E. Z. FERENSTEIN and A. SIEROCIŃSKI (Warszawa)

OPTIMAL STOPPING OF A RISK PROCESS

Abstract. Optimal stopping time problems for a risk process $U_t = u + ct - \sum_{n=0}^{N(t)} X_n$ where the number N(t) of losses up to time t is a general renewal process and the sequence of X_i 's represents successive losses are studied. N(t) and X_i 's are independent. Our goal is to maximize the expected return before the ruin time. The main results are closely related to those obtained by Boshuizen and Gouweleew [2].

1. Introduction. Let $\{N(t), t \geq 0\}$ be a renewal process representing the stream of losses of an insurance company, so N(t) is the number of losses up to the time t. If T_i denotes the time of occurrence of the ith loss, then random variables (r.v.'s) $S_i = T_i - T_{i-1}$ are independent identically distributed (i.i.d.) with a cumulative distribution function (c.d.f.) $F, T_0 = 0$. Let X_1, X_2, \ldots be a sequence of i.i.d. r.v.'s with c.d.f. H, representing the successive losses. As a capital assets model for the insurance company we take the risk process

(1)
$$U_t = u + ct - \sum_{n=0}^{N(t)} X_n,$$

where u > 0 represents the initial capital and c > 0 is a constant rate of income from the insurance premium, $X_0 = 0$. The return at time t will be defined by the process $\{Z(t), t \geq 0\}$ where

(2)
$$Z(t) = \begin{cases} g_1(U_t) \mathbf{I}\{U_s > 0, \ s \le t\} & \text{if } t \le t_0, \\ 0 & \text{if } t > t_0, \end{cases}$$

where g_1 is a utility function. For simplicity define $g(u,t) = g_1(u)\mathbf{I}\{t \ge 0\}$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 60G40, 60J25; Secondary 62J15. Key words and phrases: optimal stopping times, risk process.

Then

(3)
$$Z(t) = g(U_t, t_0 - t) \prod_{j=1}^{N(t)} \mathbf{I}\{U_{T_j} > 0\}.$$

Let

(4)
$$\mathcal{F}(t) = \sigma(U_s, s \le t) = \sigma(X_1, T_1, \dots, X_{N(t)}, T_{N(t)})$$

be the σ -field generated by all events up to time $t, t \geq 0$, and \mathcal{T} be the set of stopping times with respect to the family $\{\mathcal{F}(t), t \geq 0\}$. Moreover, for $n = 0, 1, 2, \ldots, n < K$, denote by $\mathcal{T}_{n,K}$ the subset of \mathcal{T} such that

(5)
$$\tau \in \mathcal{T}_{n,K}$$
 if and only if $T_n \leq \tau \leq T_K$ a.s.

Set $\mathcal{F}_n \stackrel{\triangle}{=} \mathcal{F}(T_n)$. We will be interested in finding optimal stopping times τ^* , $\tau_{n,K}^*$, τ_K^* such that

(6)
$$EZ(\tau^*) = \sup\{EZ(\tau) : \tau \in \mathcal{T}\},\$$

(7)
$$EZ(\tau_K^*) = \sup\{EZ(\tau) : \tau \in \mathcal{T}_{0,K}\},\$$

(8)
$$E\{Z(\tau_{n,K}^*) \mid \mathcal{F}_n\} = \operatorname{ess\,sup}\{E(Z(\tau) \mid \mathcal{F}_n) : \tau \in \mathcal{T}_{n,K}\}.$$

The crucial role in the subsequent considerations is played by the following representation theorem for stopping times (see for example Davis [4]):

LEMMA 1. If $\tau \in \mathcal{T}_{n,K}$, then there exists a positive \mathcal{F}_n -measurable r.v. R_n such that

(9)
$$\tau \wedge T_{n+1} = (T_n + R_n) \wedge T_{n+1} \quad a.s.$$

2. Finite horizon case. In this section we will find the form of optimal stopping rules in the finite horizon case, i.e. optimal in the class $\mathcal{T}_{0,K}$, where K is finite and fixed. First, in Theorem 1, we will derive dynamic programming equations satisfied by

(10)
$$\Gamma_{n,K} = \operatorname{ess\,sup}\{E(Z(\tau) \mid \mathcal{F}_n) : \tau \in \mathcal{T}_{n,K}\}, \quad n = K, K - 1, \dots, 1.$$

Then, in Theorem 2, we will find optimal stopping times $\tau_{n,K}^*$ and τ_K^* and corresponding optimal conditional mean rewards and optimal mean rewards, respectively. Define

(11)
$$\mu_n = \prod_{j=1}^n \mathbf{I}(U_{T_j} > 0), \quad \mu_0 = 1.$$

Note that

(12)
$$\Gamma_{K,K} = Z(T_K) = g(U_{T_K}, t_0 - T_K)\mu_K.$$

THEOREM 1. (i) For
$$n = K - 1, K - 2, ..., 0$$
,

$$\Gamma_{n,K} = \operatorname{ess\,sup}\{\mu_n \overline{F}(R_n) g(U_{T_n} + cR_n, t_0 - T_n - R_n) + E(\mathbf{I}\{R_n \ge S_{n+1}\} \Gamma_{n+1,K} \mid \mathcal{F}_n) : R_n \ge 0, R_n \text{ is } \mathcal{F}_n\text{-measurable}\} \text{ a.s.,}$$

where $\overline{F} = 1 - F$ denotes the survival function.

(ii) For
$$n = K, K - 1, \dots, 0$$
,

(13)
$$\Gamma_{n,K} = \mu_n \gamma_{K-n}(U_{T_n}, T_n) \quad a.s.,$$

where the sequence of functions $\{\gamma_j(u,t), u \in \mathbb{R}, t \geq 0\}$ is defined recursively as follows:

(14)
$$\gamma_0(u,t) = g(u,t_0-t),$$

(15)
$$\gamma_{j}(u,t) = \sup_{r \geq 0} \left[\overline{F}(r) g(u + cr, t_{0} - t - r) + \int_{0}^{r} dF(s) \int_{0}^{u+cs} \gamma_{j-1}(u + cs - x, t + s) dH(x) \right], \ j = 1, 2, \dots$$

Proof. (i) Let $\tau \in \mathcal{T}_{n,K}$, $0 \le n < K < \infty$. From Lemma 1 we get

$$A_n \stackrel{\triangle}{=} \{ \tau < T_{n+1} \} = \{ T_n + R_n < T_{n+1} \} = \{ R_n < S_{n+1} \}$$

and

$$\overline{A}_n = \{ \tau \ge T_{n+1} \} = \{ R_n \ge S_{n+1} \}.$$

Then, using the properties of the conditional expectation, we can obtain the conditional expectation of the return at τ :

$$E(Z(\tau) \mid \mathcal{F}_n) = E(Z(\tau)\mathbf{I}_{A_n} \mid \mathcal{F}_n) + E(Z(\tau)\mathbf{I}_{\bar{A}_n} \mid \mathcal{F}_n) \stackrel{\triangle}{=} \alpha_n + \beta_n,$$

where

$$\alpha_{n} = E(\mathbf{I}\{R_{n} < S_{n+1}\}g(U_{\tau}, t_{0} - \tau)\mu_{n} \mid \mathcal{F}_{n})$$

$$= \mu_{n}E(\mathbf{I}\{R_{n} < S_{n+1}\}g(U_{T_{n}} + cR_{n}, t_{0} - T_{n} - R_{n}) \mid \mathcal{F}_{n})$$

$$= \mu_{n}\overline{F}(R_{n})g(U_{T_{n}} + cR_{n}, t_{0} - T_{n} - R_{n}).$$

Note that β_n can be expressed as follows:

$$\beta_n = E[\mathbf{I}\{S_{n+1} \le R_n\}E(Z(\tau') \mid \mathcal{F}_{n+1}) \mid \mathcal{F}_n],$$

where $\tau' = \tau \vee T_{n+1} \in \mathcal{T}_{n+1,K}$. Hence,

$$E(Z(\tau) \mid \mathcal{F}_n) = \mu_n \overline{F}(R_n) g(U_{T_n} + cR_n, t_0 - T_n - R_n)$$

+
$$E[\mathbf{I}\{S_{n+1} \leq R_n\} E(Z(\tau') \mid \mathcal{F}_{n+1}) \mid \mathcal{F}_n].$$

Now, following the standard reasoning of optimal stopping theory, we get the dynamic programming equation for $\Gamma_{n,K}$, $n=K,K-1,\ldots,0$, given in (i), with $\Gamma_{K,K}=\mu_K g(U_{T_K},t_0-T_K)$.

(ii) We will prove (ii) using the backward induction method for n = K - 1, ..., 1. First note that (ii) is satisfied for n = K since $\Gamma_{K,K} = \mu_K \gamma_0(U_{T_K}, T_K)$.

Let n = K - 1. Then from (i) and the definition of the risk process (1) we get

$$\begin{split} \Gamma_{K-1,K} &= \text{ess} \sup \{ \mu_{K-1} \overline{F}(R_{K-1}) g(U_{T_{K-1}} + cR_{K-1}, t_0 - T_{K-1} - R_{K-1}) \\ &+ E(\mu_K \mathbf{I} \{ R_{K-1} \geq S_K \}) \gamma_0(U_{T_{K-1}} + cS_K - X_K, T_{K-1} + S_K) \mid \mathcal{F}_{K-1}) : \\ &R_{K-1} \text{ is } \mathcal{F}_{K-1}\text{-measurable}, \, R_{K-1} \geq 0 \}. \end{split}$$

Now, to get $\Gamma_{K-1,K} = \mu_{K-1}\gamma_1(U_{T_{K-1}},T_{K-1})$ it is sufficient to note that $\mu_K = \mu_{K-1}\mathbf{I}\{U_{T_{K-1}} + cS_K - X_K > 0\}$. Moreover, the random variables S_K , X_K and the σ -field \mathcal{F}_{K-1} are independent; S_K and X_K have c.d.f. F and H, respectively.

Let $1 \leq n \leq K-1$ and suppose that $\Gamma_{n,K} = \mu_n \gamma_{K-n}(U_{T_n}, T_n)$. From (i) we have

$$\Gamma_{n-1,K} = \operatorname{ess\,sup}\{\mu_{n-1}\overline{F}(R_{n-1})g(U_{T_{n-1}} + cR_{n-1}, t_0 - T_{n-1} - R_{n-1}) + \mu_n E(\mathbf{I}\{R_{n-1} \ge S_n\})\gamma_{K-n}(U_{T_n}, T_n) \mid \mathcal{F}_{n-1}) : R_{n-1} \ge 0, R_{n-1} \text{ is } \mathcal{F}_{n-1}\text{-measurable}\}.$$

The second term under ess sup can be rewritten in the following way:

$$\mu_{n-1}E[\mathbf{I}\{R_{n-1} \ge S_n\}\mathbf{I}\{U_{T_{n-1}} + cS_n - X_n > 0\} \times \gamma_{K-n}(U_{T_{n-1}} + cS_n - X_n, T_{n-1} + S_n) \mid \mathcal{F}_{n-1}].$$

Then we have

$$\Gamma_{n-1,K} = \mu_{n-1} \operatorname{ess\,sup} \left\{ \overline{F}(R_{n-1}) g(U_{T_{n-1}} + cR_{n-1}, t_0 - T_{n-1} - R_{n-1}) \right.$$

$$+ \int_0^{R_{n-1}} dF(s) \int_0^{U_{T_{n-1}} + cs} \gamma_{K-n} (U_{T_{n-1}} + cs - x, T_n + s) dH(x) :$$

$$R_{n-1} \ge 0, \ R_{n-1} \text{ is } \mathcal{F}_{n-1}\text{-measurable} \right\}$$

$$= \mu_{n-1} \cdot \gamma_{K-(n-1)} (U_{T_{n-1}}, T_{n-1}). \quad \blacksquare$$

To find the form of optimal stopping times τ_K^* we need to analyze properties of the sequence of functions $\{\gamma_n, n \geq 0\}$ defined in the second part of Theorem 1.

Let $B = B[(-\infty, \infty) \times [0, \infty)]$ be the space of all bounded continuous functions, with the norm $\|\delta\| = \sup_{u,t} |\delta(u,t)|$, and

(16)
$$B^{0} = \{\delta : \delta(u, t) = \delta_{1}(u, t) \mathbf{I}\{t \le t_{0}\} \text{ and } \delta_{1} \in B\}.$$

For any $\delta \in B^0$ and any $u \in \mathbb{R}, t, r \ge 0$ define

(17)
$$\phi_{\delta}(r, u, t) \stackrel{\triangle}{=} \overline{F}(r)g(u + cr, t_0 - t - r) + \int_{0}^{r} dF(s) \Big[\int_{0}^{u + cs} \delta(u + cs - x, t + s) dH(x) \Big].$$

Note that the properties of the c.d.f. F imply that $\phi_{\delta}(r, u, t)$ has an at most countable number of points of discontinuity with respect to r and is continuous with respect to (u,t) provided that $g_1(\cdot)$ is continuous and $t \neq t_0 - r$. In what follows we will use the following

Assumption 1. The function $g_1(\cdot)$ is bounded and continuous.

For all $\delta \in B^0$ define

(18)
$$(\varPhi \delta)(u,t) = \sup_{r>0} \{\phi_{\delta}(r,u,t)\}.$$

Lemma 2. For any $\delta \in B^0$ we have

$$(\Phi\delta)(u,t) = \max_{0 \le r \le t_0 - t} \{\phi_\delta(r, u, t)\} \in B^0$$

and there exists a function r_{δ} such that $(\Phi \delta)(u,t) = \phi_{\delta}(r_{\delta}(u,t),u,t)$.

Proof. Observe that for all $\delta \in B^0$ and for any $r > t_0 - t$ we have

(19)
$$\phi_{\delta}(r,u,t) = \int_{0}^{t_0-t} dF(s) \left[\int_{0}^{u+cs} \delta(u+cs-x,t+s) dH(x) \right].$$

Hence, Assumption 1 and the fact that F has an at most finite number of discontinuity points in the compact interval $[0, t_0]$ imply the form of Φ .

Observe that for $i=1,2,\ldots,\,u\in\mathbb{R},\,t\geq0,\,\gamma_i(u,t)$ can be rewritten as follows:

(20)
$$\gamma_i(u,t) = \begin{cases} (\Phi \gamma_{i-1})(u,t) & \text{if } u \ge 0 \text{ and } t \le t_0, \\ 0 & \text{otherwise,} \end{cases}$$

and from Lemma 2 there exist functions $r_i \stackrel{\triangle}{=} r_{\gamma_{i-1}}$ such that

(21)
$$\gamma_i(u,t) = \begin{cases} \phi_{\gamma_{i-1}}(r_i(u,t), u, t) & \text{if } u \ge 0 \text{ and } t \le t_0, \\ 0 & \text{otherwise.} \end{cases}$$

To determine the form of optimal stopping times $\tau_{n,K}^*$ we need to define the following r.v.'s:

$$(22) R_i^* \stackrel{\triangle}{=} r_{K-i}(U_{T_i}, T_i)$$

and

(23)
$$\sigma_{n,K} = K \wedge \inf\{i \ge n : R_i^* < S_{i+1}\}.$$

THEOREM 2. Let

(24)
$$\tau_{n,K}^* = T_{\sigma_{n,K}} + R_{\sigma_{n,K}}^* \quad and \quad \tau_K^* = \tau_{0,k}^*.$$

Then, for any $0 \le n \le K$, we have

(25)
$$\Gamma_{n,K} = E(Z(\tau_{n,K}^*) \mid \mathcal{F}_n)$$
 a.s. and $\Gamma_{0,K} = E(Z(\tau_K^*)) = \gamma_K(u,0)$.

Proof. This is a straightforward consequence of the formulas (22)–(24) and Theorem 1.

3. Infinite horizon case. In this section we will show that there exists an optimal stopping rule τ^* in the infinite horizon case, maximizing over \mathcal{T} the mean return (2), i.e. (6) is fulfilled. Moreover, the optimal stopping time τ^* can be defined as a limit of the finite horizon optimal stopping times.

Assumption 2. $F(t_0) < 1$.

LEMMA 3. The operator $\Phi: B^0 \to B^0$ defined by (18) is a contraction.

Proof. Let $\delta_1, \delta_2 \in B^0$. By Lemma 2 there exist $\varrho_i \stackrel{\triangle}{=} r_{\delta_i}(u,t)$, i = 1, 2, such that $(\Phi \delta_i)(u,t) = \phi_{\delta_i}(\varrho_i,u,t)$, i = 1, 2. Since $\phi_{\delta_2}(\varrho_2,u,t) \ge \phi_{\delta_2}(\varrho_1,u,t)$ we obtain the inequalities

$$(\Phi \delta_1)(u,t) - (\Phi \delta_2)(u,t) \le \int_0^{\varrho_1} dF(s) \int_0^{u+cs} [\delta_1 - \delta_2](u+cs-x,t+s) dH(x)$$

$$\le \|\delta_1 - \delta_2\| \int_0^{\varrho_1} dF(s) \int_0^{u+cs} dH(x) \le \varrho \|\delta_1 - \delta_2\|,$$

where

(26)
$$\varrho = \sup_{u>0} \int_{0}^{t_0} dF(s) \int_{0}^{u+cs} dH(x) \le F(t_0) < 1.$$

Similarly, we get $(\Phi \delta_2)(u,t) - (\Phi \delta_1)(u,t) \le \varrho \|\delta_1 - \delta_2\|$. Hence, $\|\Phi \delta_2 - \Phi \delta_1\| \le \varrho \|\delta_1 - \delta_2\|$.

Since $\gamma_0(u,t) = g(u,t_0-t)$ it follows that $\gamma_i \in B^0$ for all i. Hence, from the Fixed Point Theorem we get the following lemma.

Lemma 4. There exists $\gamma \in B^0$ such that

(27)
$$\gamma = \Phi \gamma \quad and \quad \lim_{K \to \infty} \|\gamma_K - \gamma\| = 0.$$

Remark 1. Note that all optimal stopping times are less than t_0 a.s., which is a consequence of the definition (2) of the return.

Theorem 3. Assume that the utility function g_1 is differentiable and nondecreasing, and F has the density function f. Then

- (i) for n = 0, 1, ..., the limit $\widehat{\tau}_n \stackrel{\triangle}{=} \lim_{K \to \infty} \tau_{n,K}^*$ exists and $\widehat{\tau}_n$ is an optimal stopping rule in $\mathcal{T} \cap \{\tau \geq T_n\}$,
 - (ii) $E[Z(\widehat{\tau}_n) \mid \mathcal{F}_n] = \mu_n \gamma(U_{T_n}, T_n)$ a.s.

Proof. (i) Let $n \geq 0$. Note that $\tau_{n,K}^* \leq \tau_{n,K+1}^*$ a.s. Hence, the stopping rule $\hat{\tau}_n = \lim_{K \to \infty} \tau_{n,K}^* \geq T_n$ exists.

To prove optimality of $\widehat{\tau}_n$ we will apply similar arguments to those used by Boshuizen and Goeweleew [2] in the proof of the existence of optimal stopping times for semi-Markov processes. Let $\xi_t = (t, U_t, Y_t, V_t)$, $Y_t =$ $t - T_{N(t)}$, $V_t = \mu_{N(t)}$, $t \geq 0$. Then $\xi = \{\xi_t : t \geq 0\}$ is a Markov process with the state space $\mathbb{R}^1_+ \times \mathbb{R}^1 \times \mathbb{R}^1_+ \times \{0, 1\}$. Note that the return Z(t) is a function, say \widetilde{g} , of ξ_t . Let A be a strong generator of ξ . Then we get

(28)
$$(A\widetilde{g})(t, u, y, v) = \left\{ cg_1'(u) - \frac{f(y)}{\overline{F}(y)} \left[g_1(u) - \int_0^u g_1(u - x) dH(x) \right] \right\} v,$$

where $t < t_0, y \ge 0$ and $v \in \{0, 1\}$.

Now, note that $\widetilde{g}(\xi_t) - \widetilde{g}(\xi_0) - \int_0^t (A\widetilde{g})(\xi_s) ds$, $t \ge 0$, is a martingale with respect to $\sigma(\xi_s, s \le t)$, which is the same as $\mathcal{F}(t)$ (see [3], p. 31). Applying the optional sampling theorem ([3], p. 22) we get

(29)
$$E[\widetilde{g}(\xi_{T_{n,K}^*}) \mid \xi_{T_n}] - \widetilde{g}(\xi_{T_n}) = E\left[\int_{T_n}^{\tau_{n,K}^*} (A\widetilde{g})(\xi_s) \, ds \mid \mathcal{F}_n\right] \quad \text{a.s.}$$

Since

(30)
$$(A\widetilde{g})(\xi_s) = \left\{ cg_1'(U_s) + \frac{f(s - T_{N(s)})}{\overline{F}(s - T_{N(s)})} \right.$$

$$\times \left[\int_0^{U_s} g_1(U_s - x) dH(x) - g_1(U_s) \right] \right\} \mu_{N(s)},$$

the right hand side of (29) can be expressed as the difference $E(I_{n,K}^1 \mid \mathcal{F}_n) - E(I_{n,K}^2 \mid \mathcal{F}_n)$, where

$$I_{n,K}^2 = \int_{T_n}^{\tau_{n,K}^*} \frac{f(s - T_{N(s)})}{\overline{F}(s - T_{N(s)})} g_1(U_s) \mu_{N(s)} ds.$$

Now, $I_{n,K}^1$, $I_{n,K}^2$ are positive r.v.'s and $I_{n,K}^2$ is bounded by $g_1(u+ct_0) \times E(L)/\overline{F}(t_0)$, where $L = \inf\{n \in \mathbb{N} : T_n < t_0, T_{n+1} \ge t_0\}$. Note that

$$E(L) = \sum_{n=1}^{\infty} F^{*(n)}(t_0) \le \sum_{n=1}^{\infty} [F(t_0)]^n < \infty.$$

Hence, from the convergence of $\tau_{n,K}^*$ to $\hat{\tau}_n$ as $K \to \infty$ and the Monotone Convergence Theorem we see that the right hand side of (29) converges to

$$E\Big[\int_{T_n}^{\hat{\tau}_n} (A\widetilde{g})(\xi_s) \, ds \, \Big| \, \mathcal{F}_n\Big].$$

Again, applying Dynkin's formula, since $\hat{\tau}_n < \infty$ a.s. we get

(31)
$$E\left[\int_{T_n}^{\hat{\tau}_n} (A\widetilde{g})(\xi_s) \, ds \mid \mathcal{F}_n\right] = E\left[\widetilde{g}(\xi_{\hat{\tau}_n}) \mid \mathcal{F}_n\right] - \widetilde{g}(\xi_{T_n}) \quad \text{a.s.}$$

Hence, we have

(32)
$$E[\widetilde{g}(\xi_{\tau_{n,K}^*}) \mid \mathcal{F}_n] \xrightarrow{K \to \infty} E[\widetilde{g}(\xi_{\hat{\tau}_n}) \mid \mathcal{F}_n] \quad \text{a.s.}$$

Now, we will prove that $\widehat{\tau}_n$ is optimal in the class $\mathcal{T} \cap \{\tau : \tau \geq T_n\}$. Let τ be any stopping rule from $\mathcal{T} \cap \{\tau : \tau \geq T_n\}$. Then, as $\tau_{n,K}^*$ is optimal in $\mathcal{T}_{n,K}$, we have for any K,

(33)
$$E[\widetilde{g}(\xi_{\tau_{\kappa}^*})\mathcal{F}_n] \ge E[\widetilde{g}(\xi_{\tau \wedge T_K}) \mid \mathcal{F}_n] \quad \text{a.s.}$$

Hence, a reasoning similar to that which led to (32) gives

(34)
$$E[\widetilde{g}(\xi_{\widehat{\tau}_n}) \mid \mathcal{F}_n] \ge E[\widetilde{g}(\xi_{\tau}) \mid \mathcal{F}_n] \quad \text{a.s.},$$

which completes the proof of (i).

(ii) $E[\widetilde{g}(\xi_{\tau_{n,K}^*}) \mid \mathcal{F}_n] = \mu_n \gamma_{K-n}(U_{T_n}, T_n)$ from Theorem 1(ii). Now, Lemma 4 and (34) give

(35)
$$E[\widetilde{g}(\xi_{\tau_{n,K}^*}) \mid \mathcal{F}_n] \xrightarrow{K \to \infty} E[\widetilde{g}(\xi_{\hat{\tau}_n}) \mid \mathcal{F}_n] = \mu_n \gamma(U_{T_n}, T_n) \quad \text{a.s. } \blacksquare$$

References

- F. A. Boshuizen and J. M. Gouweleew, A continuous-time job search model: general renewal processes, Report 9247/A, Econometric Institute, Erasmus University Rotterdam, 1992.
- [2] —, —, General optimal stopping theorems for semi-Markov processes, preprint, 1993.
- [3] M. H. A. Davis, Markov Models and Optimization, Chapman & Hall, London, 1993.
- [4] —, The representation of martingales of jump processes, SIAM J. Control Optim. 14 (1976), 623–638.
- [5] E. Z. Ferenstein, A variation of Dynkin's stopping game, Math. Japon. 38 (1993), 371–379.
- [6] E. Z. Ferenstein and E. G. Enns, A continuous-time Dynkin's stopping game: renewal processes case, to appear.
- [7] R. S. Liptser and A. N. Shiryaev, Statistics of Stochastic Processes, Nauka, Moscow, 1974 (in Russian).

Elżbieta Z. Ferenstein and Andrzej Sierociński Institute of Mathematics Warsaw University of Technology Pl. Politechniki 1 00-661 Warszawa, Poland

> Received on 30.5. 1996; revised version on 23.10.1996