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IMMUNOLOGICAL BARRIER FOR INFECTIOUS DISEASES

Abstract. A nonlinear mathematical model with distributed delay is
proposed to describe the reaction of a human organism to a pathogen agent.
The stability of the disease free state is analyzed, showing that there exists
a large set of initial conditions in the attraction basin of the disease-free
state whose border is defined as the immunological barrier.

Introduction. In recent years several mathematical models for an in-
fectious disease have been proposed [1, 3–6]. Marchuk [5] studied a model
including four variables V , C, F and m: antigens, antibodies, plasma cells
and the percentage of damage in the organism, respectively. The system
has the following form:

(1)

V̇ = (β − γF )V,

Ḟ = ̺C − (µf + ηγV )F,

Ċ = ξ(m)V (t − τ)F (t − τ) − µc(C − C∗),

ṁ = σV − µmm.

The proofs of some of the results obtained by Marchuk for system (1)
are based on the special form of the equations. For instance, it is crucial
that V can be factored out in that special form on the right hand side of
the first equation.

One can easily think of interactions of higher order, though. For instance,
by changing the first equation into

V̇ = βV − β′V 2 − γFV,

one can model the fact that there is room only for a limited number of
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antigens in the organism. So the question remains whether or not results
analogous to Marchuk’s hold for more general systems.

Here, we propose a model that is locally equivalent to (1) around the
disease-free state (0, F ∗, C∗, 0), but includes higher order interactions. Also,
a distributed delay is allowed in the third equation, thereby modeling the
fact that the time needed for detecting the presence of an antigen in the
organism is not necessarily constant, nor is the influence of each detection
the same. The system has the following form:

(2)

ẋ1(t) = f1(x1(t), x2(t)) := x1(t) · f(x1(t), x2(t)),

ẋ2(t) = f2(x1(t), x2(t), x3(t)),

ẋ3(t) = f3

(

−r0\
−r1

g(x1(t + s), x2(t + s))h(s) ds, x3(t), x4(t)
)

,

ẋ4(t) = f4(x1(t), x4(t)),

and the following general conditions are assumed to hold true:

0. The functions f : R
2 → R, f1 : R

2 → R, f2 : R
3 → R, f3 : R

3 → R,
f4 : R

3 → R, g : R → R and h : [−r1,−r0] → R are bounded in bounded
sets in the C1-norm.

1. f1(x, y) is a decreasing function of y, and the set {(x, y) ∈ R
2 | f1(x, y)

= 0} for x > 0 and y ≥ 0 is given by a continuous function Ψ1 of x, which
is increasing and positive in (0, x1 max] for some positive x1 max, decreasing
in (x1 max, x1), for some x1, and equal to 0 for x ≥ x1.

Fig. 1. f1(x, y) = 0

2. For x ≥ 0 and z ≥ 0, the set {(x, y, z) ∈ R
3 | f2(x, y, z) = 0} is given

by a continuous surface Ψ2(x, z), which is identically equal to 0 for z = 0,
and an increasing function of z for fixed x. For fixed z > 0 it is a decreasing
function of x as long as it remains positive. If it becomes equal to zero, it
remains constant.
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Fig. 2. f2(x, y, z) = 0, for fixed z > 0

3.1. There exists an x∗

3 ≥ 0 such that f3(0, x
∗

3, 0) = 0.

3.2. g(x, y) is a nonnegative function that is equal to zero if and only if
at least one of its entries is equal to 0.

3.3. f3 is an increasing function of x1 and x2, and a nonincreasing
function of x3 and x4.

4. f4(x, y) is an increasing function of x, and for x ≥ 0 and y ≥ 0 the set
{(x, y) ∈ R2 | f4(x, y) = 0} is given by a continuous increasing curve Ψ4(x)
such that Ψ4(0) = 0. Moreover Ψ4 is an increasing function of x as long as
it takes values less than 1. If Ψ4(x0) = 1 for some x0 > 0, then Ψ4(x) = 1
for all x > x0.

Fig. 3. f4(x, y) = 0

The variables x1, x2, x3 and x4 generically represent antigens, antibodies,
plasma cells and the percentage of damage in the organism, respectively.
Condition 0 guarantees the global existence and uniqueness of solutions; it
is not restrictive since, in applications, all interactions are bounded.

System (2) allows the modelling of a variety of processes that system (1)
does not. We will point out some of them at the same time that we explain
conditions 1 to 4.

The condition of positivity of Ψ1 in particular means that for small
both antigen and antibody populations (and neglecting random effects),
the antigen population reproduces itself with a positive rate (in system (1),
f(0, 0) = β > 0).
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For small antigen populations and fixed amount of antibodies, a bigger
population (usually) grows faster than a smaller one (for instance, propor-
tionally to their size as in system (1)) but, due to competition and limiting
factors, the growth rate can decrease with increasing antigen populations.
The assumption that Ψ1 is not constant in condition 1 allows modelling this
kind of phenomena. This assumption is different from those in system (1),
where f is constant for fixed F .

If the antigen population is big enough, inhibition factors outweigh re-
production and the growth rate becomes negative, that is, the antigen popu-
lation always decreases if its size is bigger than x1, which can be seen as the
carrying capacity for the antigen population. This condition is not satisfied
by system (1).

Since condition 1 implies the existence of a maximum for Ψ1, we are also
taking into account the fact that for any given number of antigens, there
is always an amount of antibodies large enough to cause a decrease in the
antigen population. For system (1) that value is constant and equal to β/γ.

The boundary condition in 2 states that without plasma cells and anti-
bodies, there is no production of the latter, no matter how many antigens
are present. On the other hand, the disappearance of antibodies increases
with their own number (Ψ2 is a decreasing function of x, for fixed z), whereas
their production increases with the number of plasma cells (Ψ2 is increasing
in z, for fixed x). These conditions are satisfied by system (1), too.

For a healthy organism, and in the absence of infection, condition 3.1 as-
sumes the existence of a steady state x∗

3 of plasma cells, to which population
tends. That steady state corresponds to C∗ in system (1). The production
of plasma cells increases with the number of antigens attacking the organ-
ism, but that can only happen in the presence of receptors (antibodies).
That is described in condition 3.3. Similarly, the production of plasma cells
increases with the number of antibodies, but that can only happen in the
presence of antigens (conditions 3.2 and 3.3). In system (1), these facts are
modeled by the product of V and F .

The disappearance of plasma cells depends directly on their number
(condition 3.3). In the same way, if the damage suffered by the organism
increases, the production of plasma cells cannot increase (condition 3.3).
The last fact is included in system (1) by making the function ξ(m) not
increasing in m.

Finally, condition 4 models the fact that the greater the infection the
more extensive the damage to the organism. On the other hand, the or-
ganism tends to recover, but that process can slow down with increasing
damage (Ψ4 is bounded).

Some additional conditions have to be stated to guarantee invariance of
the positive region under system (2). They are of technical nature and are
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stated also for negative entries:

fi ≥ 0 for i = 1, 2, 3, 4

if any argument is less than or equal to 0, or if x4 is greater than 1, and

f4(x, y) ≤ 0 if y ≥ 1.

The interpretation in each case is very simple. For instance, y ≥ 1 in
f4(x, y) means that if the damage to the organism is complete, then there
is nothing more to be damaged. In some cases this makes system (2) more
realistic than system (1). In the case of plasma cells, for instance, system
(1) allows their production up to C∗, even if the damage to the organism is
complete. There would exist a stronger similitude between both models if
the coefficient µ depended on m and if µ(1) = 0, which is very reasonable,
since a completely damaged organism cannot be expected to produce plasma
cells anymore.

An initial condition for equation (2) is a function

ϕ ∈ G := C([−r1, 0], R) × C([−r1, 0], R) × R × R,

but for applications we are interested in initial conditions

ϕ ∈ G
+ := C([−r1, 0], R

+) × C([−r1, 0]), R
+) × R

+ × [0, 1].

The conditions stated above guarantee that G
+ is invariant under (2)

as in the following

Lemma 1. Let ϕ ∈ G
+. Then the solution x(t) := (x1(t), . . . , x4(t)) of

(2) with initial condition ϕ satisfies xi(t) ≥ 0 and x4(t) ≤ 1 for t ≥ 0, i =
1, . . . , 4.

P r o o f. If x1(t1) = 0 for some t1 ≥ 0, it follows that x1(t) = 0 for t ≥ t1,
since otherwise the mean value theorem implies that there exists a t∗ > t1
such that x1(t

∗) < 0 and ẋ1(t
∗) < 0. That contradicts the fact that f1 is

nonnegative for negative entries.
A similar argument shows that the other variables cannot become neg-

ative, neither can x4 become greater than one.

In order to prove the existence of a stationary solution of (1), we need
the following

Lemma 2. Let Γ = {(y, z) | f2(0, y, z) = 0, y, z ≥ 0}. Then there exists

Ψ : [0,∞) → R such that Γ = {(Ψ(z), z) : z ≥ 0}.

P r o o f. Given z ≥ 0, Ψ(z) is defined as the only value y such that
f2(0, y, z) = 0, which is well defined for z ≥ 0, since so is Ψ2. Actually,
Ψ(z) = Ψ2(0, z) for z ≥ 0.

The existence of a stationary solution of (2) is stated in the following
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Lemma 3. (0, Ψ(x∗

3), x
∗

3, 0) is a stationary solution of (2), with x∗

3 the

same as in condition 3.1.

P r o o f. The special form of f1 in (2) guarantees that the right hand
side of the first equation is identically zero for x1 = 0. Conditions 3.1 and
3.2 together with the definition of Ψ in Lemma 2 guarantee the same for the
second and third equations in (2). Finally, condition 4 states that the right
hand side of the last equation in (2) is also identically zero.

In order to study the stability of the stationary solution established
in Lemma 3, we consider the linearization of (2) around the point
(0, Ψ(x∗

3), x
∗

3, 0). Its characteristic equation is det∆(λ) = 0 with λ ∈ C

and

∆(λ) =











∂f1

∂x1

− λ 0 0 0
∂f2

∂x1

∂f2

∂x2

− λ ∂f2

∂x3

0
∂f3

∂x1

T
−r0

−r1

eλsh(s) ds 0 ∂f3

∂x3

− λ ∂f3

∂x4

∂f4

∂x1

0 0 ∂f4

∂x4

− λ











(all the derivatives being evaluated at x1 = 0, x2 = Ψ(x∗

3), x3 = x∗

3, and
x4 = 0). The first and third elements in the second column vanish because
of the special form of f1 and the fact that ∂g

∂x
(0, Ψ(x∗

3)) = 0.
With this information we can easily prove the following

Proposition 4. The stationary solution (0, Ψ(x∗

3), x
∗

3, 0) is stable if

(3)
∂f1

∂x1

∣

∣

∣

∣

x1=0, x2=Ψ(x∗

3
)

< 0.

P r o o f. The characteristic equation is
(

∂f1

∂x1
− λ

)(

∂f2

∂x2
− λ

)(

∂f3

∂x3
− λ

)(

∂f4

∂x4
− λ

)

= 0,

with all the derivatives evaluated at x1 = 0, x2 = Ψ(x∗

3), x3 = x∗

3 and
x4 = 0. The negativity of the first root is a consequence of the hypothesis.
Condition 2 for x ≡ 0 implies that y = Ψ2(0, z) is an increasing function
of z. Therefore, on such a curve ∂f2/∂x2 is negative. The nonnegativity of
the remaining roots is guaranteed by conditions 3.3 and 4.

Proposition 4 guarantees that a healthy organism recovers if (3) is satis-
fied. But because of applications we want to know “how small” the infection
must be for the organism to recover. To do this, we need three lemmas that
follow from the general conditions.

To begin with, the conditions on f1 imply

Lemma 5. The function Ψ1 : (0,∞) → R
+ has the following properties:

(i) f1(x, Ψ1(x)) = 0 for x ∈ (0,∞).
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(ii) f1(x, y) < 0 if x > 0 and y > Ψ1(x).

(iii) f1(x, y) > 0 if x > 0 and y < Ψ1(x).

Similarly, the conditions on f2 imply

Lemma 6. For every fixed z > 0 the function Ψ2 : R
+ ×R

+ → R has the

following properties:

(i) f2(x, Ψ2(x, z), z) = 0 for x ≥ 0.

(ii) f2(x, y, z) < 0 if x ≥ 0 and y > Ψ2(x, z).

(iii) f2(x, y, z) > 0 if x ≥ 0 and y < Ψ2(x, z).

Finally, the conditions on f4 imply

Lemma 7. The function Ψ4 : [0,∞) → [0, 1] has the following properties:

(i) f4(x, Ψ4(x)) = 0 for x ∈ [0,∞).

(ii) f4(x, y) < 0 for y > Ψ4(x).

(iii) f4(x, y) > 0 for 0 < y < Ψ4(x).

Experiments have shown that if the damage to the organism is not great,
its capacity to respond to an infection does not change. That means that
there is an x4 > 0 such that ∂f3

∂x4

(x, y, z) = 0 for x, y > 0 and 0 < z < x4.

With this information we can prove the following.

Proposition 8. Let (x1(t), x2(t), x3(t), x4(t)) be the solution of (1) with

initial condition (x0
1(t), x

0
2(t), x

0
3, x

0
4), and let the following conditions be sat-

isfied :

(4) x0
2(0) > Ψ1(x

0
1(0)),

(5) Ψ2(x, x3) > Ψ1(x) for x ≤ x0
1(0)

and

x4 > max{x0
4, Ψ3(x

0
1(0))}

with x3 = min{x∗

3, x
0
3} (x∗

3 the same as in condition 3.1). Then x1(t) is

decreasing for t ≥ 0, and limt→∞ x1(t) = 0 (i.e., the infection will die out).

P r o o f. Note that (4) and Lemma 5(ii) yield a t0 > 0 such that ẋ1(t) < 0
for t ∈ (0, t0). Now, suppose there is a first t1 ≥ t0 such that ẋ1(t1) = 0.
Then

(7) x1(t1) < x0
1(0)

and

(8) f1(x1(t1), x2(t1)) = 0,

i.e.,

(9) Ψ1(x1(t1)) = x2(t1).
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Now, combining (5) with the previous equality we get

(10) Ψ2(x1(t1), x3) > x2(t1)

or, by Lemma 6(iii),

f2(x1(t1), x2(t1), x3) > 0.

On the other hand, (6), Lemma 7, and the fact that x1(t) is decreasing on
(0, t1) guarantee that x4(t) < x4 for 0 ≤ t ≤ t1, and therefore, ∂f3/∂x4 = 0
for 0 < t < t1. Moreover, it is clear from 3.1 and 3.3 that ẋ3 ≥ 0 if x3(t) ≤ x∗

3

and x1(t) and x2(t) are nonnegative. This, in turn, implies that

f2(x1(t1), x2(t1), x3(t1)) ≥ f2(x1(t1), x2(t1), x3) > 0,

i.e.,

(11) ẋ2(t1) > 0.

Finally, (11) guarantees the existence of an interval I such that t1 ∈ I
and ẋ2(t) > 0 for t ∈ I. This, together with (8) and the fact that f1 is a
decreasing function of the second argument implies

ẋ1(t) = f1(x1(t1), x2(t)) > 0

just before t1. This contradiction finishes the proof.

Conditions (4) and (5) are natural generalizations of the ones obtained
by Marchuk: β < λF and v0 < µf (λF ∗ − β)/(βηλ). The first condition
guarantees that the antigen population decreases for small values of t, and
the second implies that it goes monotonically to zero. Restriction (6) cor-
responds to the assumption ξ(m(0)) = 1 in Marchuk’s work.

In the present work the immunological barrier can be defined as the first
value of x1 for which Ψ2(x1, x3) = Ψ1(x1). If the initial antigen population
does not break the immunological barrier, then recovery occurs, i.e., the
number of antigens in the organism tends to zero in time and any damage
in the organism will be corrected.

Moreover, the fact that Ψ2 is an increasing function of the second com-
ponent (Condition 2) implies that the organism becomes more resistent by
increasing x0

3. That suggests an effective method of preventing and, even,
treating a disease.
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