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EVALUATING IMPROVEMENTS OF RECORDS

Abstract. We evaluate the extreme differences between the consecutive
expected record values appearing in an arbitrary i.i.d. sample in the stan-
dard deviation units. We also discuss the relevant estimates for parent
distributions coming from restricted families and other scale units.

1. Introduction and auxiliary results. We consider a sequence
Xi, i ≥ 1, of independent random variables with a common distribution
function F and a finite variance σ2. The sequences of record times and
values are defined by

L0 = 1,

Ln = inf{i > Ln−1 : Xi > XLn−1
}, n ≥ 1,

Rn = XLn
, n ≥ 0,

respectively. It is of practical interest to evaluate future records by means
of previous ones. E.g., Ahsanullah [1] and Dunsmore [3] presented some
point and interval predictions for parent sequences of the location-scale ex-
ponential models. Our purpose is to determine the sharp upper bounds
on EF (Rn − Rn−1)/σ, n ≥ 2, for general F with a finite second moment.
Dividing by the standard deviation is justified by the scale equivariance of
records. Otherwise we could arbitrarily increase the difference of records
simply multiplying original variables by large constants.

In this section we have compiled some basic facts useful in the proof of
our basic result. That will be presented in Section 2. In Section 3 we derive
more tight bounds when F belongs to restricted families of distributions with
monotone failure probability and rate. Also, some other scale parameters
will be discussed.

1991 Mathematics Subject Classification: Primary 62E15, Secondary 62G99, 62N05.
Key words and phrases: independent identically distributed variables, record value,

monotone failure probability, monotone failure rate, variance, central absolute moment,
sharp bound, projection.

[315]



316 T. Rychlik

Referring the reader to Nevzorov [7] for a thorough review of the theory
of records, we recall some basic facts only. The distribution function of the
nth record value is

FRn
(x) = 1 − [1 − F (x)]

n∑

i=0

[− ln(1 − F (x))]i/i!.

For brevity, we shall further write

(1) qi(x) = [− ln(1 − x)]i/i!, 0 < x < 1, i ≥ 0.

If F is absolutely continuous with a density function f , then so is FRn
and

the respective density is

(2) fRn
(x) = qn(F (x))f(x).

Changing the variables, one can get

(3) ERn =

1\
0

QF (x)qn(x) dx,

where QF (x) = sup{t : F (t) ≤ x} is the quantile function of F and qn
is the density function of the nth record in the standard uniform sequence
(cf. (2)). Applying (3) and the Schwarz inequality, Nagaraja [6] obtained

E(Rn − µ)/σ =
1

σ

1\
0

(QF (x) − µ)(qn(x) − 1) dx(4)

≤ 1

σ

[ 1\
0

(QF (x) − µ)2 dx

1\
0

(qn(x) − 1)2 dx
]1/2

=

[ 1\
0

[(
2n

n

)
q2n(x) − 2qn(x) + 1

]
dx

]1/2

=

[(
2n

n

)
− 1

]1/2

= A(n) say,

where µ denotes the expectation of X1. The bound (4) is the best possi-
ble and becomes equality iff QF − µ and qn − 1 are proportional, i.e. for
an affine transformation of Weibull variables with the shape parameter 1/n.
Repeating the same reasoning for

(5) E(Rn −Rn−1)/σ =
1

σ

1\
0

QF (x)[qn(x) − qn−1(x)] dx

does not yield the optimal bound, because qn − qn−1 is not nondecreasing
and so cannot be proportional to any quantile function. To cope with (5) we
use a more delicate tool proposed in Gajek and Rychlik [4, Proposition 1].
If a statistical functional is represented as an inner product of a given func-
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tion (here ϕn = qn − qn−1) with the quantile function from a convex cone,
then the supremum of the functional is attained by the quantiles propor-
tional to the projection of the function in the inner product norm onto the
cone of quantiles. The supremum amounts to the norm of the projection.
For general F , the functional (5) is maximized over the family of all quan-
tile functions which coincides with the convex cone of nondecreasing (right
continuous) functions on [0, 1]. There is a general method of constructing
projections onto nondecreasing functions, due to Moriguti [5]. We recall
a simplified version of Moriguti’s Theorem 1.

Lemma 1. Let ϕ : [a, b] → R have a finite Lebesgue integral. For Φ(x) =Tx
a
ϕ(t) dt, let Φ denote the greatest convex minorant of Φ, and write Pϕ for

the right-hand derivative of Φ. Then

(6)

b\
a

g(t)ϕ(t) dt ≤
b\
a

g(t)Pϕ(t) dt

for every nondecreasing function g, for which both the integrals exist and are

finite. Equality holds in (6) iff g is a constant in every interval where Φ < Φ.

Furthermore, if g and Pϕ are square integrable in [a, b], we can apply
the Schwarz inequality to the right-hand side of (6), which yields

(7)

b\
a

g(t)Pϕ(t) dt ≤
[ b\

a

g2(t) dt

b\
a

Pϕ2(t) dt
]1/2

.

When Pϕ 6≡ 0 a.e., this becomes equality iff

(8) ∃A ≥ 0 g(t) = APϕ(t) a.e.,

which also implies equality in (6). Combining (6) and (7), we obtain a re-
fined Schwarz inequality for nondecreasing functions, with condition (8) of
attaining equality. Accordingly, Pϕ is actually the projection of ϕ onto
the cone of nondecreasing functions in L2(a, b) (cf. e.g. Balakrishnan [2,
Corollary 1.4.2]).

2. Main result

Proposition 1. For Rn, n ≥ 1, being the record values in a sequence

of independent identically distributed random variables with a finite vari-

ance σ2, we have

(9) E(Rn −Rn−1)/σ ≤ B(n),

where

(10) B(n) =

{(
2n− 2

n− 1

)
(1 − y)

[ 2n−1∑

i=0

(ny)i

i!
+

(
1 − 1

n

)
(ny)2n−1

(2n − 1)!

]}1/2
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and y ∈ (0, 1) satisfies the equation

(11) − ln(1 − y) = ny.

Equality is attained in (9) iff the parent distribution has the quantile function

(12) QF (x) = µ+
σ

B(n)
ϕn(max{x, y}), µ ∈ R.

P r o o f. Applying the modified Schwarz inequality to (5), we obtain

E(Rn −Rn−1)/σ =
1

σ

1\
0

(QF (x) − µ)ϕn(x) dx

≤ 1

σ

[ 1\
0

(QF (x) − µ)2 dx

1\
0

Pϕ2
n(x) dx

]1/2

=
[ 1\

0

Pϕ2
n(x) dx

]1/2

.

It suffices to prove that Pϕn(x) = ϕn(max{x, y}) and its norm is B(n),
since then, by Lemma 1,

E(Rn −Rn−1)/σ =
1

B(n)

1\
0

Pϕn(x)ϕn(x) dx =
1

B(n)

1\
0

Pϕ2
n(x) dx = B(n).

We first note that
x\
0

qn(t) dt =
(−1)n

n!

1\
1−x

lnn t dt

=
(−1)n

n!

[
− (1 − x) lnn(1 − x) − n

1\
1−x

lnn−1 t dt
]

= − (1 − x)qn(x) +

x\
0

qn−1(t) dt

and so

(13) Φn(x) =

x\
0

ϕn(t) dt = −(1 − x)qn(x).

By a standard algebra we verify that Φn(0) = Φn(1) = 0, and Φn is con-
cave decreasing, convex decreasing, and convex increasing in [0, 1 − e−n+1],
[1−e−n+1, 1−e−n], and [1−e−n, 1], respectively. We can easily see that the
greatest convex minorant Φn of the primary function Φn is linear in [0, y]
for some y ∈ [1 − e−n+1, 1 − e−n], and coincides with Φn elsewhere. The
linear part vanishes at 0, and is tangent to Φn at the right end-point, which
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allows us to determine y from the equation

(14) ϕn(y)y = Φn(y).

By (13), this can be replaced by yqn−1(y) = qn(y), which is equivalent
to (11). Consequently, Pϕn(x) = Φ′

n(x) = ϕn(y) for x ≤ y and ϕn(x)
otherwise.

It remains to verify that
T1
0
Pϕ2

n(x) dx = B2(n). By (13),

(15)

1\
x

ϕn(t) dt = (1 − x)qn(x),

and therefore

(16)

1\
x

qn(t) dt = (1 − x)

n∑

i=0

qi(x).

Since, moreover,

(17) q2n =

(
2n

n

)
ϕ2n +

(
2n− 2

n− 1

)
q2n−2,

we have

1\
0

Pϕ2
n(x) dx =

y\
0

ϕ2
n(y) dx+

1\
y

ϕ2
n(x) dx (by (14) and (17))

=
Φ2

n(y)

y
+

(
2n

n

) 1\
y

ϕ2n(x) dx +

(
2n− 2

n− 1

) 1\
y

q2n−2(x) dx (by (15) and (16))

=

(
2n

n

)
q2n(y)

(1 − y)2

y
+

(
2n

n

)
q2n(y)(1 − y)

+

(
2n− 2

n− 1

)
(1 − y)

2n−2∑

i=0

qi(y) (by (11) and (9))

= (1 − y)

[(
2n − 2

n− 1

) 2n−2∑

i=0

qi(y)

(
2n

n

)
q2n(y)

y

]
= B2(n).

R e m a r k 1. Every distribution with quantile function (12) has a smooth
density function positive on a right halfline, and a jump at the left end-point
of the support. Since 1− e−n+1 ≤ y = 1− e−ny ≤ 1− e−n, at least 1− 1/n
of the whole probability mass is concentrated at the jump point. In fact,
the actual mass of the absolutely continuous part is far less than 1/n, which
is illustrated in Table 1 for n ≤ 10.
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R e m a r k 2. As n→ ∞,

(18) B(n) =

(
2n− 2

n− 1

)1/2

(1 + o(1)) = A(n− 1)(1 + o(1)),

which means that asymptotically the extreme expected difference of nth and
(n − 1)st records increases at the same rate as the extreme expectation of
the (n−1)st record. To show that the first equality in (18) holds, we observe
first that (ny)2n−1/(2n− 1)! = o((ny)n−1/(n− 1)!) for n− 1 ≤ ny ≤ n, and
hence we can asymptotically neglect the last term in (10). Since 1−y = e−ny

and

eny

(
1 − (ny)2n

(2n)!

)
≤

2n−1∑

i=0

(ny)i

i!
≤ eny,

we obtain the desired claim. The Stirling formula yields B(n) ∼ A(n− 1) ∼
2n−1(nπ)−1/4. A numerical comparison of both bounds in Table 1 shows
that the approximation (18) is accurate for small n.

TABLE 1

n y B(n) A(n− 1)

2 0.796812 1.407545 1.000000
3 0.940480 2.439827 2.236067
4 0.980173 4.461987 4.358899
5 0.993023 8.356668 8.306624
6 0.997484 15.864860 15.842980
7 0.999082 30.387854 30.380915
8 0.999664 58.573677 58.574739
9 0.999876 113.436106 113.441615
10 0.999946 220.488951 220.497166

3. Refinements and extensions. There is a standard way of de-

termining bounds on the inner product functionals F 7→
T1
0
QF (x)ϕ(x) dx

over symmetric families of distributions. It consists in folding the quantile

function about 1/2 and maximizing the integral
T1
1/2

QF (x)ϕ̃(x) dx with the

symmetrized function ϕ̃(x) = ϕ(x) − ϕ(1 − x). Thus, e.g., by the Schwarz
inequality,

(19) E(Rn − µ)/σ ≤
[
1

2

1\
1/2

q̃ 2
n (x) dx

]1/2

is the best bound for the symmetric distributions, since q̃n is actually in-
creasing for x > 1/2 (cf. Nagaraja [6]). Since ϕ̃n is not so, it remains to



Evaluating improvements of records 321

refer to Moriguti’s projection, which finally gives

(20) E(Rn −Rn−1)/σ ≤
[
1

2

1\
1/2

Pϕ̃2
n(x) dx

]1/2

.

Neither of the integrals in (19) and (20) has an explicit analytic form.
In practice we more frequently deal with record values for sequences

with asymmetric distributions. It is natural to ask about the range of the
expected record improvement over restricted classes of distributions appear-
ing in the reliability theory. We here confine ourselves to the life distribu-
tions with monotone failure probability and rate. These can be defined by
the property of being in either of convex partial ordering relations (for def-
inition, see van Zwet [8]) with the uniform and exponential distributions,
respectively. Note that the quantile function (12) is convex and so the re-
spective distribution has a decreasing failure probability. This is also a DFR
distribution, since QF (1− e−x) is convex as well. Consequently, the bounds
for these families coincide with the general ones (9). Otherwise we have

Proposition 2. (a) For the family of life distributions with increasing

failure probability we have

E(Rn −Rn−1)/σ ≤
√

3/2n,

with equality holding for the uniform distribution.

(b) For the IFR distributions,

E(Rn −Rn−1)/σ ≤ 1,

which becomes equality for the exponential F .

P r o o f. The problem lies in finding the projections of ϕn onto the convex
cones of quantile functions of the respective families. In case (a), the cone
consists of all nondecreasing concave functions integrating to zero on (0, 1).
In case (b), it is convenient to change the variables and consider an equiv-
alent problem of projecting ψn(x) = ϕn(1 − e−x), x ≥ 0, onto the cone of
quantiles composed with the exponential distribution function in the inner
product norm on R+ with weight e−x (cf. Gajek and Rychlik [4]). Every
element of the cone is nondecreasing, concave and orthogonal to constants.

We claim that in either case the projection is a linear function. Observe
that ϕn as well as ψn are first strictly decreasing and ultimately strictly
convex, increasing to infinity. Any nondecreasing concave function, say g,
is either nowhere greater than ϕn (ψn) or ϕn (ψn) and g cross each other
at two points only. In the former case, the linear function separating the
graphs of ϕn (ψn) and g is a better candidate for the projection than g.
Otherwise we could take the linear function running through the crossing
points. Determining the parameters of the linear function minimizing the
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L2-distance to a given function is an elementary problem which has a unique
solution. We easily check that the best linear approximation has the same
zero integral as the approximated function.

It follows that the extreme values of E(Rn−Rn−1)/σ in cases (a) and (b)
are attained iff QF (x) and QF (1 − e−x) are linear, i.e. for the uniform and
exponential distributions, respectively. It poses no problem to calculate the
respective expectations.

We now extend Proposition 1, replacing the standard deviation by other
scale parameters connected with other central absolute moments of various
orders. Nagaraja [6] proved that E|X1|p < ∞, for some p > 1, ensures the
finiteness of ERn for all n, but this is no longer true for the first moment.
One can therefore expect nontrivial bounds in σp-units for p > 1, where
σp

p = E|X1 − µ|p <∞.

Proposition 3. For Pϕn(x) = ϕn(max{x, y}) defined in Proposition 1
and q = p/(p− 1), let cp minimize

c 7→ ‖Pϕn − c‖q
q =

1\
0

|Pϕn(x) − c|q dx

among all reals. Then

E(Rn −Rn−1)/σp ≤ ‖Pϕn − cp‖q ,

which becomes equality for

(21) QF = µ+
σp

‖Pϕn − cp‖q−1
q

|Pϕn − cp|q/p sgn(Pϕn − cp), µ ∈ R.

P r o o f. By Lemma 1 and the Hölder inequality we have

E(Rn −Rn−1)/σp ≤
1\
0

QF (x)Pϕn(x) dx

=

1\
0

(QF (x) − µ)(Pϕn(x) − cp) dx ≤ ‖Pϕn − cp‖q .

The former inequality becomes equality iff QF (x) is constant for x < y and
the necessary and sufficient condition for the latter is (21). This is also
sufficient for the former one.

The value cp > ϕn(y) is uniquely determined but it cannot be explicitly

expressed except in the case p = 2 when c2 =
T1
0
Pϕn(x) dx = 0. Finally, we

present sharp support bounds.

Proposition 4. Suppose that EX1 = µ and µ− a ≤ X1 ≤ µ+ b almost

surely for some positive a, b. Put α = b/(a+ b).
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If α ≤ y, given in (11), then

(22) E(Rn −Rn−1)/(a+ b) ≤ α(1 − y)qn−1(y).

The bound is attained iff X1 takes on merely two values µ − b(1 − y)/y
and µ+ b with positive probabilities y and 1 − y, respectively.

Otherwise

(23) E(Rn −Rn−1)/(a+ b) ≤ (1 − α)qn(α),

which is attained for the two-point distribution P(X1 = µ − a) = α =
1 − P(X1 = µ+ b).

P r o o f. For c ≥ ϕn(y), we have

E
Rn −Rn−1

a+ b
≤ 1

a+ b

1\
0

(QF (x) − µ)(Pϕn(x) − c) dx(24)

≤ − (1 − α)
\

{Pϕn(x)<c}

(Pϕn(x) − c) dx

+ α
\

{Pϕn(x)>c}

(Pϕn(x) − c) dx

= − (1 − α)

1\
0

(Pϕn(x) − c) dx+

1\
ϕ−1

n
(c)

(ϕn(x) − c) dx

= − αc+ cϕ−1
n (c) − Φn(ϕ−1

n (c)) = D(c), say.

Observe that we get equality in the first and second rows of (24) iff

(25) QF is a constant for x < y

and

(26) QF (x) =

{
µ− a if Pϕn(x) < c,
µ+ b if Pϕn(x) > c,

respectively. Since D′(c) = ϕ−1
n (c) − α, we see that D(c) is minimized

by c = ϕn(max{y, α}).
If α ≤ y, the tightest bound in (24) is

D(ϕn(y)) = (y − α)ϕn(y) − Φn(y)

= (1 − α)qn(y) − (y − α)qn−1(y) = α(1 − y)qn−1(y).

Conditions (25)–(26) imply that the bound is attained iff QF (x) = µ + b
for x > y and is a constant in [µ− a, µ), which can be precisely determined
by the expectation condition. If α > y, we take

D(ϕn(α)) = −Φn(α) = (1 − α)qn(α)

and (26) determines uniquely the distribution that attains the bound.
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R e m a r k 3. For a given n, the bounds (22) and (23) depend merely
on the parameter α = b/(a + b) which describes the location of the mean

in the support interval. Denote the respective relation by D̃(α), α ∈ [0, 1].
A natural question arises what is the general bound for all possible µ. If α ≤
y, including the interesting particular case a = b = σ∞, D̃(α) is a linear
increasing function in α. At α = y it continuously changes into −Φn(α),
which further increases until α = 1 − e−n and ultimately decreases to 0
at α = 1. Therefore the best bound for an arbitrary µ is

D̃(1 − e−n) = −Φn(1 − e−n) =
(n/e)n

n!
.

There is a mysterious coincidence that D̃(α) = −Φn(α), α ∈ [0, 1], connect-
ing the best support bound and the greatest convex minorant appearing in
Moriguti’s construction.

References

[1] M. Ahsanul lah, Linear predictions of record values for two parameter exponential
distribution, Ann. Inst. Statist. Math. 32 (1980), 363–368.

[2] A. V. Balakr ishnan, Applied Functional Analysis, 2nd ed., Springer, New York,
1981.

[3] I. R. Dunsmore, The future occurrence of records, Ann. Inst. Statist. Math. 35
(1983), Part A, 267–277.

[4] L. Gajek and T. Rych l ik, Projection method for moment bounds on order statistics
from restricted families. I. Dependent case, J. Multivariate Anal. 57 (1996), 156–174.

[5] S. Mor igut i, A modification of Schwarz’s inequality with applications to distribu-
tions, Ann. Math. Statist. 24 (1953), 107–113.

[6] H. N. Nagaraja, On the expected values of record values, Austral. J. Statist. 20
(1978), 176–182.

[7] V. B. Nevzorov, Records, Teor. Veroyatnost. i Primenen. 32 (1987), 219–251 (in
Russian).

[8] W. R. van Zwet, Convex Transformations of Random Variables, Mathematisch
Centrum, Amsterdam, 1964.

Tomasz Rychlik
Institute of Mathematics
Polish Academy of Sciences
ul. Chopina 12/18
87-100 Toruń, Poland
E-mail: trychlik@impan.gov.pl

Received on 16.5.1996


