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SOME CONVERGENCE ACCELERATION PROCESSES
FOR A CLASS OF VECTOR SEQUENCES

Abstract. Let (Sn) be some vector sequence, converging to S, satisfying

Sn − S ∼ %nnθ(β0 + β1n
−1 + β2n

−2 + . . .), 0 < |%| < 1, θ < 0,

where β0(6= 0), β1, . . . are constant vectors independent of n. The purpose
of this paper is to provide acceleration methods for these vector sequences.
Comparisons are made with some known algorithms. Numerical examples
are also given.

1. Introduction. We shall denote by L the following set of vector
sequences (Sn) converging to S:

L = {(Sn) : Sn − S ∼ %nnθ(β0 + β1n
−1 + β2n

−2 + . . .),
0 < |%| < 1, θ < 0,

where β0(6= 0), β1, . . . are constant vectors independent of n}.
We propose an original algorithm. An extension of Aitken’s ∆2-process

[1] as well as iterations of this algorithm are studied. Convergence theorems
for the sequences of L are proved. Some insight in numerical properties of
the methods is given. The first part is devoted to the scalar case.

2. The A-algorithm (the scalar case). In this section, we shall
consider the case of scalar sequences.

Given any sequence (Sn), we set

(1)

u0,n =
∆Sn

∆Sn+1
, A0,n = Sn, n = 0, 1, 2, . . . ,

uk+1,n = G(uk,n, uk,n), k = 0, 1, 2, . . . ,

Ak+1,n = G(Ak,n, uk,n), k = 0, 1, 2, . . . ,
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where the transform G transforms a sequence (Sn) and an auxiliary sequence
(xn) into G(Sn, xn) such that

G(Sn, xn) = Sn+1 −
∆Sn

1− xn
.

As a matter of convenience, we shall write

Gn = G(Sn, xn).

Let L be the set of scalar sequences (Sn) satisfying

Sn − S ∼ %nnθ(β0 + β1n
−1 + β2n

−2 + . . .), 0 < |%| < 1, θ < 0,

where β0(6= 0), β1, β2, . . . are independent of n.
Let us recall that for two sequences (Sn) and (Tn) which converge to the

same limit S, the sequence (Tn) is said to converge faster than (Sn) if

lim
n→∞

(Tn − S)/(Sn − S) = 0.

Theorem 2.1. The A-algorithm accelerates the convergence of linearly
converging sequences. That is, for any linearly converging sequence (Sn)
and for any fixed k ∈ N, (Ak+1,n) converges faster than (Ak,n).

R e m a r k s. Let us recall that a sequence (Sn) converges linearly [11,
p. 6] to S if

• there exists N ∈ N such that Sn 6= S for all n ≥ N ,
• there exists a number r such that 0 < |r| < 1 and

lim
n→∞

(Sn+1 − S)/(Sn − S) = r.

The proof of Theorem 2.1 follows from a well known result (see Theo-
rem 1.8 of [4]). Let us recall that A1,n is Aitken’s ∆2-process.

Lemma 2.1. For any sequence (Sn) ∈ L and for a choice of (xn) such
that xn ∼ 1/%+ d1n

−1 + d2n
−2 + . . . , where d1, d2, . . . are independent of n,

(Gn) converges faster than (Sn). Moreover , (Gn) ∈ L.

P r o o f. We get

Gn − S = Sn+1 − S − ∆Sn

1− xn

and
Gn − S

Sn − S
=

en+1

en
− 1

1− xn

(
en+1

en
− 1

)
, where en = Sn − S.

Hence
lim

n→∞
(Gn − S)/(Sn − S) = 0 if lim

n→∞
xn = 1/%,

since
lim

n→∞
en+1/en = %.
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There exist constants γ0, γ1, . . . , such that

∆Sn ∼ %nnθ(γ0 + γ1n
−1 + . . .).

By the asymptotic expansion of xn, we have
1

1− xn
∼ %

%− 1
(1 + c1n

−1 + c2n
−2 + . . .),

where c1, c2, . . . are constants, e.g. c1 = %d1/(%− 1), c2 = c2
1 + %d2/(%− 1).

Thus
∆Sn

1− xn
∼ %n+1nθ

%− 1
(γ0 + γ1n

−1 + . . .)(1 + c1n
−1 + . . .),

and ∆Sn

1−xn
∼ %nnθ(γ′0 + γ′1n

−1 + . . .), where γ′0, γ
′
1, . . . are independent of n.

There also exist constants λ0, λ1, . . . , such that

Sn+1 − S ∼ %nnθ(λ0 + λ1n
−1 + . . .).

Hence Gn−S ∼ %n+1nθ−1(λ′0 +λ′1n
−1 + . . .), where λ′0, λ

′
1, . . . are constants.

Therefore (Gn) ∈ L.

Theorem 2.2. For any sequence (Sn) ∈ L and for any fixed k ∈ N,
(Ak+1,n) converges faster than (Ak,n).

P r o o f. Since
uk+1,n = G(uk,n, uk,n),

it can easily be proved by induction that uk,n ∼ 1/%+ d1n
−1 + d2n

−2 + . . . ,
where d1, d2, . . . are independent of n. By Lemma 2.1, (Ak+1,n) converges
faster than (Ak,n).

3. The A-algorithm (the vector case). Let x = (x1, . . . , xd)T ,
y = (y1, . . . , yd)T be d-dimensional real vectors. We define

‖x‖ =
√∑

x2
i and (x, y) =

∑
xiyi.

Using (1), we extend the A-algorithm to vector sequences (Sn) as follows:

(2)

u0,n =
(∆Sn,∆Sn+1)
‖∆Sn+1‖2

, A0,n = Sn, n = 0, 1, 2, . . . ,

uk+1,n = G(uk,n, uk,n), k = 0, 1, 2, . . . ,

Ak+1,n = GT (Ak,n, uk,n), k = 0, 1, 2, . . . ,

where the transform GT transforms a vector sequence (Sn) and an auxiliary
sequence (xn) into GT (Sn, xn) such that

GT (Sn, xn) = Sn+1 −
∆Sn

1− xn
.
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As a matter of convenience, we shall write

GT
n = GT (Sn, xn).

This algorithm is named the vector A-algorithm (VAA for short).
Given two vector sequences (Sn) and (Tn) which converge to the same

limit S, the sequence (Tn) is said to converge faster than (Sn) if

lim
n→∞

‖Tn − S‖/‖Sn − S‖ = 0.

Lemma 3.1. For any sequence (Sn) ∈ L, if xn ∼ 1/% + d1n
−1 + d2n

−2 +
. . . , where d1, d2, . . . are independent of n, then (GT

n ) converges faster than
(Sn). Moreover , (GT

n ) ∈ L.

P r o o f. We get

GT
n − S = Sn+1 − S − ∆Sn

1− xn
.

There exist constant vectors β′1, β
′
2, . . . such that

∆Sn ∼ %nnθ[(%− 1)β0 + β′1n
−1 + β′2n

−2 + . . .].

By the asymptotic expansion of xn, we have
1

1− xn
∼ %

%− 1
(1 + c1n

−1 + c2n
−2 + . . .),

where c1, c2, . . . are constants, e.g. c1 = %d1/(%− 1), c2 = c2
1 + %d2/(%− 1).

Thus
∆Sn

1− xn
∼ %n+1nθ

%− 1
[(%− 1)β0 + β′1n

−1 + . . .](1 + c1n
−1 + . . .),

and
∆Sn

1− xn
∼ %n+1nθ(β0 + γ1n

−1 + γ2n
−2 + . . .),

where γ1, γ2, . . . are constant vectors.
There also exist constant vectors λ1, λ2, . . . such that

Sn+1 − S ∼ %n+1nθ(β0 + λ1n
−1 + λ2n

−2 + . . .).

Hence GT
n − S ∼ %n+1nθ−1(λ′0 + λ′1n

−1 + . . .), where λ′0, λ
′
1, . . . are con-

stant vectors.
Therefore (GT

n ) ∈ L and limn→∞ ‖GT
n − S‖/‖Sn − S‖ = 0.

Theorem 3.1. For any sequence (Sn) ∈ L and for any fixed k ∈ N,
(Ak+1,n) converges faster than (Ak,n).

P r o o f. There exist constant vectors β′1, β
′
2, . . . such that

∆Sn ∼ %nnθ[(%− 1)β0 + β′1n
−1 + β′2n

−2 + . . .].
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There also exist constants λ1, λ2, . . . such that

(∆Sn,∆Sn+1) ∼ %2n+1n2θ[(%− 1)2(β0, β0) + λ1n
−1 + λ2n

−2 + . . .].

Hence
u0,n ∼ 1/% + γ1n

−1 + γ2n
−2 + . . . ,

where γ1, γ2, . . . are independent of n.
Since uk+1,n = G(uk,n, uk,n), it can easily be proved by induction that

uk,n ∼ 1/% + d1n
−1 + d2n

−2 + . . . , where d1, d2, . . . are independent of n.
By Lemma 3.1, (Ak+1,n) converges faster than (Ak,n).

4. Some extensions of Aitken’s ∆2-process for vector sequences.
Some authors extended Aitken’s ∆2-process to vector sequences:

Irons and Tuck [6]:

Tn := Sn −
(∆Sn,∆2Sn)
(∆2Sn,∆2Sn)

∆Sn;

Graves-Morris [5]:

Tn := Sn+1 −
(∆Sn,∆Sn)
(∆Sn,∆2Sn)

∆Sn+1.

We define a vector Aitken’s ∆2-process (VA∆2 for short) as the first step
of the vector A-algorithm defined by (2).

This algorithm can be written as follows:

Tn := Sn+1 −
(∆Sn+1,∆Sn+1)
(∆Sn+1,∆2Sn)

∆Sn.

Many authors: Wynn [13], Brezinski [3], Weniger [10], Bhowmick, Bhat-
tacharya and Roy [2] showed that the repeated application of an extrap-
olation algorithm can lead to improvements either of the results or of the
stability.

So we define iterations of the vector Aitken’s ∆2-process. The algorithm
obtained (IVA∆2 for short) can be written as follows for a sequence (Sn):

B0,n = Sn, n = 0, 1, 2, . . . ,

vk,n =
(Bk,n+1 −Bk,n, Bk,n+2 −Bk,n+1)

‖Bk,n+2 −Bk,n+1‖2
, k = 0, 1, 2, . . . ,

Bk+1,n = GT (Bk,n, vk,n), k = 0, 1, 2, . . .

Theorem 4.1. Let (Sn) be a sequence of L and assume that (Bk,n) is
the sequence generated by the kth iteration of the vector ∆2-process applied
to (Sn). Then (Bk+1,n) converges faster than (Bk,n).



304 G. A. Sedogbo

P r o o f. It can easily be proved by induction that

vk,n ∼ 1/% + d1n
−1 + d2n

−2 + . . . ,

where d1, d2, . . . are independent of n. By Lemma 3.1, (Bk+1,n) converges
faster than (Bk,n).

5. Comparisons and numerical examples. For a d-dimensional real
vector x = (x1, . . . , xd)T , we define

‖x‖∞ = max{|x1|, . . . , |xd|}.

Osada [7] extended Levin’s transforms to vector sequences.
We shall compare these algorithms and the vector ε-algorithm (VEA) [12]

to ours. For a vector sequence (xn) and for a vector sequence transformation
(xn) → (yn), the number of significant digits of yn is defined by

− log10 ‖yn − x‖∞,

when x is the limit of (xn). We shall apply the algorithms to two systems
of nonlinear equations whose Jacobian matrix is singular at zero.

The results given by vector Levin’s transforms and the vector ε-algorithm
are similar (see [7]). So this class of algorithms will be represented by the
vector ε-algorithm.

The numerical results are obtained in double precision with 16 significant
digits.

Example 5.1. Consider the system of nonlinear equations [8]{
x2 − xy + y2 + x− 2 = 0,

3x2 + 2xy + 2y − 7 = 0.

The only real solution is (1, 1)T and the Jacobian at this point is zero.
Newton’s iteration is explicitly given as

xn+1 =
1
∆

(5x3
n + 2x2

n + 11xn − 6x2
nyn − 2xny2

n − 2xnyn + 2y2
n − 14yn + 4),

yn+1 =
1
∆

(3x2
n + 2xn + 5x2

nyn − 6xny2
n + 2xnyn − 2y3

n − 11yn + 7),

with
∆ = 10x2

n + 6xn − 12xnyn − 4y2
n − 2yn + 2.

If we set Sn = (xn, yn)T , then (Sn) converges linearly to (0, 0)T with ratio
1/2 (see [8]). We give below the numbers of significant digits by applying
the algorithms with S0 = (0, 0)T .
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n Base IVA∆2 VAA VEA
3 0.04 0.04 0.04 0.04
4 0.49 0.49 0.49 0.49
5 0.82 0.82 0.82 0.82
6 1.14 1.21 1.21 1.21
7 1.44 3.62 3.50 3.10
8 1.74 5.55 5.30 5.05
9 2.04 7.82 8.23 8.10
10 2.35 10.40 10.77 10.36
11 2.64 12.18 12.68 11.37
12 2.96 13.82 13.80 12.92

Example 5.2. Consider the system of nonlinear equations [9]
x + xy + y2 = 0,

x2 − 2x + y2 = 0,

x + z2 = 0.

The only real solution is (0, 0, 0)T and the Jacobian at this point is zero.
Newton’s iteration is explicitly given as

xn+1 =
−x3

n − 2x2
nyn + xny2

n

2xn + 6yn − 2x2
n − 4xnyn + 2y2

n

,

yn+1 =
yn

2
+

xnyn + x2
n

2xn + 6yn − 2x2
n − 4xnyn + 2y2

n

,

zn=1 =
zn

2
− xn+1

2zn
.

If we set Sn = (xn, yn, zn)T , then (Sn) converges linearly to (0, 0, 0)T with
ratio 1/2 (see [9]). We give below the numbers of significant digits by ap-
plying the algorithms with S0 = (0.1, 0.5, 1.0)T .

n Base IVA∆2 VAA VEA
1 0.30 0.30 0.30 0.30
2 0.60 0.60 0.60 0.60
3 0.91 2.47 2.47 2.47
4 1.21 5.01 4.70 4.99
5 1.51 5.67 5.53 5.49
6 1.81 6.55 6.30 6.29
7 2.11 10.20 9.80 9.69
8 2.41 11.50 10.30 11.02

6. Conclusions. The vector algorithms proposed in this paper give
similar results to some known algorithms. Moreover, each column of the
arrays converges faster than the previous one. That is, given any algorithm
(Tk,n) introduced here, for any k, (Tk+1,n) converges faster than (Tk,n).
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The error analysis has not been studied in this paper. It will be the
matter of further research.
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