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ON THE EXISTENCE OF A COMPACTLY SUPPORTED
LP-SOLUTION FOR TWO-DIMENSIONAL TWO-SCALE
DILATION EQUATIONS

Abstract. Necessary and sufficient conditions for the existence of com-
pactly supported LP-solutions for the two-dimensional two-scale dilation
equations are given.

1. Introduction. One of the fundamental problems in higher dimen-
sional wavelet theory is to study the properties of solutions of the dilation
equation

(1) fx) =) aflax—p), xeRY
kezd

where k € A C Z%, A is finite and R 3 a > 1.
Using the Fourier method the following fundamental theorem was ob-
tained in [1]:

THEOREM 1.1. Define P(§) = %Zkezd et ¢ e Coand A =
P(0).

(a) If |A| <1 and A # 1, then the only L-solution to (1) is trivial.
(b) If |A] = 1 and (1) has a non-trivial L'-solution f, then f is unique
up to scale and f is given by

1) = £0) I Pe/a™).
m=1
Moreover, [ is compactly supported and

K
supp f C P where K = conv-hull(f).
o —
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(c) If |A| > 1, then a necessary condition for (1) to have a non-trivial
compactly supported L'-solution is A = oF, for some k € Z.. In this case

i) = nie) TT ZE)

m=1

where h is a homogeneous polynomial of degree k.

The non-zero solutions of (1) are called scaling functions.

Our aim in this paper is to study the LP-integrability properties of the
scaling functions in the case when d =2, a =2 and fy =k € A ={(i,j) €
7Z?:0<i,j <N}

In this case the equation (1) and the condition |A| = 1 can be rewritten
as

(2) flay)= Y cupnf@ay) - G.9),
0<i,j<N

(3) Z C(Lj) =4,

0<i,j<N

Let us note a simple consequence of Theorem 1.1.

COROLLARY 1.2. Suppose that the condition (3) holds. 1If there exists

a non-trivial L'-solution f of (2), then it must be unique up to scale and
supp f C [0, NJ?.

Such a special class of scaling functions is important because of its appli-
cations in the wavelet theory on R?, in subdivision schemes in approximation
theory, and in practical image processing.

The LP-integrability properties of the scaling function give information
on the corresponding wavelet basis. A major problem is to determine the
LP-integrability properties from the values of ¢; for k € A. For solving this,
we adopt the matrix implementation of the iteration method, which in the
one-dimensional case was used in [2-4], [5-6], [7], [8-9].

2. Technical facts. The following notations are used everywhere:
| - || for any norm in RY x RN N is the same as in (2), K = [0,1)? and
B+z={a+x:a€ B} for BCR? z€R%.

Let g : R? — R have suppg C [0, N]?. Define a matrix-valued function
§: K — RN xRN by

(G(@.9))iy = 9((@,y) + (@.5)xx (z.y)  for (z,y) € R?

where 0 <14, j < N — 1 and xx is the characteristic function of the set K.
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Conversely, for any matrix-valued function f on K we define a function
f on R? by
Fay) = {f?,j@, §) for (z,y) = (@ +i,§+j) and (2,7) € K,
’ 0 for (x,y) ¢ [0, N2,
For k,I € {0,1}, consider the linear operators T*! : RN x RN —
RY x RN with coefficients
k1 S
(4) Ti(hiZ);jl,jQ = C(2iy—ji+k2ia—jot1) Where 0 <iiq,ig,71,j2o < N — 15

we use the convention that c¢(; ;) = 0 whenever (i,5) & {(k,1) € Z* : 0 <
k,l < N}.

The action of these operators on a matrix-valued function § : K —
RY x RV is defined by

k.l —» . k,l -
(T( ) g)i1,i2 - Z Ti(l,iz);jl,jggjl’jZ'

J1,J2
Set
(5) 7 =700 L 7O L 7p10) L p1)
and consider the following transformations of the plane:
1 ;1 j
¢(i,j)($,y) = <§x + %, §y + %) for i, € {0,1}.

Then for any function g such that supp g C [0, N]? define an operator T by
(Th(,y) = Y TEGor!, (x,y).
k,le{0,1}

It can be rewritten explicitly as

TO0F(2z,2y), (z,y) €[0,1/2)%,

TN G(2z,2y — 1), (z,y) €10,1/2) x [1/2,1),
(Tg)(z,y) = T G2z — 1,2y), (z,y) € [1/2,1) x [0,1/2),

T(Ll)g(de - 17 2?/ - 1)7 (137?/) € [1/27 1)27

0, (v,y) ¢ K.

Let A = {(0,0),(0,1),(1,0),(1,1)}, J be a finite sequence of elements
of A, |J] be the length of J (we assume that |J|=0 if J = (), and A = {J =
(jl,...,jk) T EAaHdk‘ZO}

For J = (j1,...,Jk) € A, define ¢p; = ¢;, o...0¢;, (if J = 0 then
¢y = 1d), K; = ¢;(K) and Ty = Tt o ... 0T, Notice that K; =
Ui,je{O,l} K(J7(i7j)) and K(JJI) C Ky for J,J; € A.

Define an operator S by

(So)(@,y) = Y capnga,y) = (i)

0<i,j<N
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Remark 2.1. (i) Let f be a function such that supp f C [0, N]?. Then
Sf =Tf.
(ii) f is a non-trivial compactly supported LP-solution of (2) if and only
if fe LP(K,RY x RN) and f = Tf.

Proof. The proof of the first part can be found in [1]. The second one
follows from (i), Corollary 1.2 and the equation (2).

Now we present several lemmas which show properties and connections
between the operator T, an eigenvector of T corresponding to the eigen-
value 4 and the solution of the dilation equation.

LEMMA 2.2. If 37, o cj) = 4, then there exists an eigenvector (which
is an N x N matriz) of T corresponding to the eigenvalue 4.

Proof. Let @ € RY x RN be such that Wi j=1for 0 <4, j <N -1
Applying (4) and (5) we get

('), = Z ci,j) =4 whenever 0 <k, I <N —1.
0<i,j<N

So w is a left eigenvector of T' corresponding to the eigenvalue 4 and hence
we get the assertion.

For a matrix-valued function f such that supp f C [0, N]? we define its
average matrix 7 € RY x RY on the unit square. The coordinates of 7 are

Uij = flii+xpj+y for 0<i,5 <N —1,
where fo = ﬁ §o f(z,y) dm(z,y) for any cube Q.

LEMMA 2.3. Let f be a compactly supported LP-solution of (2) and let U
be its average matriz. Then U is an eigenvector of T corresponding to the
etgenvalue 4.

Proof. From Lemma 2.1 we get f =T f When we integrate separately
both of this equation over the sets [0,1/2)2,[0,1/2) x [1/2,1),[1/2,1) x
[0,1/2),[1/2,1)? we observe that for k,1 € {0,1}, and 0 < i,j < N — 1 we
have

(TEDD)i g = Fiiy2. by 2% 12,01 /204 1)
After taking into account that

Afkc+(i.9) = Jio.1/22+G.9) T flo1/2)x[1/2.0)+G.9)

+ fli/2,0)x[0,1/2)+G,5) T J11/2,1)2+a,5), 0<4,jJ <N —1,

we obtain the assertion.
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LEMMA 2.4. For v € RN x RY define functions
ﬁ)(a:,y) =47 for(z,y) € K, and ﬁH = Tf;; for k> 0.
Then:

() fulw,y) =Ty for (z,y) € K,, |J| = k.
(ii) If f is a compactly supported LP-solution of (2) and U is its average
matrix, then

(6) (f;@(xuy))l,] :fKJ—i-(z,])a OS/I/),]SN_]‘? |<]| :ku (xuy) EKJ7
and moreover ﬁ converges to f mn LP.

Proof. (i) is proved by induction with respect to k. For k = 0, (i)

follows from the definition of f. Suppose that (i) is true for |J| = k. Now
if |J| = k + 1, then one of the following holds:

J=(00,0),1); J=(0,1),h); J=((1,0),21); J=((11),J1),

where |J1| = k. Suppose that the first case occurs (the argument for the
others is similar). The assumption (x,y) € K; implies that (2z,2y) =
(baﬁo) (x,y) € K;,. Hence

Fer1(@,y) = Tfi(z,y) = TO0 fi(22,2y) = TOOT, T = T(0,0),.1)7,
which gives (i).

For (i) we use the formula f = Tf. It is clear that it can be rewritten
in the form f(z,y) = TJf(gb;l(x,y)) for (z,y) € K . Integration over K ;
gives (6).

The convergence in the LP-norm is obtained from the Banach—Steinhaus
Theorem in the following way. Let

X = LP(K, RN x RY),
D = {l_i € X : there exists n > 0 such that
i_ii,j: Z a;]’ijJ forOﬁi,jSN—l},
|J|=n
and for each n > 1 define the operator O, on X by
(Oni_i)m = hg, 43, Where [J| =n, heX.

Recall that D is dense in X. It is clear that for each h € D there exists
Ny > 1 such that

(7) Onh=h for each n > Ny.
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Computing ||h]|?, we see that
(8) oG, = > > N lha(ay)lP dedy.
0<i,j<N—-1|J|=n K
Analogously
i, 1
(9) 10kl =5 D D Ty
0<ij<N—1|J|=n

For any fixed n and |J| = n using the Fubini Theorem and Jensen inequality
we obtain

1 - .
4—n|hKJ+(i,j)\p < S |hi j(x,y)|P dedy where 0 <i,j7 <N —1.
Ky
Then we infer from (8) and (9) that [|O, k%, < ||h|| Now (7) and the
Banach—Steinhaus Theorem yield the convergence of fn to f in the LP-norm.
LEMMA 2.5. Let w be an eigenvector of T corresponding to the eigen-
value 4. Let fi (for k > 0) be defined as in Lemma 2.4. Then

(10) S ﬁ(@y) drdy =4 for each k > 0.
K

Proof (by induction). The first step is obvious. Suppose that the
assertion (10) holds for some k. Then

| fera(@y)dedy = \ T fil,y) dedy

K K
= S 70 f.(2x, 2y) dx dy
[0,1/2]x[0,1/2]
+ S TOD (22, 2y — 1) da dy
[0,1/2]x[1/2,1]
+ S 7O f(22 — 1,2y) da dy
[1/2,1]x[0,1/2]
T | T f (22 — 1,2y — 1) dx dy
[1/2,1]x[1/2,1]
= L0 4§ 7O L 700 L 7D | e, y) de dy
K
— %(T(O,O) + 70 4 p0) 4 T(l’l))w’ @,

which completes the proof.

3. The main theorem. Let @ be an eigenvector of T' corresponding
to the eigenvalue 4. Then we can write

(1) @D =1y = (@O0 — i+ (TOD = D+ (70D = D)
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Using the notations (/) = (T3) — I for i, j € {0,1} the expression (11)
can be rewritten in the form
G = — (@00 4 GO 4 L),
Let H be the subspace of RV x RY defined by
H= Span{TJw(O’O),TJw(O’l),TJw(l’O) :J e A}
Our main result is as follows:
THEOREM 3.1. Let 1 < p < co. The following conditions are equivalent:

(i) There exists a non-zero LP-solution of the equation (2) with support
in [0, N]?.

(ii) There exists an eigenvector W of T corresponding to the eigenvalue 4
and

1 -
(12)  lim o Z T wh||P =0  whenever (i,7) € {(0,0),(0,1),(1,0)}.
n — 00 =
(iii) There exists an eigenvector W of T corresponding to the eigenvalue 4
and for each ¢ > 0 there exists an integer | > 1 such that
1 . ., _
(13) i Z | Tyu||P <c forallde H and ||d] < 1.
|J|=l

Proof. Let & be an elgenvector of T correspondlng to the eigenvalue 4.
Define, as in Lemma 2.4, fg = W, fk+1 Tfk Let g, = fn+1 fn Then

(14) fasi=fo+Go+ ..+ Gn
and
T;w(0:0) (2,y) € K(1,0,0))>
B Ty, (z,y) € K501,
15 n T, = nt "
( ) g ( y) Tjw(l’o), (x,y) EK(J,(l,O))v
TJU_;(LI) (137?/) € K(Jv(l’l))'
Note that
16) gullss = §lga P dedy= 3" lga(w,n)? dedy
i |J|=n+1 Ky

= D (N N NS R W [ A CmIeat

l[J=n K,00) Koo Kuoaoy Kouaiy
= — Z Ty @O NP+ Ty @D )P 4 || Ty [P+ | Ty ||P).
|J|=n

(i)=(ii). Let @ be the average matrix of f on unit squares, where [ is
the non-trivial LP-solution of (2). Then by Lemma 2.4, fn converges to f
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in LP-norm (we know that @ is an eigenvector of T' corresponding to the
eigenvalue 4), which together with (14) implies that ||g,||7, — 0 as n — oco.
Hence we obtain (12).

(ii)=-(iii). Let d be the dimension of H. For d = 0 we have the assertion
at once. Suppose that d > 1. Then there exists a basis of H consisting of the
vectors of the form TJ}C@U("J) where (i,7) € {(0,0),(0,1),(1,0)}, 1 <1 < d,
|JL| = k! and J} € A.

For w = Tjiw(i’j) we obtain

1 Z HT-’p<4kl 1 T g9 ||P
b T < ST TP 0 asn— oo,
|J|=n | J|=n+k!

and hence for each ¢ > 0, [, k! there exists n; such that

1 > c
— 7(69) - -
1 > ITE )P < Sd—1)(p—1) °
\J\:nl—&-kl
Let L = max;<j<q{n; + k'}. Let || -||1 be a norm in RY x RY such that for

H>u= 27:1 alTJlitE(i’j) we have |||} = 27:1 |a;|P. Hence for n > L and

lZ|l; <1 we obtain

d
1 . 1 o
= D Il = o || Y arymy |

| J|=n |J=n  I=1

d
e 1 oy
< 2(d=1)(p 1)2 :\az|p4—n E : ||TJTJ£w( A)||2

=1 |J|=n
d 1 .

< 2ld=1)(p—1) Z ‘al|p4_n Z | Ty ||
I=1 | J|=n—+k!

d
1) (p— c
< 9(d=1)(p-1) lzl ‘al|p2(d_71)(p_1) =c|jul]f <ec.

(iii)=-(i). Let @ be an eigenvector of T" corresponding to the eigenvalue 4,
and 0 < ¢ < 1. Consider [ such that

1
(17) i > I Tyi|P < elfi|P for each i € H.
|J|=l
Let 7,7 € {0,1}. Applying (17) we obtain
1

7 2 I TP < el Ty |

|J|=l
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and consequently

1 . 1 oy
pm L I = g 3

|J|=l+n |J|=1 | J1|=n
c (i
< 2 T,
|J|=n

which yields ||Gni]|7» < ¢l|lgnll}» for each I > 0 by (15), (17). This means
that for each fixed n the sequence N Grtrr|? },C o is convergent, and so is

fn by (14). From Lemma 2.5, f = lim, .00 fn is non-trivial and f T f
Hence from Lemma 2.1 the function f is a solution of the equation (2).

The following can be easily observed:

Remark 3.2. In the condition (12) we can use any three elements of
the set {(0,0),(0,1),(1,0),(1,1)} instead of (0,0),(0,1),(1,0).

The proof of Theorem 3.1 also yields
Remark 3.3. The condition (13) can be replaced by
1
7 Z |Tyui||P < ¢  where {uy,...,u,} is a basis of H.
|J|=l

LEMMA 3.4. Let 1 < p < oo. Assume that one of the conditions of Theo-
rem 3.1 holds. Then for any eigenvector W of the operator T corresponding
to the eigenvalue 4 we have W ¢ H and dim H < N? — 1.

Proof. Suppose that (ii) of Theorem 3.1 holds and @ € H. Then by

the Jensen inequality we have
1 p
(w3 )

1 —
< (3 S Imal) <& 3 Tl 0 asn— o

|J|=n |J|=n

. P
Hpr _ 4_n(T(op) + 7(0,1) + 7(1,0) + T(l,l))nu—; =

which finishes the proof.

4. Final remarks. In contrast to the one-dimensional case, even for
small N, Theorem 3.1 does not give simple conditions on the coefficients ¢
for which the scaling function belongs to LP. However, p can be approxi-
mated in the following way.

Let f be a non-trivial compactly supported LP-solution of (2). Define

) =\ f@y)de,  fU@) =\ fl@y) dy.

R R
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These are solutions of the one-dimensional equations

(18)

(19)

N N

) =Y "y —j) where o =) ¢4y,
=0 i=0
N N

fY(x) = Z cdfY(2x —i) where ¢ = Z C(ij)-
i=0 =0

By applying Theorem 2.6 of [9] to (18), (19) one can estimate the greatest
values p,., py of g for which f*, f¥ belong to L9. Let p be the greatest value
of g such that the solution f of (2) belongs to L?. Then p < min(p®,pY¥).
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