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APPROXIMATION OF STOCHASTIC

DIFFERENTIAL EQUATIONS DRIVEN BY

α-STABLE LÉVY MOTION

Abstract. In this paper we present a result on convergence of approximate
solutions of stochastic differential equations involving integrals with respect
to α-stable Lévy motion. We prove an appropriate weak limit theorem,
which does not follow from known results on stability properties of stochas-
tic differential equations driven by semimartingales. It assures convergence
in law in the Skorokhod topology of sequences of approximate solutions and
justifies discrete time schemes applied in computer simulations. An exam-
ple is included in order to demonstrate that stochastic differential equations
with jumps are of interest in constructions of models for various problems
arising in science and engineering, often providing better description of real
life phenomena than their Gaussian counterparts. In order to demonstrate
the usefulness of our approach, we present computer simulations of a contin-
uous time α-stable model of cumulative gain in the Duffie–Harrison option
pricing framework.

1. Introduction. Recent practical and theoretical studies of various
physical and biological problems (see, e.g., Buldyrev et al . (1993) and Wang
(1992)), signal processing (Shao and Nikias (1993)), finance models (Em-
brechts and Schmidli (1994), Rachev and Samorodnitsky (1993)), queue-
ing networks (Kella (1993)), level crossing problems with their applications
(Adler, Samorodnitsky and Gadrich (1993) or Michna and Rychlik (1995)),
etc., reinforce the need for infinite variance stochastic models, including pro-
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cesses with discontinuous trajectories. Of interest are problems involving α-
stable processes and, in particular, stochastic models described by stochastic
differential equations with jumps, driven by α-stable random measures.

In this paper we are interested in approximate methods for a stochas-
tic differential equation (SDE) driven by an α-stable Lévy motion process
{Lα,β(t) : t ≥ 0}, i.e., we discuss constructions of stochastic processes
X = {X(t) : t ≥ 0} with values in R, which solve SDEs with given drift and
diffusion coefficients. Such an SDE can be written as

dX(t) = a(t,X(t)) dt + b(t,X(t)) dLα,β(t), t > 0, X(0) = X0,

and has, in fact, strict mathematical meaning in the following integral form:

(1.1) X(t) = X0 +

t\
0

a(s,X(s−)) ds +

t\
0

b(s,X(s−)) dLα,β(s), t ≥ 0.

Let us briefly recall that a stochastic process {Lα,β(t) : t ≥ 0} is called
an α-stable Lévy motion if

1. Lα,β(0) = 0 a.s.;

2. Lα,β(t) has independent increments;

3. Lα,β(t) − Lα,β(s) ∼ Sα((t− s)1/α, β, 0) for any 0 ≤ s < t <∞,

where Sα(σ, β, µ) stands for an α-stable random variable, which is uniquely
determined by its characteristic function involving four parameters: α ∈
(0, 2], the index of stability; β ∈ [−1, 1], the skewness parameter; σ ∈ (0,∞),
the scale parameter; µ ∈ (−∞,∞), the shift, and which has the form

(1.2) log φ(θ) =

{
−σα|θ|α{1 − iβ sgn(θ) tan(απ/2)} + iµθ, α 6= 1,
−σ|θ|{1 + iβ(2/π) sgn(θ) ln |θ|} + iµθ, α = 1.

Notice that S2(σ, 0, µ) gives the Gaussian distribution N (µ, 2σ2), so L2,0(t)
=

√
2B(t), where {B(t) : t ≥ 0} stands for the Brownian motion process.

This means that (1.1) includes as a special case the following, very well
known SDE:

(1.3) X(t) = X0 +

t\
0

a(s,X(s)) ds +

t\
0

b(s,X(s)) dB(s).

Problems of existence and regularity of solutions to such SDEs have been
studied for a long time (see e.g., Karatzas and Schreve (1988)). The numer-
ical analysis of stochastic differential systems driven by Brownian motion—
focusing essentially on such problems as mean-square convergence of various
discrete time approximate schemes, pathwise approximation or approxima-
tion of expectations of the solution, etc.—has also been developed for many
years. There is an extensive literature concerning this subject; see, e.g.,
Pardoux and Talay (1985) or the monograph of Kloeden and Platen (1992).
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Discrete time algorithms and results of computer simulations applied to dif-
ferent stochastic models are presented in Kloeden, Platen and Schurz (1994).

This is in sharp contrast to the case of (1.1). There exists a vast literature
concerning various classes of α-stable processes (see, e.g., Weron (1984) or
Samorodnitsky and Taqqu (1994)), but little has been written about SDEs
with respect to α-stable random measures. However, basic numerical al-
gorithms and computer simulation methods involving statistical estimation
techniques, as well as some convergence results, are presented in Janicki and
Weron (1994a), (1994b), together with various examples of application in
stochastic modeling.

Fundamental properties of stochastic integrals with α-stable random
measures as integrators can be derived from the general theory of integrals
with respect to semimartingales (see, e.g., Protter (1990)). Also some theo-
rems on existence of solutions to SDEs driven by α-stable random measures
can be obtained in the same way (Protter (1990), Chapter V), since they be-
long to the general class of SDEs driven by semimartingales, i.e. equations
of the form

(1.4) X(t) = X0 +

t\
0

f(X(s−)) dY (s), t > 0,

with the solution X = {X(t) : t ≥ 0} with values in R
d, where {Y (t) : t ≥ 0}

stands for a given semimartingale process with values in R
m and f denotes

a given function from R
d into R

d ×R
m. In fact, it is not difficult to see that

an α-stable Lévy motion process belongs to the class of semimartingales. It
is enough to notice that such a stochastic process is infinitely divisible and
can be represented by its characteristic function given by the Lévy–Khinchin
formula

(1.5) EeiθLα,β(t) = exp(tψ(θ)),

where

(1.6) ψ(θ) = ibθ − 1

2
cθ2 +

∞\
−∞

(
eiθu − 1 − iθu

1 + u2

)
dν(u),

and dν(u) = dνα,β(u) is defined by

(1.7) dν(u) =

{
α{C+

I(0,∞)(u) + C−
I(−∞,0)(u)}|u|−α−1du, 0 < α < 2,

0, α = 2,

where C+ and C− denote nonnegative constants depending on β such that
C+ + C− > 0.

The problem of stability of (1.4) consists in investigation of conditions
under which the sequence {Xn}∞n=1 of processes Xn = {Xn(t) : t ≥ 0}
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solving the SDE

(1.8) Xn(t) = Xn,0 +

t\
0

fn(Xn(s−)) dY (s)

converges weakly in law (in the sense of weak convergence of underlying
measures on the space D([0,∞),Rd) of cadlag functions, endowed with the
Skorokhod topology). There is a vast literature on this subject, concerning
general semimartingales (see, e.g., S lomiński (1989), Jakubowski, Mémin
and Pages (1989) or Kurtz and Protter (1991)), as well as semimartingales
represented by Poisson counting measures (see, e.g., Kasahara and Watan-
abe (1986), and Kasahara and Yamada (1991)).

The main goal of this work is to prove a similar result, concerning the
problem of convergence to the solution X to (1.1) of a sequence of processes
Xn defined by the SDE

(1.9) Xn(t) = Xn,0 +

t\
0

an(s,Xn(s−)) dln(s) +

t\
0

bn(s,Xn(s−)) dLn(s),

with appropriately chosen Xn,0, an, bn, dln, and dLn.

A weak functional limit theorem discussed here does not follow from
known results on stability properties of stochastic differential equations
driven by semimartingales. It assures weak convergence in the Skorokhod
topology in the space D([0,∞),R) of sequences of approximate solutions to
(1.1) defined by (1.9), and justifies discrete time schemes applied in com-
puter simulations.

In Section 2 we present in detail the method of numerical continuous and
discrete time approximations for the problem described by (1.1) and prove
the main theorem concerning the convergence of approximate solutions. In
order to demonstrate the usefulness of our approach in applications, in Sec-
tion 3 we present a discrete time algorithm of computer construction of
solutions to (1.1) and in Section 4 an example of computer simulations
concerning one important and rather well known problem from financial
mathematics.

2. Main result. Let (Ω,F , P, {Ft}t≥0) be a stochastic basis and
L0(Ω,F , P ) the space of all random variables (measurable functions) on Ω.

We consider the SDE the (1.1) driven by a stochastic measure deter-
mined by increments of an α-stable Lévy motion {Lα,β(t) : t ≥ 0} with
the index of stability α ∈ (0, 2] and skewness parameter β ∈ [−1, 1], where
X0 denotes a given fixed F0-measurable random variable and a solution
X = {X(t) : t ≥ 0} is defined as an {Ft}t≥0-adapted cadlag (càdlàg—
continu à droite, limites à gauche in French) stochastic process (i.e., a
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stochastic process whose trajectories are right continuous and have bounded
left limits, which implies that X is represented by an appropriate measure
on the space D([0,∞),R) of cadlag functions on [0,∞) endowed with the
Skorokhod topology; see, e.g., Parthasarathy (1969), Chapter VII or Kurtz
and Protter (1991)).

Our aim is to derive from (1.9) some explicit methods of construction of
sequences {Xn}∞n=1 of stochastic processes Xn = {Xn(t)} converging to a
solution X = {X(t)} of the problem (1.1).

For constructions of approximations to α-stable random measures we
will constantly use a sequence {Yj}∞j=1 of i.i.d. random variables with a
common distribution F , living on (Ω′,F ′, P ′) and belonging to the domain
of attraction of α-stable laws, i.e., such that

(2.1)
1

φ(n)

n∑

j=1

Yj
L→ Lα,β(1) as n→ ∞,

where φ(n) = n1/αψ(n) and ψ = ψ(u) denotes an appropriately chosen
slowly varying function. For further convenience let us also introduce

(2.2) cεnk :=
\

0<|u|≤ε

uk dF (φ(n)u).

From now on, let Xn = {Xn(t) : t ≥ 0}, for n = 1, 2, . . . , denote a
sequence of cadlag stochastic processes Xn defined on (Ω′,F ′, P ′) endowed
with a natural filtration {F (n)}t≥0 of Xn, and satisfying the SDE

Xn(t) = Xn,0 +

t\
0

an(s,Xn(s−)) dln(s)(2.3)

+
1

φ(n)

[nt]∑

j=1

bn

(
j

n
,Xn

(
j

n
−

))
Yj ,

where ln = ln(s) denotes a given deterministic nonnegative and nondecreas-
ing function on [0,∞), and an = an(s, x), bn = bn(s, x) are measurable
functions such that the solution Xn exists.

Our aim is to prove the following theorem on convergence of approxi-
mate solutions of (1.1), which does not follow directly from known results on
stability properties of (1.4) driven by a semimartingale. It assures weak con-
vergence in the Skorokhod topology of sequences of approximate solutions
and justifies discrete time schemes applied in computer simulations.

Theorem 2.1. Suppose that the coefficients a = a(s, x) and b = b(s, x)
in (1.1) are continuous. Suppose that (1.1) has a unique weak solution in

D([0,∞),R). Assume that for any T > 0 and R > 0, there exists a constant
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M > 0 such that , for all n ≥ 1,

sup
0≤s≤T, |x|≤R

|an(s, x)| ≤M,(2.4)

sup
0≤s≤T, |x|≤R

|bn(s, x)| ≤M.(2.5)

Suppose that for every sequence {(sn, xn)} converging to (s, x),

(2.6) an(sn, xn) → a(s, x), bn(sn, xn) → b(s, x),

and also

ln(t) → t for all t ∈ [0,∞),(2.7)

Xn,0 → X0 weakly as n→ ∞.(2.8)

Then the sequence {Xn(t)}∞n=1 of solutions to (2.3) converges weakly to the

solution X(t) of (1.1) in the Skorokhod topology.

P r o o f. Our proof leans to some extent on a result of Kasahara and
Yamada (1991) concerning the functional central limit theorem for solu-
tions to SDEs driven by semimartingales represented by Poisson random
measures. We start by introducing such a representation for α-stable Lévy
motion, apply it to the description of sequences of approximate solutions,
check suitable tightness criteria for them, ending up with a conclusion on
their weak convergence in the space D([0,∞),R). The proof is split into a
few steps.

S t e p 1. Let us rewrite equation (1.1) using a Poisson random measure
generated by an α-stable Lévy motion, recalling first a formal definition of
a Poisson random measure. Let (S,S, n) be a measure space and Sf =
{A ∈ S : n(A) < ∞}. A Poisson random measure N on (S,S, n) is an
independently scattered σ-additive set function N : Sf → L0(Ω,F , P ) such
that for each A ∈ Sf , N(A) has a Poisson distribution with mean n(A), that
is,

P (N(A) = k) = e−n(A) (n(A))k

k!
for k = 0, 1, 2, . . . ,

and (the mean) n is a control measure of N . Let us recall briefly the Lévy–
Itô theorem characterizing Lévy processes, i.e., right continuous processes
with stationary independent increments (see Ikeda and Watanabe (1981),
Chapter II, or Protter (1990), Chapter I). Let L = {L(t) : t ≥ 0} be a Lévy
process. Its trajectories λ = λ(t) all belong to the space D([0,∞),R). For
any A ∈ Sf such that 0 6∈ A one can define

N([t1, t2], A, λ) = card{t1 ≤ s ≤ t2 : ∆λ(s) ∈ A},
where ∆λ(s) denotes the jump of the trajectory λ at the point s, and then

N([t1, t2], A) := N([t1, t2], A,L).
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So, N generates a random measure on [0,∞)× (R \ {0}) which is a Poisson
measure with the mean

EN(ds, du) = ds dν(u),

where ν is a corresponding (deterministic) Lévy measure. The Lévy–Itô
theorem states that any Lévy process L = {L(t)} takes the form

(2.9) L(t) = ζB(t) + γt+

t\
0

\
|u|≤1

u Ñ(ds, du) +

t\
0

\
|u|>1

uN(ds, du),

where B = B(t) denotes a standard Brownian motion, Ñ := N−EN , and ζ,
γ are some fixed constants. So, thanks to (1.5)–(1.7), for an α-stable Lévy
motion {Lα,β(t)} we get

(2.10) Lα,β(t) = γt+

t\
0

\
|u|≤1

u Ñ(ds, du) +

t\
0

\
|u|>1

uN(ds, du)

for α ∈ (0, 2) (and any β ∈ [−1, 1]), and

L2,β(t) = L2,0(t) =
√

2B(t).

In what follows we have to deal with stochastic processes defined by a
stochastic integral with an α-stable Lévy motion as integrator. Namely, for a
given caglad (continu à gauche, limites à droite) process {H(t) : t ∈ [0,∞)}
one can construct a new process

Y (t) =

t\
0

H(s) dLα,β(s),

and, applying (2.10), get the representation

Y (t) = γ

t\
0

H(s) ds+

t\
0

\
0<|u|≤1

H(s)u Ñ(ds, du)(2.11)

+

t\
0

\
|u|>1

H(s)uN(ds, du),

which is correctly defined thanks to the fact that
Tt
0

T
|u|≤1

u Ñ (ds, du) andTt
0

T
|u|>1

uN(ds, du) are semimartingales.

S t e p 2. It is known that the Poisson measure N can be approximated
by discrete measures of the form

Nn(ds, du) =

∞∑

k=1

δ(k/n, Yk/φ(n))(ds, du),
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where δ = δ(x, y) denotes Dirac’s distribution function on R
2, so ENn =

N̂n(ds, du) = d̺n(s)dνn(u), ̺n(s) = [ns]/n, νn(u) = nF (φ(n)u).
For the sequence {Yj}∞j=1 satisfying (2.1) we can construct a sequence

{Xn}∞n=1 of cadlag stochastic processes Xn = {Xn(t) : t ≥ 0} adapted to

{F (n)
t } and satisfying the SDE

Xn(t) = Xn,0 +

t\
0

an(s,Xn(s−)) dln(s) + γ

t\
0

bn(s,Xn(s−)) dln(s)(2.12)

+

t\
0

\
0<|u|≤1

bn(s,Xn(s−))u Ñn(ds, du)

+

t\
0

\
|u|>1

bn(s,Xn(s−))uNn(ds, du).

The sequence {Xn}∞n=1 approximates the process X solving equation (1.1).
Let us replace (2.12) by

Xn(t) = Xn,0 +

t\
0

an(s,Xn(s−)) dln(s) + γ

t\
0

bn(s,Xn(s−)) dln(s)(2.13)

+
1

φ(n)

[nt]∑

j=1

bn

(
j

n
,Xn

(
j

n
−

))
Yj ,

− c1n1

[nt]∑

j=1

bn

(
j

n
,Xn

(
j

n
−

))
.

S t e p 3. Now our aim is to check that N̂n((0, t] × A)
P
= tν(A), for

any fixed measurable set A ⊂ Ra := (−∞,−a] ∪ [a,∞) (for some a > 0)
such that ν(∂A) = 0. We must prove that for the sequence of measures νn

defined above we have the convergence

νn(A) → ν(A) as n→ ∞,

for any such A.
We see that νn(Ra) → ν(Ra) as n→ ∞ (see Feller (1971), Sect. XVII.1).

Let ϑ ⊂ Ra and ϑ be open. By regularity of ν, for every ε > 0 there exists
a compact subset K in ϑ such that

ν(ϑ) < ν(K) + ε.

From the Urysohn lemma we obtain a function f such that K ⊂ supp(f)
⊂ ϑ, |f | ≤ 1 and f ≡ 1 on K. Since νn converges in the vague topology to ν,
it follows that limn νng = νg for all continuous functions g with compact
support, where νg =

T
R\{0}

g dν (for the definition of the vague topology
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and some details on the corresponding convergence we refer the reader to
Jagers (1974) and Resnick (1987)). So,

lim inf
n

νn(ϑ) ≥ lim inf
n

νnf = νf ≥ ν(K) > ν(ϑ) − ε,

and thus limn νn(A) = ν(A).

S t e p 4. Further, we have the estimate

E

[ t\
0

\
0<|u|≤1

u2 N̂n(ds, du)
]

=

t\
0

\
0<|u|≤1

u2 N̂n(ds, du) = [nt]c1n2 <∞.

S t e p 5. Next, we have to check that for some ̺ > 0 we have

(2.14) lim
ε↓0

lim sup
n

P (|[Yε
n,Y

ε
n] − ̺2t| > δ) = 0, δ > 0,

where Y ε
n (t) :=

Tt
0

T
0<|u|<ε

u Ñn(ds, du) and [X,X] denotes the quadratic

variation process for a given martingale X (see, e.g., Protter (1990), Chap-
ter II). So we have

Y ε
n (t) =

1

φ(n)

[nt]∑

j=1

YjI(0,ε)

( |Yj |
φ(n)

)
− [nt]cεn1.

The quadratic variation process has the form

(2.15) [Yε
n,Y

ε
n](t) =

[nt]∑

j=1

(
Yj

φ(n)
I(0,ε)

( |Yj |
φ(n)

)
− cεn1

)2

.

The expected value of [Yε
n,Y

ε
n] takes the form

(2.16) E[Yε
n,Y

ε
n](t) = [nt](cεn2 − (cεn1)2).

If 0 < α < 2 then the left hand side of (2.16) converges to t
T
|u|≤ε

u2 ν(du)

(see e.g. Kasahara and Maejima (1986)). So,

lim
ε↓0

lim sup
n

E|[Yε
n,Y

ε
n](t)| = 0,

and hence ̺ = 0.

For α = 2 we have to show that ̺ = ζ in (2.14), with ζ defined by (2.9).
So we have

(2.17) P (|[Yε
n,Y

ε
n](t) − ̺2t| > δ)

≤ P (|[Yε
n,Y

ε
n](t) − [nt]bεn| > δ/2) + P (|[nt]bεn − ζ2t| > δ/2)

where

bεn = E

(
Yj

φ(n)
I(0,ε)

( |Yj |
φ(n)

)
− cεn1

)2
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and we know that nbεn → ζ2 as n→ ∞ (see Kasahara and Maejima (1986),
(1988)). We obtain

(2.18) P (|[Yε
n,Y

ε
n](t) − [nt]bεn > δ/2)

= P

(∣∣∣∣
[nt]∑

j=1

{(
Yj

φ(n)
I(0,ε)

( |Yj |
φ(n)

)
− cεn1

)2

− bεn

}∣∣∣∣ >
δ

2

)

≤ 4

δ2

[nt]∑

j=1

E

{(
Yj

φ(n)
I(0,ε)

( |Yj |
φ(n)

)
− cεn1

)2

− bεn

}2

=
4

δ2
[nt]

{
E

(
Yj

φ(n)
I(0,ε)

( |Yj |
φ(n)

)
− cεn1

)4

− (bεn)
2

}

≤ 4

δ2
[nt](4ε2bεn − (bεn)

2
).

So,

lim
ε↓0

lim sup
n

4

δ2
[nt](4ε2bεn − (bεn)

2
) = lim

ε↓0

4

δ2
ζ2t4ε2 = 0.

S t e p 6. The final question is whether there exists a constant γ > 0
such that the sequence

{ t\
0

\
0<|u|≤γ

u2 N̂n(ds, du)
}∞

n=1

is C-tight in D([0,∞),R). In our case we get, however,

(2.19) lim
n

t\
0

\
0<|u|≤1

u2 N̂n(ds, du) = lim
n

[nt]
\

0<|u|≤1

u2 dF (φ(n)u) = tdα,

for some constant dα > 0 (see Feller (1971), Section XVII.5).

S t e p 7. Our assumptions on equations (1.1) and (2.3), and the ar-
gument presented in steps 3 to 6 allow us to repeat, with some obvious
modifications, the argument applied in the proof of Theorem 2 of Kasahara
and Yamada (1991). It is enough to make an appropriate use of Theo-
rems I.7.1 and II.6.3 of Ikeda and Watanabe (1981) and Theorem 5.2 of
Kasahara and Watanabe (1986) in order to conclude that the sequence
{Xn} of solutions to (2.13) converges weakly to the solution X to (1.1)
as n→ ∞.

S t e p 8. Considering equations (1.1) and (2.13) with an(s, x) = a(s, x)
≡ 0 and bn(s, x) = b(s, x) ≡ 1 and ln = ̺n and using weak convergence of Xn
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to X we see that

(2.20) nc1n1 → γ as n→ ∞.

By the usual cut-off method (see Kesten and Papanicolaou (1979)) we
may and do assume that an and bn satisfy (2.4) and (2.5) with R = ∞.
Since the solution of equation (1.1) is unique, to prove that Xn in (2.3)
converges weakly to X it is enough to prove that

(2.21)

t\
0

b(s,X(s−)) ds −
t\
0

bn(s,Xn(s−)) dln → 0 as n→ ∞

in probability in the Skorokhod topology.

Since Xn in (2.13) converges weakly to X, using the Skorokhod repre-
sentation theorem (see e.g. Ethier and Kurtz (1986)) we may assume that
Xn in (2.13) converges to X a.s. in the Skorokhod topology. Then, recalling
(2.6) for sn → s as n→ ∞,

(2.22) bn(sn,Xn(sn−)) → b(s,X(s−))

a.e. on [0, T ] where T > 0.

Let us now consider

(2.23)
∣∣∣

t\
0

b(s,X(s−)) ds −
t\
0

bn(s,Xn(s−)) dln

∣∣∣

≤
T\
0

|bn(s,Xn(s−)) − b(s,X(s−))| dln

+
∣∣∣

t\
0

b(s,X(s−)) ds −
t\
0

b(s,X(s−)) dln

∣∣∣.

The first term on the right hand side tends to 0 because the measure dln(s)
converges weakly to Lebesgue measure ds on [0, T ] and |bn(s,Xn(s−)) −
b(s,X(s−))| ≤ 2M for 0 ≤ s ≤ T and by (2.22) and Theorem 5.5 in Billings-
ley (1968).

Let {pk,X}∞k=1 be a sequence of simple functions which converges uni-
formly to b(s,X(s−)) on [0, T ] as k → ∞ such that

pk,X(s) =

m(k)∑

i=1

p
(k)
i I

A
(k)
i

(s).

Since b(s,X(s−)) is a caglad function, we can construct pk,X in such a way

that A
(k)
i are each a countable sum of intervals so ln(A

(k)
i ) → l(A

(k)
i ) as

n→ ∞, where l is Lebesgue measure.
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Hence

D :=
∣∣∣

t\
0

b(s,X(s−)) ds −
t\
0

b(s,X(s−)) dln

∣∣∣(2.24)

≤
T\
0

|b(s,X(s−)) − pk,X(s)| ds +

T\
0

|b(s,X(s−)) − pk,X(s)| dln

+
∣∣∣

t\
0

pk,X(s) ds−
t\
0

pk,X(s) dln(s)
∣∣∣,

and thus we get

D ≤ ε(k) + ε(k) +
∣∣∣

m(k)∑

i=1

p
(k)
i (l(A

(k)
i ∩ [0, t]) − ln(A

(k)
i ∩ [0, t]))

∣∣∣

≤ 2ε(k) +

m(k)∑

i=1

|p(k)
i | · |l(A(k)

i ∩ [0, t]) − ln(A
(k)
i ∩ [0, t])|,

and finally,

(2.25) D ≤ 2ε(k) +

m(k)∑

i=1

|p(k)
i |{|l(A(k)

i ∩ [0, t∗i ]) − ln(A
(k)
i ∩ [0, t∗i ])|

∨ |l(A(k)
i ∩ [0, t∗i )) − ln(A

(k)
i ∩ [0, t∗i ))|},

where t∗i is such that

{|l(A(k)
i ∩ [0, t∗i ]) − ln(A

(k)
i ∩ [0, t∗i ])| ∨ |l(A(k)

i ∩ [0, t∗i )) − ln(A
(k)
i ∩ [0, t∗i ))|}

≥ |l(A(k)
i ∩ [0, t]) − ln(A

(k)
i ∩ [0, t])|

for all 0 ≤ t ≤ T such t∗i exists because |l(A(k)
i ∩ [0, t]) − ln(A

(k)
i ∩ [0, t])| is

a cadlag function of t. So

∣∣∣
t\
0

b(s,X(s−)) ds −
t\
0

b(s,X(s−)) dln

∣∣∣ ≤ 2ε(k) +m(k)2Mε(n).

Since ε(k) → 0 and ε(n) → 0 as k → ∞ and n→ ∞, we get (2.21).

Corollary 2.1. Consider a stochastic differential equation

(2.26) X(t) = X0 +

t\
0

a(s) ds +

t\
0

b(s,X(s−)) dLα,β(s), t ≥ 0,

and suppose that the assumptions of Theorem 2.1 are satisfied. Then the
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sequence of processes defined by

Xn(t) = Xn,0 +

t\
0

an(s) dln(s), 0 ≤ t <
1

n
,

Xn(t) = Xn,0 +

t\
0

an(s) dln(s) + bn

(
1

n
,Xn

(
1

n
−

))
Y1

φ(n)
,

1

n
≤ t <

2

n
,

and for k = 1, 2, . . . ,

Xn(t) = Xn

(
k

n
−

)
+

t\
k/n

an(s) dln(s)

+ bn

(
k

n
,Xn

(
k

n
−

))
Yk

φ(n)
,

k

n
≤ t <

k + 1

n
,

converges weakly to the solution of (2.26), provided that Xn,0 converges

weakly to X0, and the Yj satisfy (2.1).

P r o o f. It is enough to notice that Xn satisfies equation (2.3).

Considering (2.26) with a(s) ≡ 0 and its approximation with an ≡ 0 we
obtain immediately the following statement.

Corollary 2.2. Consider the SDE

(2.27) X(t) = X(0) +

t\
0

b(s,X(s−)) dLα,β(s), t ≥ 0,

and suppose the assumptions of Theorem 2.1 are satisfied. Then the sequence

Xn(t) = Xn

(
[nt] − 1

n

)
+ bn

(
[nt]

n
,Xn

(
[nt] − 1

n

))
· 1

φ(n)
Y[nt]

converges weakly to the solution of (2.27), where the sequence {Yj} satisfies

(2.1) and Xn

(
1
n −

)
= Xn,0.

The process Xn has the following simple description:

Xn(t) = Xn,0, 0 ≤ t <
1

n
,

Xn(t) = Xn(0) + bn

(
1

n
,Xn(0)

)
Y1

φ(n)
,

1

n
≤ t <

2

n
,

and for k = 1, 2, . . . ,

Xn(t) = Xn

(
k − 1

n

)
+ bn

(
k

n
,Xn

(
k − 1

n

))
Yk

φ(n)
,

k

n
≤ t <

k + 1

n
.
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Corollary 2.3. Let f = f(s) be a deterministic caglad function (i.e.,
it is left continuous and has right limits for all s). Then

(2.28)
1

φ(n)

[nt]∑

j=1

f

(
j

n

)
Yj

converges in law to the integral

(2.29)

t\
0

f(s) dLα,β(s).

P r o o f. It is enough to take (2.26) with a(s) ≡ 0 and b(s, x) = f(s) and
to choose X0 = 0.

Corollary 2.4. Consider the SDE

(2.30) X(t) = X0 +

t\
0

X(s−) ds +

t\
0

b(s,X(s−)) dLα,β(s), t ≥ 0,

and suppose the assumptions of Theorem 2.1 are satisfied. Then

Xn(t) =

[
Xn

(
[nt]

n
−

)
+ bn

(
[nt]

n
,Xn

(
[nt]

n
−

))
Y[nt]

φ(n)

]
(2.31)

× exp

{
t− [nt]

n

}
,

Xn,0 = X0,

converges weakly to the solution of (2.30) with {Yj} satisfying (2.1).

P r o o f. Xn in (2.31) satisfies the equation (2.3). The formula (2.31)
can be written as

Xn(t) = Xn,0 exp{t}, 0 ≤ t <
1

n
,

Xn(t) =

[
Xn

(
1

n
−

)
+ bn

(
1

n
,Xn

(
1

n
−

))
Y1

φ(n)

]

× exp

{
t− 1

n

}
,

1

n
≤ t <

2

n
,

and for k/n ≤ t < k + 1/n,

Xn(t) =

[
Xn

(
k

n
−

)
+ bn

(
k

n
,Xn

(
k

n
−

))
Yj

φ(n)

]
exp

{
t− k

n

}
,

which ends the proof.

3. Numerical algorithm. Now we present briefly the method of dis-
crete time approximation of equation (1.1) and discuss its convergence.
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Looking for an approximation of the process {X(t) : t ≥ 0} solving
equation (1.1) we have to approximate this equation by a time discretized
explicit system of the form

(3.1) Xn

(
k + 1

n

)
= Φ

(
Xn

(
k

n

)
, Lα,β

([
k

n
,
k + 1

n

)))
,

where the stochastic stable measure Lα,β

([
k
n ,

k+1
n

))
of the interval

[
k
n ,

k+1
n

)

is defined by

Lα,β

([
k

n
,
k + 1

n

))
:= Lα,β

(
k + 1

n

)
− Lα,β

(
k

n

)

∼ Sα(n−1/α, β, 0) ∼ 1

n1/α
Sα(1, β, 0),

since to assure proper approximation of the α-stable random measure dLα,β

it is enough to take φ(n) = n1/α and an i.i.d. sequence Yj ∼ Sα(1, β, 0) for
j = 1, . . . , n, and to notice that (2.1) takes the form

1

n1/α

n∑

j=1

Yj
d
= Lα,β(1).

Numerical algorithm. In accordance with what was presented above, the
discrete time scheme can be described as follows:

Xn

(
k + 1

n

)
= Xn

(
k

n

)
+

1

n
a

(
k

n
,Xn

(
k

n

))
(3.2)

+ b

(
k

n
,Xn

(
k

n

))
Lα,β

([
k

n
,
k + 1

n

))
,

for k = 0, 1, . . .

Convergence of this scheme follows directly from Theorem 2.1.

Theorem 3.1. Suppose that the assumptions of Theorem 2.1 are satisfied.

Then the sequence

Xn(t) = Xn

(
[nt]

n

)
+

1

n
a

(
[nt]

n
,Xn

(
[nt]

n

))
(3.3)

+ b

(
[nt]

n
,Xn

(
[nt]

n

))
Lα,β

([
[nt]

n
,

[nt] + 1

n

))

converges in law to the solution X(t) of (1.1).

4. An example. In order to demonstrate the usefulness of our ap-
proach, we present here the results of computer simulations concerning one
exemplary problem from mathematical finance theory. Other possible fields
of application are discussed in Janicki and Weron (1994a).
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Example 4.1 (Continuous time α-stable model of cumulative gain in fi-
nance theory). Specifying a problem discussed by Duffie and Harrison (1993)
we want to show how Corollary 2.1 can be applied in finance theory, and to
demonstrate how an application of α-stable random measures modifies the
chosen model. We approximate the continuous time model with its discrete
time counterpart. Consider the stochastic differential equation describing
the price of a stock owned:

(4.1) S(t) = S0 +

t\
0

S(s−) dZ(s),

assuming that Z = {Z(t) : t ≥ 0} denotes an α-stable Lévy motion {Lα,β(t) :
t ≥ 0}. Keeping in mind that the solution to (4.1) defines the stochastic
exponential (see Protter (1990), Sections II.8 and V.4) and recalling Corol-
lary 2.1 we see that the process

(4.2) Sn(t) = Sn,0

[nt]∏

k=1

(
1 +

Yk

φ(n)

)

converges weakly to {S(t)}, where the sequence {Yk} satisfies (2.1) and the
sequence {Sn,0} converges in law to S0. We conclude that the periodic rate
of return on the stock is Yk/φ(n). The cumulative gain up to time t can be
written as

(4.3) Gn(t) =

t\
0

θn(s−) dSn(s),

where θn(t) = θn
[nt] and θn

k denotes the number of shares of the stock during

the (k + 1)th period.

Let Zn(t) =
∑[nt]

i=1 Yk/φ(n), and define Zδ
n = Zn − Jδ(Zn), where

Jδ(x) =
∑

s≤t

(
1 − δ

|x(s) − x(s−)|

)+

(x(s) − x(s−)).

The process Zδ
n takes the form

(4.4) Zδ
n(t) =

[nt]∑

k=1

[(
Yk

φ(n)

)
I(−δ,δ)

(
Yk

φ

)

+ δ sgn

(
Yk

φ(n)

)
I(−∞,−δ]∪[δ,∞)

(
Yk

φ

)]
,

and is of finite variation. Let Tt(Z) := sup
∑

i |Z(ti+1) − Z(ti)| (where the
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supremum is taken over all partitions of [0, t]). Then

(4.5) Tt(Z
δ
n) =

[nt]∑

k=1

∣∣∣∣
Yk

φ(n)

∣∣∣∣I(−δ,δ)

(
Yk

φ(n)

)
+ δI(−∞,−δ]∪[δ,∞)

(
Yk

φ

)
.

Define the stopping time τd
n := inf{t : Tt(Z

δ
n) ≥ d} (τd

n < ∞). For α > 0
there exists dα such that P{τdα

n ≤ α} = P{Tα(Zδ
n) ≥ dα} ≤ 1/α and we

have

Tt∧τdα
n

(Zδ
n) ≤ dα +

∣∣∣∣
Ynτdα

n +1

φ(n)

∣∣∣∣I(−δ,δ)

(
Ynτdα

n +1

φ(n)

)

+ δI(−∞,−δ]∪[δ,∞)

(
Ynτdα

n +1

φ(n)

)
.

So, we get

(4.6) sup
n

ETt∧τdα
n

(Zδ
n) ≤ dα + 2δ.

Assuming that the sequence (Zn, θn, Sn,0) converges weakly to (Z, θ, S0)
in the topology of D([0,∞),R2) × R and making use of Theorem 2.2 of
Kurtz and Protter (1991) we conclude that the sequence {Gn}∞n=1 converges
weakly to a process G = {G(t)} which describes the cumulative gain up to
time t and is given by

(4.7) G(t) =

t\
0

θ(s−) dS(s).

Figures 4.1 and 4.2 give graphical representations of the process {G(t)}
given by equation (4.7) with θ(t) = 1, and constructed with the use of a
process {S(t)} solving the following, quite realistic, stochastic problem:

S(t) = S0 + λ

t\
0

S(s−) dLα,β(s),

which can be understood as a proposal of a possible generalization of the
equation

X(t) = X0 + λ

t\
0

X(s) dB(s),

studied, e.g., in Duffie and Harrison (1993) in a more general context. Here
we have chosen S0 = 100.0 a.s., λ = 0.01, and β = 0.

Detailed descriptions of statistical methods and computer techniques
developed for the algorithms providing the presented results can be found
in Janicki and Weron (1994a). Now, let us only mention that Figures 4.1
and 4.2 present 5 realizations (thin lines, with vertical intervals marking
large upward or downward jumps of trajectories) of the constructed process
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Fig. 4.1. Computer simulation and visualization of the cumulative stochastic gain process

{G(t) : t ∈ [0, 1]} with respect to Brownian motion (α = 2)

Fig. 4.2. Computer simulation and visualization of the cumulative stochastic gain process

{G(t) : t ∈ [0, 1]} with respect to α-stable Lévy motion with α = 1.3, β = 0
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(with α = 2 or α = 1.3) and estimators of 3 quantile lines (thick lines),
i.e. lines qi = qi(t) defined by a condition P{G(t) ≥ qi(t)} = pi, for pi =
0.25, 0.5, 0.75, constructed on the basis of a statistical sample containing
5000 approximate realizations of appropriate random variables. The time
discretizing parameter n was fixed to be equal to 1000.
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