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APPROXIMATIONS OF DYNAMIC NASH GAMES

WITH GENERAL STATE AND ACTION SPACES

AND ERGODIC COSTS FOR THE PLAYERS

Abstract . The purpose of this paper is to prove existence of an ε-equilib-
rium point in a dynamic Nash game with Borel state space and long-run
time average cost criteria for the players. The idea of the proof is first to
convert the initial game with ergodic costs to an “equivalent” game endowed
with discounted costs for some appropriately chosen value of the discount
factor, and then to approximate the discounted Nash game obtained in the
first step with a countable state space game for which existence of a Nash
equilibrium can be established. From the results of Whitt we know that if
for any ε > 0 the approximation scheme is selected in an appropriate way,
then Nash equilibrium strategies for the approximating game are also ε-
equilibrium strategies for the discounted game constructed in the first step.
It is then shown that these strategies constitute an ε-equilibrium point for
the initial game with ergodic costs as well. The idea of canonical triples,
introduced by Dynkin and Yushkevich in the control setting, is adapted here
to the game situation.

1. Introduction. We are considering a two-person Markov game over
an infinite time horizon. The state space E of the process {xt}

∞
t=0 controlled

by the players is taken to be a Borel space E equipped with the Borel σ-
algebra E . The action spaces U1 and U2 of player 1 and 2, respectively, are
compact subsets of some metric spaces. Let Ui denote the Borel σ-algebra
on Ui, and let P(Ui) denote the set of all probability measures on (Ui,Ui),
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i = 1, 2. By ht = (x0, u
1
0, u

2
0, x1, . . . , u

1
t−1, u

2
t−2, xt) we denote the state and

controls history up to time t, where ui
s stands for the ith player’s action

taken at time s, 0 ≤ s ≤ t, i = 1, 2. The set of all histories ht will be
denoted by Ht := (E × U1 × U2)

t × E, t ≥ 0. For each x ∈ E, B ∈ E and
ui ∈ Ui, i = 1, 2, we denote by p(x,B, u1, u2) the time-homogeneous one-
step transition probability of the controlled process, from the state x to the
set B under the actions u1 and u2 taken by the players. Let also ci(x, u1, u2)
be an immediate cost incurred by player i = 1, 2 if the controlled process is
in the state x and the actions u1 and u2 are applied by the players. The
following assumptions will hold throughout the paper:

A1. p(x,B, u1, u2) is uniformly continuous in x and continuous in u1, u2

uniformly in B.

A2. ci(x, u1, u2) is bounded and uniformly continuous in x and contin-
uous in u1, u2 for i = 1, 2.

A3. There is a Borel measure ν on (E, E) satisfying

(i) 0 < ν(E) < 1,

(ii) ν(B) ≤ p(x,B, u1, u2) for every x ∈ E, B ∈ E and ui ∈ Ui, i = 1, 2.

Definition 1.1. (i) By an admissible strategy of player i we mean a
sequence πi = (µi

0, µ
i
1, µ

i
2, . . .), where for each t ≥ 0, µi

t(dui|ht) is a regular
stochastic kernel on (Ui,Ui) with respect to the history ht, i = 1, 2 (see [1],
p. 134). The set of admissible strategies of player i will be denoted by Πi,
i = 1, 2.

(ii) A sequence µi,∞ = (µi, µi, . . .) is called a stationary strategy for
player i if µi is a Borel measurable mapping from E to P(Ui), i = 1, 2. We
shall denote the sets of stationary strategies for the players by M1 and M2.

Now, for any initial state of the controlled process, x0 = x ∈ E, and for
any pair of admissible strategies (π1, π2) we denote by (Ω,F , Px(π1, π2)) the
canonical probability space for the process {(xt, u

1
t , u

2
t )}

∞
t=0, with the actions

ui
t chosen from Ui by player i at time t according to the probability law µi

t,
t ≥ 0. (See for example Bertsekas and Shreve [1] for the definition of the
canonical probability space introduced above.) The expectation operator

with respect to the measure Px(π1, π2) will be denoted by Eπ1,π2

x .

In this paper we shall be mainly concerned with ergodic cost functionals
for both players. Thus, for every initial state x, and for every pair (π1, π2) ∈
Π1 × Π2 we define the cost functional of player i as

(1.1) J i(x, π1, π2) := lim sup
t→∞

t−1Eπ1,π2

x

t−1
∑

s=0

ci(xs, u
1
s, u

2
s)

for i = 1, 2.
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We shall also need an auxiliary notion of α-discounted cost functional
for player i,

(1.2) J i
α(x, π1, π2) := lim

t→∞
Eπ1,π2

x

t−1
∑

s=0

αsci(xs, u
1
s, u

2
s)

for α ∈ [0, 1), x ∈ E and πi ∈ Πi, i = 1, 2.

Definition 1.2. (i) For each ε > 0 and α ∈ [0, 1) the pair (π1
εα, π2

εα)
of admissible strategies is called an εα-Discounted Nash Equilibrium Point

(εα-DNEP) if for all x ∈ E, π1 ∈ Π1 and π2 ∈ Π2, the following inequalities
hold:

(1.3)
J1

α(x, π1
εα, π2

εα) − ε ≤ J1
α(x, π1, π2

εα),

J2
α(x, π1

εα, π2
εα) − ε ≤ J2

α(x, π1
εα, π2).

(ii) For each ε > 0 the pair (π1
ε , π2

ε ) of admissible strategies is called an
ε-Ergodic Nash Equilibrium Point (ε-ENEP) if for all x ∈ E, π1 ∈ Π1 and
π2 ∈ Π2, the following inequalities hold:

(1.4)
J1(x, π1

ε , π2
ε) − ε ≤ J1(x, π1, π2

ε),

J2(x, π1
ε , π2

ε) − ε ≤ J2(x, π1
ε , π2).

The following theorem is due to Whitt ([3], Theorem 5.1).

Theorem 1.1. Assume that A1 and A2 are satisfied. Then for any ε > 0
and α ∈ [0, 1) there exists an εα-DNEP in the set M1 × M2.

Whitt obtained the above result by means of approximating the initial
discounted game on a general state space with an appropriate sequence of
simpler games defined on countable state spaces, and demonstrating that
if the approximation parameter n is large enough than the α-discounted
Nash equilibrium strategies for the approximating game also constitute
an εα-DNEP for the initial game with discounted costs. See [3] for
details.

In Section 2 we shall use Theorem 1.1 and some ideas from Dynkin and
Yushkevich ([2], Chapter 7) to prove the existence of an ε-ENEP for the
ergodic game considered in this paper.

2. Existence results. We start with defining, for each pair of measures
(µ1, µ2) ∈ P(U1)×P(U2), operators acting on the space U(E) of real-valued,
bounded and universally measurable functions on E:

T i
µ1,µ2r(x) :=

\
U1

\
U2

[

ci(x, u1, u2) +
\
E

r(y) p(x, dy, u1, u2)
]

µ1(du1)µ2(du2),
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S1
µ1,µ2r(x) := inf

µ∈P(U1)
T 1

µ,µ2r(x), S2
µ1,µ2r(x) := inf

µ∈P(U2)
T 2

µ1,µr(x),

Λµ1,µ2r(x) :=
\

U1

\
U2

\
E

r(y) p(x, dy, u1, u2)µ1(du1)µ2(du2),

for all r ∈ U(E) and x ∈ E.

Definition 2.1. For each ε > 0, µi ∈ P(Ui) and f i, ri ∈ U(E), i = 1, 2,
the following system of conditions is called an ε-canonical system:

(2.1)

f1(x) = inf
µ∈P(U1)

Λµ,µ2f1(x), ∀x ∈ E,

f2(x) = inf
µ∈P(U2)

Λµ1,µf2(x), ∀x ∈ E,

f i(x) = Λµ1,µ2f i(x), ∀x ∈ E, i = 1, 2,

Si
µ1,µ2ri(x) ≥ ri(x) + f i(x)

≥ T i
µ1,µ2ri(x) − ε, ∀x ∈ E, i = 1, 2.

The quadruples ((ri, f i, µ1, µ2), i = 1, 2) satisfying (2.1) are called ε-canoni-

cal quadruples.

Lemma 2.1. For each ε > 0, if ((ri, f i, µ1, µ2), i = 1, 2) are any ε-
canonical quadruples then the pair of stationary strategies (µ1,∞, µ2,∞) con-

stitutes an ε-ENEP.

P r o o f. Let us first define, for x ∈ E, νi ∈ P(Ui), i = 1, 2, and a finite
integer N ,

W iN
ri (x, ν1, ν2) := J iN (x, ν1,∞, ν2,∞) + Eν1,∞,ν2,∞

x ri(xN ),

where

J iN (x, ν1,∞, ν2,∞) := Eν1,∞,ν2,∞

x

N−1
∑

s=0

ci(xs, u
1
s , u

2
s), i = 1, 2.

Using induction on N we shall show that

(2.2)

W 1N
r1 (x, µ, µ2) ≥ r1(x) + Nf1(x) ≥ W 1N

r1 (x, µ1, µ2) − Nε,

∀x ∈ E, µ ∈ P(U1),

W 2N
r2 (x, µ1, µ) ≥ r2(x) + Nf2(x) ≥ W 2N

r2 (x, µ1, µ2) − Nε,

∀x ∈ E, µ ∈ P(U2).

For N = 1 inequalities (2.2) follow by assumption. Suppose then that (2.2)
is valid for N = k > 1. From the definition of W 1N

r1 we obtain
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W
1(k+1)
r1 (x, µ, µ2)

=
\

U1

\
U2

[

c1(x, u1, u2) +
\
E

W 1k
r1 (y, µ, µ2) p(x, dy, u1, u2)

]

µ2(du2)µ(du1)

≥
\

U1

\
U2

[

c1(x, u1, u2) +
\
E

(r1(y) + kf1(y)) p(x, dy, u1, u2)
]

µ2(du2)µ(du1)

≥ S1
µ1,µ2(r1(x) + kf1(x)) ≥ r1(x) + (k + 1)f1(x),

for all x ∈ E and µ ∈ P(U1). Similar reasoning for i = 2 leads to

W
2(k+1)
r2 (x, µ1, µ) ≥ r2(x) + (k + 1)f2(x),

for all x ∈ E and µ ∈ P(U2).

On the other hand, we have

W
i(k+1)
ri (x, µ1, µ2)

≤
\

U1

\
U2

[

c1(x, u1, u2)

+
\
E

(ri(y) + kf i(y)) p(x, dy, u1, u2)
]

µ2(du2)µ1(du1) + kε

= T i
µ1,µ2(ri(x) + kf i(x)) + kε ≤ ri(x) + (k + 1)f i(x) + (k + 1)ε

for all x ∈ E, i = 1, 2.

To end the proof it is now sufficient to divide (2.2) by N , and let the N
go to ∞, also using boundedness of ri, i = 1, 2.

We precede the statement of Lemma 2.2 below with the following defi-
nitions:

(2.3)

f1,α

µ1,∞µ2,∞ := inf
ν1,∞∈M1

J1
α(x, ν1,∞, µ2,∞),

f2,α

µ1,∞µ2,∞ := inf
ν2,∞∈M2

J2
α(x, µ1,∞, ν2,∞),

for all x ∈ E, (µ1,∞, µ2,∞) ∈ M1 × M2 and α ∈ [0, 1).

R e m a r k 2.1. It follows from Corollary 9.4.1 of [1], or Theorem B on
p. 85 of [2], that the functions f i,α

µ1,∞µ2,∞ , i = 1, 2, defined in (2.3) are
universally measurable.

Lemma 2.2. Let the pair (µ1,∞
εα , µ2,∞

εα ) be an εα-DNEP for ε > 0 and

α ∈ [0, 1). Then

(2.4) f i,α

µ
1,∞
εα µ

2,∞
εα

(x) + ε ≥ T i
µ1

εα,µ2
εα

(αf i,α

µ
1,∞
εα µ

2,∞
εα

)(x)

for all x ∈ E and i = 1, 2.
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P r o o f. From (2.3) and the additivity of the cost functionals J i
α we get

f i,α

µ
1,∞
εα µ

2,∞
εα

(x) + ε ≥ J i
α(x, µ1,∞

εα , µ2,∞
εα )

=
\

U1

\
U2

[

ci(x, u1, u2)

+ α
\
E

J i
α(y, µ1,∞

εα , µ2,∞
εα )p(x, dy, u1, u2)

]

µ1
εα(du1)µ2

εα(du2)

≥
\

U1

\
U2

[

ci(x, u1, u2) + α
\
E

f i,α

µ
1,∞
εα µ

2,∞
εα

(y)p(x, dy, u1, u2)
]

µ1
εα(du1)µ2

εα(du2)

for i = 1, 2.

Let us now set β = 1 − ν(E) and define new transition probabilities

(2.5) p(x,B, u1, u2) := (1/β)(p(x,B, u1, u2) − ν(E))

for any x ∈ E, B ∈ E , u1 ∈ U1 and u2 ∈ U2.
We shall refer to the game with dynamics given in terms of the transi-

tion probabilities p as the game N(p), whereas the game with the modified
dynamics given in (2.5) will be referred to as the game N(p). The following
modifications of the operators T i

µ1,µ2 , Si
µ1,µ2 , and Λµ1,µ2 will be needed in

the remaining part of the paper:

T i
µ1,µ2r(x) :=

\
U1

\
U2

[

ci(x, u1, u2) + β
\
E

r(y)p̄(x, dy, u1, u2)
]

µ1(du1)µ2(du2),

S1
µ1,µ2r(x) := inf

µ∈P(U1)
T 1

µ,µ2r(x), S2
µ1,µ2r(x) := inf

µ∈P(U2)
T 2

µ1,µr(x),

Λµ1,µ2r(x) :=
\

U1

\
U2

\
E

r(y)p(x, dy, u1, u2)µ1(du1)µ2(du2),

for all r ∈ U(E) and x ∈ E.
Theorem 2.1 and Corollary 2.1 below are the main results in the paper.

Theorem 2.1. Assume A1–A2. Then, for each ε > 0, if a pair

(µ1,∞
εα , µ2,∞

εα ) of stationary strategies is an εβ-DNEP in the game N(p), then

it is also an ε-ENEP in the game N(p).

P r o o f. For i = 1, 2 and for each r ∈ U(E) we have

(2.6)

T i
µ1,µ2(r) = T i

µ1,µ2(r) − ν(r),

Si
µ1,µ2(r) = Si

µ1,µ2(r) − ν(r),

Λµ1,µ2(r) = (Λµ1,µ2(r) − ν(r))/β,

where ν(r) :=
T
E

r(x) ν(dx). Next, let the functions f i,α

µ1,∞µ2,∞ be defined

as in (2.3) for the game N(p), i = 1, 2. We know that f i,β

µ1,∞µ2,∞ is a fixed
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point of Si
µ1,µ2 in U(E), i = 1, 2 (see e.g. [2], Section 7.10). From this, and

from Lemma 2.2 it then follows that

(2.7) Si
µ1

εβ
,µ2

εβ

f i,β

µ
1,∞

εβ
µ

2,∞

εβ

= f i,β

µ
1,∞

εβ
µ

2,∞

εβ

≥ T i
µ1

εβ
,µ2

εβ

(βf i,β

µ
1,∞

εβ
µ

2,∞

εβ

) − ε,

for i = 1, 2. From (2.6) and (2.7) we thus obtain

Si
µ1

εβ
,µ2

εβ

f i,β

µ
1,∞

εβ
µ

2,∞

εβ

− ν(f i,β

µ
1,∞

εβ
µ

2,∞

εβ

) = f i,β

µ
1,∞

εβ
µ

2,∞

εβ

≥ T i
µ1

εβ
,µ2

εβ

f i,β

µ
1,∞

εβ
µ

2,∞

εβ

− ν(f i,β

µ
1,∞

εβ
µ

2,∞

εβ

) − ε

for i = 1, 2, and hence

Si
µ1

εβ
,µ2

εβ

f i,β

µ
1,∞

εβ
µ

2,∞

εβ

= f i,β

µ
1,∞

εβ
µ

2,∞

εβ

+ ν(f i,β

µ
1,∞

εβ
µ

2,∞

εβ

)(2.8)

≥ T i
µ1

εβ
,µ2

εβ

f i,β

µ
1,∞

εβ
µ

2,∞

εβ

− ε

for i = 1, 2. From (2.8) we conclude that the quadruples

((f i,β

µ
1,∞

εβ
µ

2,∞

εβ

, ν(f i,β

µ
1,∞

εβ
µ

2,∞

εβ

), µ1,∞
εβ , µ2,∞

εβ ), i = 1, 2)

are ε-canonical quadruples. This, together with Lemma 2.1, proves the
theorem.

Corollary 2.1. Assume A1–A3. Then for each ε > 0 there exists an

ε-ENEP for the game N(p).

P r o o f. The corollary is a direct consequence of Theorems 1.1 and 2.1.

3. Concluding remarks. We remark that the existence and unique-
ness of a Nash equilibrium point for the ergodic game considered in this
paper is still an open and challenging problem.

Also, a further study is required in order to examine extendibility of the
results presented above to the games endowed with trajectory-wise ergodic
cost functionals of the type

lim sup
t→∞

t−1
t−1
∑

s=0

ci(xs, u
1
s, u

2
s)

for i = 1, 2.
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