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A TWO-DISORDER DETECTION PROBLEM

Abstract. Suppose that the process X = {Xn, n ∈ N} is observed sequen-
tially. There are two random moments of time θ1 and θ2, independent of X,
and X is a Markov process given θ1 and θ2. The transition probabilities of X
change for the first time at time θ1 and for the second time at time θ2. Our
objective is to find a strategy which immediately detects the distribution
changes with maximal probability based on observation of X. The corre-
sponding problem of double optimal stopping is constructed. The optimal
strategy is found and the corresponding maximal probability is calculated.

1. Introduction. Suppose that a process X = {Xn, n ∈ N} (N =
{0, 1, 2, . . .}) is observed sequentially. The process is obtained from three
Markov processes by switches between them at two random moments of
time, θ1 and θ2. Our objective is to detect immediately these moments
based on observation of X.

This type of problem arises in quality control. An automaton which
produces some details changes its parameters. This causes the details to
change their quality. Production can be divided into three grades. Assuming
that at the beginning of the production process the quality is highest, from
some time θ1 on the products should be classified to a lower grade, and
beginning with θ2 to the lowest grade. We want to detect the moments of
these changes.

Shiryaev (1978) considered the disorder problem for independent random
variables with one disorder where the mean distance between disorder time
and the moment of its detection was minimized. The probability maximiz-
ing approach to the problem was used by Bojdecki (1979), and the stopping
time which is in a given neighbourhood of the moment of disorder with
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maximal probability was found. The problem with two disorders was con-
sidered by Yoshida (1983) and Szajowski (1992). Yoshida (1983) solved the
problem of optimal stopping for the observation of a Markov process X so
as to maximize the probability that the distance between θi, i = 1, 2, and
the moment of disorder will not exceed a given number (for each disorder
independently). He constructed a strategy which stops the process between
the first and the second disorder with maximal probability. References to
other papers treating variations of the disorder problem can be found in
Szajowski (1992).

In the present paper the probability maximizing approach to optimal
stopping developed by Bojdecki (1979) is extended to solve a double stopping
problem (see Haggstrom (1967), Nikolaev (1979)) arising in the quickest
detection of double disorders. In Section 2 the problem is formulated in
a rigorous manner. Section 3 contains the reduction of the problem to an
optimal stopping problem for a doubly indexed stochastic sequence. The
main result is given in Section 4.

2. The double disorder detection problem. Let X = {Xn, n ∈ N},
defined on (Ω,F , P ), be a potentially observable sequence of r.v.’s with
values in (E,B), where E is a subset of the real line. Assume that the
epochs of distributional changes are N-valued F-measurable r.v. θ1 and θ2,
independent of X and having the distribution

(1) P (θ1 = j) = pj−1
1 q1, P (θ2 = k | θ1 = j) = pk−j−1

2 q2,

where j = 1, 2, . . . , k = j + 1, j + 2, . . . and pi + qi = 1, i = 1, 2.

Suppose that on (Ω,F , P ) Markov processes Xi = {(Xi
n,Fn, P i

x)}, i =
1, 2, 3, are defined and we have

(2) Xn =







X1
n if n < θ1,

X2
n if θ1 ≤ n < θ2,

X3
n if n ≥ θ2.

The measures P i
x, i = 1, 2, 3, are absolutely continuous with respect to some

fixed measure Px and satisfy the following relations: P i
x(dy)=f i

x(y)P (x, dy),
where f i

x(·) 6= f j
x(·), i 6= j and f i+1

x (y)/f i
x(y) < ∞, i = 1, 2, for every

x, y ∈ E. The distribution of θi, i = 1, 2, is given by (1) and the measures
P i

x, i = 1, 2, 3, x ∈ E, are known. We observe the process (Xn,Fn, Px),
n = 0, 1, 2, . . . , x ∈ E, which is a Markov process given θ1 and θ2, defined
by (2) with Fn = σ(X0,X1, . . . ,Xn). On the basis of the distribution of θ1,
θ2 and measures P i

x, i = 1, 2, 3, x ∈ E, we calculate the finite-dimensional
distributions of the observed process.

Let S denote the set of all stopping times with respect to the filtration
(Fn), n = 0, 1, . . . , and T = {(τ, σ) : τ < σ, τ, σ ∈ S}. Let us determine a
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pair of stopping times (τ∗, σ∗) ∈ T such that for every x ∈ E,

(3) Px(τ∗ < σ∗ < ∞, |θ1 − τ∗| ≤ d1, |θ2 − σ∗| ≤ d2)

= sup
(τ,σ)∈T

Px(τ < σ < ∞, |θ1 − τ | ≤ d1, |θ2 − σ| ≤ d2).

This problem will be denoted by Dd1d2
.

3. Reduction of the double “disorder problem” to double opti-

mal stopping of a Markov process. A compound stopping variable is a
pair (τ, σ) of stopping times such that τ < σ a.e. Define Tm = {(τ, σ) ∈ T :
τ ≥ m}, Tmn = {(τ, σ) ∈ T : τ = m, σ ≥ n} and Sm = {τ ∈ S : τ ≥ m}.
Set Fmn = Fn, m,n ∈ N, m ≤ n. We define a two-parameter stochastic
sequence ξ(x) = {ξmn(x), m, n ∈ N, m < n, x ∈ E} by

ξmn(x) = Px(|θ1 − τ | ≤ d1, |θ2 − σ| ≤ d2 | Fmn).

For every m,n ∈ N with m < n, we can consider the optimal stopping
problem of ξ(x) on Tmn. A compound stopping variable (τ∗, σ∗) is said to
be optimal in Tm (or Tmn) if Exξτ∗σ∗ = sup(τ,σ)∈Tm

Exξτσ (or Exξτ∗σ∗ =
sup(τ,σ)∈Tmn

Exξτσ). Define

(4) ηmn(x) = ess sup
(τ,σ)∈Tmn

E(ξτσ | Fmn),

(5) ηm = Ex(ηm,m+1 | Fm).

If we put ξm∞ = 0, then

ηmn = ess sup
(τ,σ)∈Tmn

Px(|θ1 − m| ≤ d1, |θ2 − n| ≤ d2 | Fmn).

From the theory of optimal stopping for double indexed processes (cf. Hag-
gstrom (1967), Nikolaev (1981)) the sequence ηmn satisfies

ηmn = max{ξmn, E(ηm,n+1 | Fmn)}.

Moreover, if σ∗
m = inf{n ≥ m : ηmn = ξmn}, then (m,σ∗

m) is optimal in Tmn

and ηmn = Ex(ξmσ∗

m
| Fmn) a.e.

Lemma 1. The stopping time σ∗
m is optimal for every stopping problem

(4).

P r o o f. It suffices to prove limn→∞ ξmn = 0 (Lemma 4.10 of Chow,
Robbins & Siegmund (1971), cf. also Bojdecki (1979), Bojdecki (1982)).
For m,n, k ∈ N with n ≥ k > m and every x ∈ E we have

Ex(I{|θ1−m|≤d1,|θ2−n|≤d2} | Fmn) = ξmn(x)

≤ Ex(sup
j≥k

I{|θ1−m|≤d1,|θ2−j|≤d2} | Fn),



234 K. Szajowski

where IA is the characteristic function of the set A. By Levy’s theorem,

lim sup
n→∞

ξmn(x) ≤ Ex(sup
j≥k

I{|θ1−m|≤d1,|θ2−j|≤d2} | Fn∞),

where F∞ = Fn∞ = σ(
⋃∞

n=1 Fn).
We have limk→∞ supj≥k I{|θ1−m|≤d1,|θ2−j|≤d2} = 0 a.e. and by the dom-

inated convergence theorem,

lim
k→∞

Ex(sup
j≥k

I{|θ1−m|≤d1,|θ2−j|≤d2} | F∞) = 0.

As the next step the optimal stopping problem for ηm should be solved.
Define

(6) Vm = ess sup
τ∈Sm

Ex(ητ | Fm).

Then Vm = max{ηm, Ex(Vm+1 | Fm)} a.e. and we define τ∗
n = inf{k ≥ n :

Vk = ηk}.

Lemma 2. The strategy τ∗
0 is the optimal strategy of the first stop.

P r o o f. To show that τ∗
0 is the optimal first stop strategy we prove

that Px(τ∗
0 < ∞) = 1. We argue in the usual manner, i.e. we show

limm→∞ ηm(x)
= 0.

We have

ηm = Ex(ξmσ∗

m
| Fm) = Ex(Ex(I{|θ1−m|≤d1,|θ2−σ∗

m|≤d2} | Fmσ∗

m
) | Fm)

= Ex(I{|θ1−m|≤d1,|θ2−σ∗

m|≤d2} | Fm)

≤ Ex(sup
j≥k

I{|θ1−j|≤d1,|θ2−σ∗

j
|≤d2} | Fm).

Similarly to the proof of Lemma 1 we have

lim sup
m→∞

ηm(x) ≤ Ex(sup
j≥k

I{|θ1−j|≤d1,|θ2−σ∗

j
|≤d2} | F∞).

Since

lim
k→∞

sup
j≥k

I{|θ1−k|≤d1,|θ2−σ∗

j
|≤d2} ≤ lim sup

k→∞
I{|θ1−k|≤d1} = 0,

it follows that

lim
m→∞

ηm(x) ≤ lim
k→∞

Ex(sup
j≥k

I{|θ1−j|≤d1,|θ2−σ∗

j
|≤d2} | F∞) = 0.

Lemmas 1 and 2 describe the method of solving the “disorder problem”
formulated in Section 2.

4. Immediate detection of the first and second disorder. For the
sake of simplicity we restrict ourselves to the case d1 = d2 = 0. It will be
easily seen how to generalize the solution to Dd1d2

for d1 > 0 or d2 > 0.
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First we construct multi-dimensional Markov chains such that ξmn and ηm

are the functions of their states. Set (cf. Yoshida (1983), Szajowski (1992))

Π1
n(x) = Px(θ1 > n | Fn), Π2

n(x) = Px(θ2 > n | Fn),

Πmn(x) = Px(θ1 = m, θ2 > n | Fmn) for m,n = 1, 2, . . . , m < n,

H(t, u, α, β) = αp1f
1
t (u) + [p2(β − α) + q1α]f2

t (u)

+ [1 − β + q2(β − α)]f3
t (u),

Π1(t, u, α, β) = p1αf1
t (u)(H(t, u, α, β))−1 ,

Π2(t, u, α, β) = {p1αf1
t (u) + [αq1 + (β − α)p2]f

2
t (u)}(H(t, u, α, β))−1 ,

Π(t, u, α, β, γ) = p2γf2
t (u)(H(t, u, α, β))−1 .

The following auxiliary results will be needed in the proof of the main the-
orem.

Lemma 3. For each x ∈ E and m,n = 1, 2, . . . with m < n, and each

Borel function u : R → R,

Π1
n+1(x) = Π1(Xn,Xn+1,Π

1
n(x),Π2

n(x)),(7)

Π2
n+1(x) = Π2(Xn,Xn+1,Π

1
n(x),Π2

n(x)),(8)

Πm,n+1(x) = Π(Xn,Xn+1,Π
1
n(x),Π2

n(x),Πmn(x)),(9)

with the boundary condition Π1
0 (x) = Π2

0 (x) = 0,

Πmm(x) =
q1f

2
Xm−1

(Xm)

p1f1
Xm−1

(Xm)
Π1

n(x)

and

(10) Ex(u(Xn+1) | Fn) =
\
E

u(y)H(Xn, y,Π1
n(x),Π2

n(x))PXn
(dy).

P r o o f. (7), (8) and (10) are proved in Yoshida (1983) and Szajowski
(1992). The formula (9) follows from the Bayes formula:

Px(θ1 = j, θ2 = k | Fn)

=



































Px(θ1 = j, θ2 = k)pn
1

∏n

s=1 f1
xs−1

(xs)

×(Sn(x0, x1, . . . , xn))−1 if j > n,

Px(θ1 = j, θ2 = k)
∏j−1

s=1 f1
xs−1

(xs)
∏n

t=j f2
xt−1

(xt)

×(Sn(x0, x1, . . . , xn))−1 if j ≤ n < k,

Px(θ1 = j, θ2 = k)
∏n

s=1 f1
xs−1

(xs)
∏k−1

t=j f2
xt−1

(xt)

×
∏n

u=k f3
xu−1

(xu)(Sn(x0, x1, . . . , xn))−1 if k ≤ n,
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where

Sn(x0, x1, . . . , xn)

=
n−1
∑

j=1

n
∑

k=j+1

{

pj−1
1 q1p

k−j−1
2 q2

j−1
∏

s=1

f1
xs−1

(xs)
k−1
∏

t=j

f2
xt−1

(xt)
n

∏

u=k

f3
xu−1

(xu)
}

+

n
∑

j=1

{

pj−1
1 q1p

n−j
2

j−1
∏

s=1

f1
xs−1

(xs)

n
∏

t=j

f2
xt−1

(xt)
}

+ pn
1

n
∏

s=1

f1
xs−1

(xs).

We have

Πm,n+1(x) = Px(θ1 = m, θ2 > n + 1 | Fn+1)

= p2f
2
Xn

(Xn+1)Πmn(x)Sn(x0, x1, . . . , xn+1)

× (Sn+1(x0, x1, . . . , xn))−1

and

Sn+1(x0, x1, . . . , xn+1) = H(Xn,Xn+1,Π
1
n(x),Π2

n(x))Sn(x0, x1, . . . , xn).

Hence

Πm,n+1(x) =
p2f

2
Xn

(Xn+1)Πmn(x)

H(Xn,Xn+1,Π1
n(x),Π2

n(x))
.

By the above we have

ξmn(x) = Px(θ1 = j, θ2 = k | Fmn)

=

pj−1
1 q1p

k−j−1
2 q2

j−1
∏

s=1

f1
xs−1

(xs)

n−1
∏

t=j

f2
xt−1

(xt)f
3
Xn−1

(Xn)

Sn(x0, x1, . . . , xn)

=
q2

p2
Πmn(x)

f3
Xn−1

(Xn)

f2
Xn−1

(Xn)
.

We can observe that (Xn,Xn+1,Π
1
n(x),Π2

n(x),Πmn(x)) for n = m + 1,
m + 2, . . . is a function of (Xn−1,Xn,Π1

n−1(x),Π2
n−1(x),Πm,n−1(x)) and

Xn+1. Moreover, the conditional distribution of Xn+1 given Fn (cf. (10))
depends on Xn, Π1

n(x) and Π2
n(x) only. These facts imply that

{(Xn,Xn+1,Π
1
n(x),Π2

n(x),Πmn(x))}∞n=m+1 form a homogeneous Markov
process (see Chapter 2.15 of Shiryaev (1978)). This allows us to reduce the
problem (4) for each m to the optimal stopping problem for the Markov pro-
cess Zm(x) = {(Xn−1,Xn,Π1

n(x),Π2
n(x),Πmn(x)), m, n ∈ N, m < n, x ∈

E} with the reward function

h(t, u, α, β, γ) =
q2

p2
γ

f3
t (u)

f2
t (u)

.
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Lemma 4. The solution of the optimal stopping problem (4) for m =
1, 2, . . . has the form

(11) σ∗
m = inf

{

n > m :
f3

Xn−1
(Xn)

f2
Xn−1

(Xn)
≥ R∗(Xn)

}

where R∗(t) = p2

T
E

r∗(t, s)f2
t (s)Pt(ds). Here r∗ = limn→∞ rn, where

r0(t, u) = f3
t (u)/f2

t (u) and

(12) rn+1(t, u) = max

{

f3
t (u)

f2
t (u)

, p2

\
E

rn(u, s)f2
u(s)Pu(ds)

}

.

The function r∗(t, u) satisfies the equation

(13) r∗(t, u) = max

{

f3
t (u)

f2
t (u)

, p2

\
E

r∗(u, s)f2
u(s)Pu(ds)

}

.

The value of the problem is

(14) ηm = Ex(ηm,m+1 | Fm) =
q2

p2

q1

p1
Π1

n(x)R∗(Xm).

P r o o f. For any Borel function u : E × E × [0, 1]3 → [0, 1] define two
operators

Txu(t, s, α, β, γ) = Ex(u(Xn,Xn+1,Π
1
n+1(x),Π2

n+1(x),Πm,n+1(x)) |

Xn−1 = t, Xn = s, Π1
n(x) = α, Π2

n(x) = β, Πmn(x) = γ)

and

Qxu(t, s, α, β, γ) = max{u(t, s, α, β, γ), Txu(t, s, α, β, γ)}.

By the well-known theorem from the theory of optimal stopping (see
Shiryaev (1978), Ch. 2, and Nikolaev (1981)) we conclude that the solu-
tion of (4) is the Markov time

σ∗
m = inf{n > m : h(Xn−1,Xn,Π1

n(x),Π2
n(x),Πmn(x))

= h∗(Xn−1,Xn,Π1
n(x),Π2

n(x),Πmn(x))},

where h∗ = limk→∞ Qk
xh(t, u, α, β, γ). Then

Txh(t, u, α, β, γ) = Ex

(

q2

p2
Πm,n+1(x)

f3
Xn

(Xn+1)

f2
Xn

(Xn+1)

∣

∣

∣

∣

Xn−1 = t, Xn = u, Π1
n(x) = α, Π2

n(x) = β, Πmn(x) = γ

)

=
q2

p2
γp2E

(

f2
u(Xn+1)

H(u,Xn+1, α, β)

f3
u(Xn+1)

f2
u(Xn+1)

∣

∣

∣

∣

Fn

)

(10)
= q2γ

\
E

f3
u(s)

H(u, s, α, β)
H(u, s, α, β)Pu(ds) = q2γ
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and

(15) Qxh(t, u, α, β, γ) =
q2

p2
γ max

{

f3
t (u)

f2
t (u)

, p2

}

.

Define rn(t, u) as in the statement of the lemma. We show that

(16) Ql
xh(t, u, α, β, γ) =

q2

p2
γrl(t, u)

for l = 1, 2, . . . By (15) we have Qxh = (q2/p2)γr1. Assume (16) for l ≤ k.
By (10) we have

TxQk
xh(t, u, α, β, γ) = Ex

(

q2

p2
Πm,k+1(x)rk(Xn,Xn+1)

∣

∣

∣

∣

Xn−1 = t, Xn = u, Π1
n(x) = α, Π2

n(x) = β,Πmn(x) = γ

)

=
q2

p2
γp2

\
E

rk(u, s)f2
u(s)Pu(ds).

It is easy to show (see Shiryaev (1978)) that

Qk+1
x h = max{h, TxQk

xh} for k = 1, 2, . . .

Hence we get Qk+1
x h = (q2/p2)γrk+1 and (16) is proved for l = 1, 2, . . . This

gives

h∗(t, u, α, β, γ) =
q2

p2
γ lim

k→∞
rk(t, u) =

q2

p2
γr∗(t, u)

and
ηmn = ess sup

(τ,σ)∈Tmn

Ex(ξτ,σ | Fmn)

= h∗(Xn−1,Xn,Π1
n(x),Π2

n(x),Πmn(x)).

We have

Txh∗(t, u, α, β, γ) =
q2

p2
γp2

\
E

r∗(u, s)f2
u(s)Pu(ds) =

q2

p2
γR∗(u)

and σ∗
m has the form (11). By (5) and (10) we obtain

ηm(x) = f(Xn−1,Xn,Π1
n(x),Π2

n(x)) = E(ηm,m+1 | Fm)(17)

= E

(

q2

p2
Πm,m+1r

∗(Xm,Xm+1)

∣

∣

∣

∣

Fm

)

(18)

=
q2

p2
Πmm

\
E

r∗(Xm, s)f2
Xm

(s)PXm
(ds).(19)

By Lemmas 4 and 3 the optimal stopping problem (6) has been trans-
formed to the optimal stopping problem for the homogeneous Markov pro-
cess

W = {(Xm−1,Xm,Π1
m(x),Π2

m(x)), m ∈ N, x ∈ E}
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with the reward function

f(t, u, α, β) =
q1q2

p1p2
·
f2

t (u)

f1
t (u)

αR∗(u).

Lemma 5. The solution of the optimal stopping problem (6) for n =
1, 2, . . . has the form

(20) τ∗
n = inf{k ≥ n : (Xk−1,Xk,Π1

k(x),Π2
k(x)) ∈ B∗}

where B∗ = {(t, u, α, β) : f2
t (u)/f1

t (u) ≥ p1

T
E

v∗(u, s)Pu(ds)}. Here v∗(t, u)
= limn→∞ vn(t, u), where v0(t, u) = R∗(u) and

(21) vn+1(t, u) = max

{

f2
t (u)

f1
t (u)

, p1

\
E

vn(u, s)f1
u(s)Pu(ds)

}

.

The function v∗(t, u) satisfies the equation

(22) v∗(t, u) = max

{

f2
t (u)

f1
t (u)

, p1

\
E

v∗(u, s)f1
u(s)Pu(ds)

}

.

The value of the problem is Vn = v∗(Xn−1,Xn).

P r o o f. For any Borel function u : E × E × [0, 1]2 → [0, 1] define two
operators

Txu(t, s, α, β) = Ex(u(Xn,Xn+1,Π
1
n+1(x),Π2

n+1(x)) |

Xn−1 = t, Xn = s, Π1
n(x) = α, Π2

n(x) = β)

and

Qxu(t, s, α, β) = max{u(t, s, α, β), Txu(t, s, α, β)}.

As in the proof of Lemma 4 we conclude that the solution of (6) is the
Markov time

τ∗
m = inf{n > m : f(Xn−1,Xn,Π1

n(x),Π2
n(x))

= f∗(Xn−1,Xn,Π1
n(x),Π2

n(x))},

where f∗ = limk→∞ Qk
xf(t, u, α, β). We have

Txh(t, u, α, β) = Ex

(

q1q2

p1p2
Π1

n+1(x)
f2

Xn
(Xn+1)

f1
Xn

(Xn+1)
R∗(Xn+1)

∣

∣

∣

∣

Xn−1 = t, Xn = u, Π1
n(x) = α, Π2

n(x) = β

)

=
q1q2

p1p2
γp1E

(

f1
u(Xn+1)

H(u,Xn+1, α, β)
·
f2

u(Xn+1)

f1
u(Xn+1)

R∗(Xn+1)

∣

∣

∣

∣

Fn

)
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(10)
=

q1q2

p1p2
αp1

\
E

f2
u(s)

H(u, s, α, β)
H(u, s, α, β)R∗(s)Pu(ds)

=
q1q2

p1p2
αp1

\
E

R∗(s)f2
Xn

(s)PXn
(ds)

and

Qxf(t, u, α, β) =
q1q2

p1p2
αmax

{

f2
t (u)

f1
t (u)

, p1

\
E

R∗(s)f2
u Pu(ds)

}

(23)

=
q1q2

p1p2
αv1(t, u).

We show that

(24) Ql
xf(t, u, α, β) =

q1q2

p1p2
αvl(t, u)

for l = 1, 2, . . . , where vl(t, u) is defined as in the statement of the lemma.
By (23) we have Qxf = q1q2

p1p2

αv1. Assume (24) for l ≤ k. By (10) we have

TxQk
xf(t, u, α, β) = Ex

(

q1q2

p1p2
Π1

k+1(x)vk(Xn,Xn+1)

∣

∣

∣

∣

Xn−1 = t, Xn = u, Π1
n(x) = α, Π2

n(x) = β

)

=
q1q2

p1p2
αp1

\
E

vk(u, s)f1
u(s)Pu(ds).

Hence Qk+1
x f = q1q2

p1p2

αvk+1 and (24) is proved for l = 1, 2, . . . This gives

f∗(t, u, α, β) =
q1q2

p1p2
α lim

k→∞
vk(t, u) =

q1q2

p1p2
αv∗(t, u)

and

Vm =
q1q2

p1p2
Π1

mv∗(Xm−1,Xm).

We have

Txf∗(t, u, α, β) =
q1q2

p1p2
αp1

\
E

v∗(u, s)f1
u(s)Pu(ds).

It follows that τ∗
n has the form (20). The value of the problem (6) and (3)

is

v0(x) = Ex(V1 | F0) =
q1q2

p1p2
ExΠ1

1 (x)v∗(x,X1)

=
q1q2

p2

\
E

v∗(x, s)f1
x(s)Px(ds).

By Lemmas 4 and 5 the solution of the problem D00 can be formulated
as follows.
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Theorem 4.1. The compound stopping time (τ∗, σ∗
τ∗), where σ∗

m is given

by (11) and τ∗ = τ∗
0 is given by (20) is a solution of the problem D00. The

value of the problem is

Px(τ∗ < σ∗ < ∞, θ1 = τ∗, θ2 = σ∗
τ∗) =

q1q2

p2

\
E

v∗(x, s)f1
x(s)Px(ds).

R e m a r k 1. The problem can be extended to optimal detection of
more than two successive disorders. The distribution of θ1, θ2 may be more
general. The general a priori distributions of disorder moments lead to
more complicated formulae, since the corresponding Markov chains are not
homogeneous.
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