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K. SZAJOWSKI (Wroctaw)

A TWO-DISORDER DETECTION PROBLEM

Abstract. Suppose that the process X = {X,,,n € N} is observed sequen-
tially. There are two random moments of time #; and 6, independent of X,
and X is a Markov process given 61 and 6. The transition probabilities of X
change for the first time at time 6; and for the second time at time 6. Our
objective is to find a strategy which immediately detects the distribution
changes with maximal probability based on observation of X. The corre-
sponding problem of double optimal stopping is constructed. The optimal
strategy is found and the corresponding maximal probability is calculated.

1. Introduction. Suppose that a process X = {X,, n € N} (N =
{0,1,2,...}) is observed sequentially. The process is obtained from three
Markov processes by switches between them at two random moments of
time, 67 and 65. Our objective is to detect immediately these moments
based on observation of X.

This type of problem arises in quality control. An automaton which
produces some details changes its parameters. This causes the details to
change their quality. Production can be divided into three grades. Assuming
that at the beginning of the production process the quality is highest, from
some time #; on the products should be classified to a lower grade, and
beginning with 05 to the lowest grade. We want to detect the moments of
these changes.

Shiryaev (1978) considered the disorder problem for independent random
variables with one disorder where the mean distance between disorder time
and the moment of its detection was minimized. The probability maximiz-
ing approach to the problem was used by Bojdecki (1979), and the stopping
time which is in a given neighbourhood of the moment of disorder with
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maximal probability was found. The problem with two disorders was con-
sidered by Yoshida (1983) and Szajowski (1992). Yoshida (1983) solved the
problem of optimal stopping for the observation of a Markov process X so
as to maximize the probability that the distance between 6;, ¢ = 1,2, and
the moment of disorder will not exceed a given number (for each disorder
independently). He constructed a strategy which stops the process between
the first and the second disorder with maximal probability. References to
other papers treating variations of the disorder problem can be found in
Szajowski (1992).

In the present paper the probability maximizing approach to optimal
stopping developed by Bojdecki (1979) is extended to solve a double stopping
problem (see Haggstrom (1967), Nikolaev (1979)) arising in the quickest
detection of double disorders. In Section 2 the problem is formulated in
a rigorous manner. Section 3 contains the reduction of the problem to an
optimal stopping problem for a doubly indexed stochastic sequence. The
main result is given in Section 4.

2. The double disorder detection problem. Let X = {X,,, n € N},
defined on (£2,F,P), be a potentially observable sequence of r.v.’s with
values in (E,B), where E is a subset of the real line. Assume that the
epochs of distributional changes are N-valued F-measurable r.v. 6; and 65,
independent of X and having the distribution

(1) Pr=35)=pl 'q, PO2=k|[0=j)=p5 " g,
where j=1,2,..., k=5+1,j+2,...and p; + ¢ =1, 1 =1,2.

Suppose that on (2, F, P) Markov processes X* = {(X},F,, P})}, i =
1,2, 3, are defined and we have

Xrll if n < 64,
(2) X, =14 X2 iff; <n<by,

The measures P!, i = 1,2, 3, are absolutely continuous with respect to some
fixed measure P, and satisfy the following relations: Pi(dy)= fi(y)P(x,dy),
where fi(-) # fi(), i # j and fi*(y)/fi(y) < o0, i = 1.2, for every
x,y € E. The distribution of 6;, i = 1,2, is given by (1) and the measures
Pi i =1,23 x € E, are known. We observe the process (X, Fy, Ps),
n=0,1,2,..., ¢ € E, which is a Markov process given #; and 65, defined
by (2) with F,, = 0(Xo, X1,...,X,). On the basis of the distribution of 61,
0> and measures P!, i = 1,2,3, z € E, we calculate the finite-dimensional
distributions of the observed process.

Let S denote the set of all stopping times with respect to the filtration
(Fn),n=0,1,...,and T = {(7,0) : 7 < 0, 7,0 € S}. Let us determine a
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pair of stopping times (7*,0*) € 7 such that for every x € E,

(3) PI(T*<J*<OO, ‘91—7'*|§d1, |92—U*|§d2)
= sup Pu(r <o <oo, [h — 7] <di, |62 — 0] < do).
(r,0)€T

This problem will be denoted by Dy, 4, .

3. Reduction of the double “disorder problem” to double opti-
mal stopping of a Markov process. A compound stopping variable is a
pair (7,0) of stopping times such that 7 < ¢ a.e. Define 7,,, = {(7,0) € 7 :
T>m}, Ty ={(r,0) €T :7=m, c >n}and S, ={r €S :7>m}.
Set Fon = Fn, m,n € N, m < n. We define a two-parameter stochastic
sequence &(z) = {£mn(x), m,n € N, m <n, z € E} by

gmn(x) = Pz(‘el - 7—| S d17 ‘02 - U| S d2 | fmn)

For every m,n € N with m < n, we can consider the optimal stopping
problem of £(z) on 7,,,. A compound stopping variable (7*,0%) is said to
be optimal in T, (or Tpup) if Eplreor = SUD(; )7, Lubro (0 Eplreor =
SUP(; 0)eT,,, Fréro). Define

(4) nmn(x) = esssup E(STU | fmn)u
(1,0)ETmn
(5) m = Ez(nm,m+1 ‘ fm)

If we put &0 = 0, then

Nmn = esssup Pp(|0; —m| < dy, |02 —n| < da | Foun)-
(1,0)ETmn

From the theory of optimal stopping for double indexed processes (cf. Hag-
gstrom (1967), Nikolaev (1981)) the sequence n,,, satisfies

Nmn = max{gmna E(nm,n—l-l ‘ fmn)}
Moreover, if o}, = inf{n > m : N = {mnt, then (m, o)) is optimal in 7y,
and Nmn = Ea:(é.majn ‘ fmn) a.e.
LEMMA 1. The stopping time o, is optimal for every stopping problem

(4).

Proof. It suffices to prove lim, o &mn = 0 (Lemma 4.10 of Chow,
Robbins & Siegmund (1971), cf. also Bojdecki (1979), Bojdecki (1982)).
For m,n,k € N with n > k > m and every x € E we have

EI(H{‘el—m|ﬁd1,\92—n|§d2} ‘ fmn) = gmn(x)
< Ey(suplyjg, —m|<dy,02—j|<ds} | Fn)s
jzk
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where [ 4 is the characteristic function of the set A. By Levy’s theorem,

lim sup & (7) < By (suplije, —m|<ds 10s—j|<ds} | Froo),
n—o0 i>k
where Foo = Froo = 0(Urey Fn)-
We have limy oo Sup ;> I{j6, —m|<dy |6, —j|<do} = 0 a.e. and by the dom-
inated convergence theorem,
lim Ew(sggH{\01—m\§d17|92—j|§d2} | Foo) =0. m
iz

k—o0

As the next step the optimal stopping problem for 7,, should be solved.
Define

(6) Vin = esssup Eg (1 | Fin).-
TESm
Then V,,, = max{nm,, Ex(Vin+1 | Fm)} a.e. and we define 7,7 = inf{k > n :
Vie = ni}-
LEMMA 2. The strategy 75 is the optimal strategy of the first stop.

Proof. To show that 7§ is the optimal first stop strategy we prove
that P,(1j < oo) = 1. We argue in the usual manner, i.e. we show
limy, — 00 M ()
=0.

We have

NMm = Ey (fma;‘n

Fm) = Eu(Ex ({16, —m|<d 102—07, |<ds} | Fmoz,) | Fim)

= Ex ({16, —m|<dy,|0o—0 |<do} | Frm)

= Em(s,ggﬂ{lel—j\ﬁdhl%—ff;‘\Sdz} | Fin)-
i

Similarly to the proof of Lemma 1 we have

lim sup 7, (v) < Ex(sgllzﬂ{|01—j\§d1,|02—o;\Sdg} | Foo)-
-

m—00

Since

lim SupH{\el—k|§d17|92—0ﬂ§d2} < limsupﬂ{\el—k\ﬁdl} =0,
k—oo j>k J k—oo

it follows that

i 7 (v) < Him By (Sup i, —ji<dy 2= 1<ds} | Foo) = 0. m

m—00 k—oo j

Lemmas 1 and 2 describe the method of solving the “disorder problem”
formulated in Section 2.

4. Immediate detection of the first and second disorder. For the
sake of simplicity we restrict ourselves to the case d; = dy = 0. It will be
easily seen how to generalize the solution to Dy, 4, for d; > 0 or dy > 0.
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First we construct multi-dimensional Markov chains such that &,,, and n,,
are the functions of their states. Set (cf. Yoshida (1983), Szajowski (1992))

I} () = P01 >n | F), H2(x)=Pu(02>n|F),
I (x) = Po(6h=m, 02 >n| Fpn) formn=12,..., m<n,
H(t,u,a, ) = api f; (u) + [p2(8 — @) + qra] f£ (u)
+[1 =B+ g8 —a)lf (w),
I (t,u, 0, B) = prafi (w)(H(t,u, e, 8) 71
It u, o, B) = {prafy (u) + [agi + (8 — a)po] f£ (W)} (H (¢, u, @, 5)) 71,
H(t,u, 0, 8,7) = poy fE(w)(H(t u, 0, 8) 71

The following auxiliary results will be needed in the proof of the main the-
orem.

LEMMA 3. For each x € E and m,n = 1,2,... with m < n, and each
Borel function u : R — R,

(7) I, () = 1T (X, X1, 1T, (), 115 (),
(8) HZ+1(.I‘) = H2(Xn¢Xn+17H%(x)7HZ($))’
9) Iy i1 (z) = (X, X1, Uy (2), 105 (2), o (7)),
with the boundary condition II}(z) = IIZ(z) = 0,
af%, ,(Xm
Mynte) = 25 20 1)

B plf;{mil(Xm)

and

(10) Eo(w(Xn41) | Fa) = Vuly)H(Xp,y, (@), IT7 (x)) Px, (dy).
E

Proof. (7), (8) and (10) are proved in Yoshida (1983) and Szajowski
(1992). The formula (9) follows from the Bayes formula:

P.(61 =3, 0=k | F,)
( Pz(01 = ja 92 = k)prll H::l f;sfl(xs)

X(Sn(xg,a:l,...,xn))_l if j > n,
) Pe(0r=5,0: = k) [T22) L (o) T, f2 ()
N X (Sp(zg, 21, ..., Tp)) " if j <n<k,

P01 = 5,02 = k) TT0_, £ () TIZ) f2 (@)
[ X szk ffu_l(mu)(Sn(xo,ml, coyp)) Tt if k <n,
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where
Sn (.’Eg,l‘l ceey Ty)
— j—1 k—1 n
Z Z { Trah e [T @) TT A2 e TT 2 @)
=1 k=j s=1 t=j u=k
n j—1 n n
> e T o T2 o} + o LA ).
j=1 s=1 t=j s=1
We have
II, p1(x) = Pp(01 =m, 03 >n+1]|F,qq)
= pgf)Q(n (Xpae1) () Sp (0,21, -+ Tpg1)
X (Spa1(xosT1, ... xy)) 7t
and

Spa1(20, 21,y Tnr1) = H( Xy, Xpgr, ITL (), IT2(2)) S0 (20, T1,s - - - Tn)-

Hence

p2f% (Xng1) mn ()

n(z
Mnans1(5) = T T )

By the above we have

Emn(x) = Pp(01 = j, 02 =k ‘ Fonn)

n—1
-1 k—
Pl @ps 7= %Hf;s 1 H Ty 1(33t)an 1(X)
t=j

S (0, T1,y .- Tn)
QQ an 1( )
p pg Tn(® )fX ( )

We can observe that (X, X,.1, I1}(x ) I12(2), Iy () for n.=m + 1,
m + 2,... is a function of (X,,_1,X,, I} (), [12_(x), I, n—1(z)) and
X,41- Moreover, the conditional distribution of X, 1 given F, (cf. (10))
depends on X,, II}(x) and II2(xz) only. These facts imply that
{(Xo, Xog1, I (), T2 (), I (%)) 122,41 form a homogeneous Markov
process (see Chapter 2.15 of Shiryaev (1978)). This allows us to reduce the
problem (4) for each m to the optimal stopping problem for the Markov pro-
cess Zp (1) = {(Xp_1, Xp, I} (2), I12(x), (7)), mn €N, m <n, x €
E} with the reward function

@,yff’(U)
p2 ' fi(u)

h(t? u? a? ﬁ? F}/) =
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LEMMA 4. The solution of the optimal stopping problem (4) for m =
1,2,... has the form

f;(nf1(X") *
7z %y o (X”)}

where R*(t) = po {5 r*(t, s)f2(s) Pi(ds). Here r* = lim, .oy, where
rolt,u) = f(u)/f2(u) and
fP(w)

(12) Trn+1(t, u) = max { () , D2 S T (U, s)fs(s) Pu(ds)}.

E

(11) Jz,bzinf{n>m:

The function r*(t,u) satisfies the equation

3 u
1) ) =m0 g [ ) 209 Putas) .
t E

The value of the problem is
q2 q1 *
(14) N = Ex(Mm,m+1 | Fn) = ——U%(.T)R (Xom)-
P2 p1
Proof. For any Borel function u : E x E x [0,1]®> — [0, 1] define two
operators
Tzu(t7 s, 3, 'Y) =FE, (U(XTM Xn+17 Hrlz+1($)7 H121+1($)7 Hm,n-i-l(dj)) ‘
Xp_1=t, Xp=s, II}(z) =a, I2(x) =B, Hpn(z) =7)
and
Q(L’u(t7 87 a7 ﬂ7 ’Y) = max{u(t7 87 a7 ﬂ7 ’7)7 Tzu(t7 87 a7 187 ’Y)}'
By the well-known theorem from the theory of optimal stopping (see
Shiryaev (1978), Ch. 2, and Nikolaev (1981)) we conclude that the solu-
tion of (4) is the Markov time
of =inf{n >m: h(X,_1, Xn, [T} (x), T2 (z), T, (1))
= h*(Xn—1, Xn, Hi(l‘), Hrzz(x)v Hmn(x))}?
where h* = limy, o, Q%h(t,u, o, 3,7). Then

q2 f;( (Xn-‘rl)
Tzh t7u7a7ﬂ7ry = Ez <_Hm,n T)—5——
( ) P2 + )f_?(n(Xn-‘rl)

Xt = t, X = u, IM(2) = a, T2(2) = B, Hyn(a) = 7)

_ 92 fg(Xn—&-l) fS(Xn—H) >
B pQPprE(H(u?Xn-‘rlaaaﬁ) f'g(Xn-‘rl) ‘7:"
H(u,s,a,3) Py(ds) = g2y

fa(s)
’YS H(u,s,a, )

E
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and
q2 fi ()
15 Q h‘tvuvavﬂv’y :—'ymax{—,p .
) N ) = e gy P2
Define r,(t,u) as in the statement of the lemma. We show that
q
(16) QLh(t,u, . B,7) = p—zm(t,U)

for 1 =1,2,... By (15) we have Q,h = (g2/p2)yr1. Assume (16) for [ < k.
By (10) we have

TiBQ]:Eh(t? u, &, ﬁa 7) =E,; <Z_an,k+1(x)rk(Xna Xn-i—l)

Xp1=t X, =u, H,ll(x) = q, H,zl(x) =B, pn(x) = 'y>

= Lo {rulu, 5) £2(s) Pu(ds).
b2 E

It is easy to show (see Shiryaev (1978)) that
QFh = max{h, T, Q*n} for k=1,2,...

Hence we get QXT1h = (g2 /p2)y7k41 and (16) is proved for [ = 1,2, ... This
gives

K (t,u,a, B,7y) = q—2'y lim rg(t,u) = @’yr*(t,u)
P2 k—oo

b2
and
Nmn = esssup E, (& o | Frn)
(1,0)ETmn
= W (X1, Xp, ITL (2), IT2 (), T (2)).
We have
* ) * 2 _ 9 *
Ta:h (taua auﬂaV) = —P2 S r (U, S)fu(s) Pu(ds) - _’YR (’LL)
b2 B b2

and o}, has the form (11). By (5) and (10) we obtain
(17) M () = (Xn—1, X, T, (2), I3 (7)) = E(lmes1 | Fon)

(18) - E(j}—zﬂmer*(Xm, Xps1) fm>

I S’I”*(Xm, S)f)Q(m (8) PXm (ds) u
E

_ &

(19) -

By Lemmas 4 and 3 the optimal stopping problem (6) has been trans-
formed to the optimal stopping problem for the homogeneous Markov pro-
cess

W = {(Xp-1, Xon, I} (z), IT? (x)), m €N, z € E}
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with the reward function

_age fRw) o,
fewen )= Ty @)

LEMMA 5. The solution of the optimal stopping problem (6) for n =
1,2,... has the form

(20) mF =inf{k >n: (Xp_1, Xy, I} (z), [T (x)) € B*}

(
where B* = {(t,u,a, 3) : fE(u)/fH(u) > p1 §zv*(u,s) Py(ds)}. Herev*(t,u)
= lim,, o0 v, (¢, u), where vo(t,u) = R*(u) and

@) el - { 2, [t 1209 P}
The function v*(t,u) satisfies the equation
fi(u)

(22) v*(t,u) = max { , D1 S v*(u, 8) fL(s) Pu(ds)}.

T
fi (u) E
The value of the problem is V,, = v*(X,,_1, X,,).

Proof. For any Borel function v : E x E x [0,1]*> — [0,1] define two
operators

Ta:u(twsyayﬂ) = EI(U(XTHXTH-hHi—‘,-l(x)?]]g—l-l(x)) ‘
Xpno1=t, Xy =35, Hrlz(dj) = G, HTQL($) = B)
and
qu(t’saaaﬁ) = max{u(t,s,a,ﬁ),Txu(t,s,a,ﬁ)}.

As in the proof of Lemma 4 we conclude that the solution of (6) is the
Markov time

= inf{n >m: f(Xn_1, Xp, [T} (2), IT2())
= f*(Xn—len7Hrlz(dj)vﬂi(x))L
where f* = limp_o. Q% f(t,u, , 3). We have

2
Xn
Txh(t’u’aaﬁ) = E:B<Q1qz H:H—l(x)fxn( +1)

R* (X,
P1P2 fx. (Xng1) (Knt1)

Xpo1=t, Xp=u, I)(z)=a, II}(z) = 5)

q192 f&(Xn—i-l) fi(Xn—i-l) * >
=D, B : R*(Xui1) | Fo
P1p2 e (H(U,Xn+170é,ﬂ) f& (Xn+1) ( +1)
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W B § o) g, s 0, 6)R (5) Pu(ds)
P1p2 EH(U757Q7 )
= LLop, [ R (s)£%, (5) Px, (ds)
P1p2 E
and
4192 fi(u) * 2
23 Q.f(t,u,a, B :—amax{ 1\ R*(s) f; Pu(ds
39 Qufitwand) = Do i 161 Ruds)
_ 1% Lt )
pP1p2
We show that
(24) QLf(t,u,a,8) = L au(t,u)
P1p2
for I =1,2,..., where v;(t,u) is defined as in the statement of the lemma.
By (23) we have Qo f = Z-2av;. Assume (24) for I < k. By (10) we have
q1492

HI%H(LT)W(Xm Xn+1)

Ta:Q];f(t7u7a7ﬂ) =FE, <—
p1p2
Xp 1=t X, =u, II}2) =a, [I12(z) = B)

= L op) Yo (u, ) f1(s) Pu(ds).

b1p2 E
Hence Q™' f = 22 quy 41 and (24) is proved for [ = 1,2, ... This gives
fr(tyu,a,0) = N2, Yim vg(t,u) = wav*(t,u)
D1p2 k—oo DPiP2
and
4142
Vi = == v* (Xon—1, Xom)-
b1p2
We have

T f*(tu, 0, 8) = LLap, {v* (u, 5) f1(s) Pu(ds).

It follows that 7,7 has the form (20). The value of the problem (6) and (3)
is

vo(x) = Ey(Vi | Fo) = %Exnll(x)v*(x,xl)
= DB (2, 5) f1(s) Pu(ds). w
D2

E
By Lemmas 4 and 5 the solution of the problem Dy can be formulated
as follows.
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THEOREM 4.1. The compound stopping time (7*,0%.), where o7, is given
by (11) and 7* = 7§ is given by (20) is a solution of the problem Dyy. The
value of the problem is

Po(t* < 0% <00, 01 = 7%, Oy = o%.) = q;ﬁ [ v (2. 5)f1(s) P (ds).
2
E

Remark 1. The problem can be extended to optimal detection of
more than two successive disorders. The distribution of 61, f2 may be more
general. The general a priori distributions of disorder moments lead to
more complicated formulae, since the corresponding Markov chains are not
homogeneous.

References

T. Bojdecki (1979), Probability mazimizing approach to optimal stopping and its appli-
cation to a disorder problem, Stochastics 3, 61-71.

T. Bojdecki (1982), Probability maximizing method in problems of sequential analysis,
Mat. Stos. 21, 5-37 (in Polish).

Y. Chow, H. Robbins and D. Siegmund (1971), Great Ezxpectations: The Theory of
Optimal Stopping, Houghton Mifflin, Boston.

G. Haggstrom (1967), Optimal sequential procedures when more than one stop is re-
quired, Ann. Math. Statist. 38, 1618-1626.

M. Nikolaev (1979), Generalized sequential procedures, Lit. Mat. Sb. 19, 35-44 (in
Russian).

M. Nikolaev (1981), On an optimality criterion for a generalized sequential procedure,
ibid. 21, 75-82 (in Russian).

A. Shiryaev (1978), Optimal Stopping Rules, Springer, New York.

K. Szajowski (1992), Optimal on-line detection of outside observations, J. Statist. Plann.
Inference 30, 413-422.

M. Yoshida (1983), Probability mazimizing approach for a quickest detection problem

with complicated Markov chain, J. Inform. Optim. Sci. 4, 127-145.

Krzysztof Szajowski

Institute of Mathematics
Technical University of Wroctaw
Wybrzeze Wyspianskiego 27
50-370 Wroclaw, Poland

E-mail: szajow@im.pwr.wroc.pl

Received on 15.8.1996



