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LIMIT CYCLES FOR VECTOR FIELDS WITH

HOMOGENEOUS COMPONENTS

Abstract . We study planar polynomial differential equations with ho-
mogeneous components. This kind of equations present a simple and well
known dynamics when the degrees (n and m) of both components coincide.
Here we consider the case n 6= m and we show that the dynamics is more
complicated. In fact, we prove that such systems can exhibit periodic orbits
only when nm is odd. Furthermore, for nm odd we give examples of such
differential equations with at least (n + m)/2 limit cycles.

1. Introduction. Consider the class of vector fields X = (P,Q) in the
plane with P = P (x, y) and Q = Q(x, y) homogeneous polynomials. From
the dynamical point of view, there is a distinguished subclass: the subclass
of X = (P,Q) with P and Q homogeneous polynomials of the same degree.
This is due to the fact that the behaviour of the orbits near the origin
determines the global phase portrait. For this subclass, it is also known in
which cases we have a focus or a centre at the origin:

Theorem ([1]). The origin of (ẋ, ẏ) = (P (x, y), Q(x, y)), where P and Q
are homogeneous polynomials of the same degree, is of focus or center type if

and only if F (x, y) = xQ(x, y)−yP (x, y) is not zero for (x, y) 6= (0, 0) ∈ R
2.

Furthermore, it is a center if and only if

2π\
0

xP (x, y) + yQ(x, y)

F (x, y)

∣

∣

∣

∣

x=cos θ,y=sin θ

dθ = 0.

In the general case the situation is much more complicated. We are
interested in limit cycles and periodic orbits: In which cases can we get
them? When are all the trajectories of the system periodic orbits? How
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many limit cycles can appear depending on the degrees of P and Q? How
to characterize the systems which have a center at the origin? Given the
degrees of P and Q, what is the cyclicity of a center or a weak focus inside
this family?

It is clear that either the origin is the only critical point of X or X has a
straight line of critical points. In this latter case we can reduce the study of
the trajectories of (ẋ, ẏ) = X(x, y) to the study of the trajectories associated
with another vector field Y (x, y), also with homogeneous components, and
with deg Y1 < deg P and deg Y2 < deg Q. Hence for our purposes we will
only consider the first case.

Our main result is the following:

Theorem A. Let P and Q be homogeneous polynomials with degree n
and m respectively. Assume that X = (P,Q) has the origin as an isolated

critical point and that n 6= m. Consider the differential equation

(1) (ẋ, ẏ) = (P (x, y), Q(x, y)).

Then the following hold :

(i) System (1) has no periodic orbits if either n or m are even.

(ii) If n and m are odd , then each of the following assertions is satisfied

by some P and Q:

1. All solutions of (1) are periodic.

2. No solutions of (1) are periodic.

3. There are periodic and nonperiodic solutions of (1).

(iii) Denote by N(n,m) the maximum number of limit cycles for a system

of type (1) with deg P = n and deg Q = m both odd. Then N(n,m) ≥
(n + m)/2.

Part (i) of the theorem easily follows from index theory. The proof of the
second and third parts is based on the study of some families of vector fields
of type (1) with centers and their perturbations inside the family. This part
uses the usual technique of Abelian integrals in a suitable set of coordinates.

2. Proof of Theorem A. (i) Associated with a real isolated zero p of a
C∞ map X : R

n → R
n, there are two integer numbers, the index (indp(X))

and the multiplicity (µp(X)). It is proved in [3] that

indp(X) ≡ µp(X) (mod 2).

If we take p = 0 and X = (Pn, Qm), the fact that X has polynomial com-
ponents implies that the multiplicity coincides with the intersection num-
ber. Since 0 is an isolated critical point it is easy to prove that in our case
µ0(X) = nm (see [4]). Therefore

ind0(X) ≡ nm (mod 2).
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Remember that if a vector field has a unique critical point which is
surrounded by a periodic orbit, then its index is 1. Hence from the above
congruence we see that periodic orbits can only appear for system (1) when
nm is an odd number.

(ii1) The Hamiltonian family of vector fields

−y2p−1 ∂

∂x
+ x2q−1 ∂

∂y

with Hamiltonian function H(x, y) = px2q + qy2p proves this case.

(ii2) It is not difficult to see that no trajectories of the vector field

[−y2p−1 + ax2p−1]
∂

∂x
+ x2q−1 ∂

∂y
, a 6= 0, p > q,

are periodic, using the Hamiltonian of the preceding paragraph as a Lya-
punov function.

(ii3) Consider the family

−y2p−1 ∂

∂x
+ [x3 + axy2]

∂

∂y
, p ≥ 3.

Remember that a characteristic at 0 (∞) is a curve that tends, with
positive or negative time, to 0 (∞) with a definite slope, θ. It is also known
that when X = (P,Q) is a polynomial vector field with X(0, 0) = (0, 0) the
only possible slopes which can have characteristics at zero (resp. at infinity)
are the real roots of

xQmin(x, y) − yPmin(x, y)|(x=cos θ,y=sin θ) = 0

(resp. xQmax(x, y) − yPmax(x, y)|(x=cos θ,y=sin θ) = 0)

where min = min(deg(P ),deg(Q)), max = max(deg(P ),deg(Q)) and Rk

denotes the homogeneous part of degree k of a polynomial R(x, y). It is not
difficult to prove that if a real root of the above homogeneous functions has
odd multiplicity then there always exists a characteristic associated with
such a direction.

In our case the possible limit slopes for the characteristics are given by
the zeros of x2(x2+ay2)|(x=cos θ,y=sin θ) at 0, and of y2p|(x=cos θ,y=sin θ) at ∞.

Therefore if a < 0, then in a neighbourhood of 0 there are characteris-
tics, and hence the system has orbits that are not closed curves. On the
other hand, the fact that xQmax−yPmax = y2p ≥ 0 forces the orbits to turn
around the origin in a neighbourhood of infinity. Note that it is clear that
if (x(t), y(t)) is a trajectory solution of the differential equation associated
with the system under consideration then (x(−t),−y(−t)) is also a trajec-
tory. Therefore all periodic orbits near infinity are periodic. Hence it has
been shown that the vector field considered has periodic and nonperiodic
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trajectories when a < 0, and this finishes the proof. In fact, it can be proved
that for a ≥ 0 it has a global center.

(iii) First of all, we need to recall the generalized polar coordinates which
were introduced by Lyapunov in his study of the stability of degenerate
critical points (see [5]).

Let x(ϕ) = Cs(ϕ) and y(ϕ) = Sn(ϕ) be the solutions of the Cauchy
problem ẋ = −y2p−1, ẏ = x2q−1, x(0) = 2q

√

1/p and y(0) = 0. Then we
have, among others, the following properties.

Lemma 1. (i) p Cs2q(ϕ) + q Sn2p(ϕ) = 1.
(ii) dSn(ϕ)/dϕ = Cs2q−1(ϕ).
(iii) dCs(ϕ)/dϕ = − Sn2p−1(ϕ).
(iv) Cs(−ϕ) = Cs(ϕ).
(v) Sn(−ϕ) = − Sn(ϕ).
(vi) Cs(ϕ) and Sn(ϕ) are Tp,q-periodic functions where

T = Tp,q = 2p−1/2qq−1/2p Γ (1/(2p))Γ (1/(2q))

Γ (1/(2p) + 1/(2q))
,

and Γ denotes the gamma function.

(vii) Cs(T/2 − ϕ) = −Cs(ϕ).
(viii) Sn(T/2 − ϕ) = Sn(ϕ).

Lemma 2. We have
TT
0

Snα(ϕ)Csβ(ϕ) dϕ 6= 0 if and only if α and β are

even.

P r o o f. Consider
TT/2

0
Snα(ϕ)Csβ(ϕ) dϕ and set ϕ = ω − T/2. Then by

using properties (iv)–(viii) we get

T/2\
0

Snα(ϕ)Csβ(ϕ) dϕ = (−1)α+β
T\

T/2

Snα(ω)Csβ(ω) dω.

From the above equality we have

T\
0

Snα(ϕ)Csβ(ϕ) dϕ = [1 + (−1)α+β ]

T/2\
0

Snα(ω)Csβ(ω) dω.

So, if α + β is odd, then
TT
0

Snα(ϕ)Csβ(ϕ) dϕ = 0.
If α and β are both odd then we can see that the statement is true by

using the change ϕ = T/2 − ω.

In order to prove our result we consider the change of variables x =
̺p Cs(ϕ), y = ̺q Sn(ϕ). Then

H(x, y) = px2q + qy2p = ̺2pq(p Cs2q(ϕ) + q Sn2p(ϕ)) = ̺2pq .

The following result will finish the proof of Theorem A.
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Theorem 3. For the vector field −y2p−1 ∂
∂x + x2q−1 ∂

∂y , we can find a

perturbation

[−y2p−1 + εPn(x, y)]
∂

∂x
+ [x2q−1 + εQm(x, y)]

∂

∂y

with Pn (resp. Qm) homogeneous of degree n = 2p − 1 (resp. m = 2q − 1)
which has (n + m)/2 limit cycles.

P r o o f. Using Pontryagin’s method (see [6]), we know that each simple
zero R of

F (̺) =
\

H=̺2pq

Pn(̺p Cs(ϕ), ̺q Sn(ϕ)) dy − Qm(̺p Cs(ϕ), ̺q Sn(ϕ)) dx

produces a periodic orbit for the perturbed system (ε 6= 0, small enough)
tending to H(x, y) = R2pq as ε → 0. Writing

Pn(x, y) =

n
∑

i=0

aix
iyn−i and Qm =

m
∑

j=0

bjx
jym−j,

we get

F (̺) =

T\
0

{

m
∑

j=0

bj̺
pj+q(m−j)+p Csj(ϕ) Sn2p−1+m−j(ϕ)

+

n
∑

i=0

ai̺
pi+q(n−i)+q Csi+2q−1(ϕ) Snn−i(ϕ)

}

dϕ

= ̺2q2+(p−q)
[

p+q−1
∑

i=0

α2i̺
2i(p−q)

]

where we have used Lemma 2 , αk = sk

TT
0

Sn2(p+q−1)−k(ϕ)Csk(ϕ) dϕ and

sk =

{

bk, k = 0, 2, . . . , 2q − 2,
ak−2q+1, k = 2q, 2q + 2, . . . , 2q + 2p − 2.

Taking R = ̺2(p−q) we find that F (̺) = 0 if and only if ̺ = 0 or

F (R) = α0 + α2R + . . . + α2(p+q−1)R
p+q−1 = 0.

Then, by a suitable choice of αi’s (that is, of ai’s and bi’s) we can get
p + q − 1 = (n + m)/2 simple zeros of F (R). From this the result follows.

3. Final remarks. For some subfamilies of the general case of (P,Q)
with homogeneous components we can give more information. The following
two propositions are proved in [2]:
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Proposition 4. Consider the vector field

[

−yn +
n

∑

i=1

aix
iyn−i

] ∂

∂x
+ xm ∂

∂y

with n = 2p − 1 > m = 2q − 1 and p and q positive integers. Then for the

associated differential equation the following hold :

(a) The origin is a center if and only if a1 = a3 = . . . = an = 0.

(b) If a1 = a3 = . . . = a2i−3 = 0, a2i−1 6= 0, then the origin is a weak

focus and under perturbations inside the family it can produce i − 1 limit

cycles.

(c) The cyclicity of the center is p − 1 = (n − 1)/2.

Proposition 5. Consider the vector field

−yn ∂

∂x
+

[

xm +

n
∑

i=1

Aix
m−iyi

] ∂

∂y

with n = 2p − 1 > m = 2q − 1 and p and q positive integers. Then for the

associated differential equation the following hold :

(a) A neighbourhood of infinity is filled with periodic orbits if and only

if A1 = A3 = . . . = Am = 0.

(b) If A1 = A3 = . . . = A2i−3 = 0, A2i−1 6= 0, then the stability of

the infinity is given by the sign of a2i−1. Furthermore, in this case, the

maximum number of periodic orbits that bifurcate from infinity inside the

family and for small perturbations is i − 1.

(c) The maximum number of periodic orbits that can appear from infinity

by perturbing the case A1 = A3 = . . . = Am = 0 inside the family studied is

q − 1 = (m − 1)/2.

In Theorem A(iii) we define the number N(n,m) and prove that N(3, 1)
≥ 2. One of the simplest problems that we have not been able to solve is to
find if N(3, 1) = 2.
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[1] J. Arg émi, Sur les points singuliers multiples de systèmes dynamiques dans R
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Departament de Matemàtica Aplicada II Departament de Matemàtiques, Edifici C
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