (X ,F ,P0 = {Pθ : θ ∈ Θ}) under the violation

β. Estimator T1 is more stable (more robust) than T2 if r(θ, T1) ≤ r(θ, T2) for all θ ∈ Θ

and r(θ, T1) < r(θ, T2) for a θ ∈ Θ.

For some models and their violations, the uniformly most robust estimators have been

effectively constructed.
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