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CHARACTERISTIC PROPERTIES

OF GENERALIZED ORDER STATISTICS

FROM EXPONENTIAL DISTRIBUTIONS

Abstract. Exponential distributions are characterized by distributional
properties of generalized order statistics. These characterizations include
known results for ordinary order statistics and record values as particular
cases.

1. Introduction. Various characterizations of exponential distribu-
tions based on distributional properties of order statistics are found in the
literature.

Let X1,n ≤ . . . ≤ Xn,n denote the order statistics of i.i.d. random
variables X1, . . . ,Xn, n ≥ 2, each with distribution function F .

The starting point for many characterizations of exponential distribu-
tions via identically distributed functions of order statistics is the well-known
result of Sukhatme (1937) stating that the normalized spacings

D1,n = nX1,n and Dr,n = (n− r + 1)(Xr,n −Xr−1,n), 2 ≤ r ≤ n,

from an exponential distribution with parameter λ, i.e. F (x) = 1 − e−λx,
x > 0, λ > 0 (F ≡ Exp(λ) for short), are again independent and identically
distributed as Exp(λ).

Ahsanullah (1978, 1981b) and Gajek & Gather (1989) consider identical
distributions of Dr,n and Ds,n as well as weaker conditions for some integers
r and s with 1 ≤ r < s ≤ n.

Moreover, in the case of an exponential distribution we have identical
distributions of Xs,n − Xr,n and Xs−r,n−r for all 1 ≤ r < s ≤ n. Char-
acterization results based on this property are discussed in Iwińska (1986),
Gather (1988) and Gajek & Gather (1989).
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A detailed survey of characterizations of distributions via identically dis-
tributed functions of order statistics is given in Gather et al . (1997). Related
results for record values are shown in Ahsanullah (1981a), Iwińska (1986)
and Gajek & Gather (1989).

In Kamps (1995), a concept of generalized order statistics is introduced
as a unified approach to order statistics and record values. Furthermore, a
variety of other models of ordered random variables is contained in this con-
cept. For a detailed discussion of several of these models, such as sequential
order statistics, kth record values and Pfeifer’s record model, we refer to
Kamps (1995, Ch. I).

In this paper we present characterizations of exponential distributions via
distributional properties of generalized order statistics including the known
results for ordinary order statistics and record values as particular cases.

For the proofs of our results we need the aging properties IFR/DFR and
NBU/NWU as weaker conditions, respectively. An absolutely continuous
distribution function F with density function f is said to be IFR (DFR) if
its failure rate f/(1−F ) increases (decreases). A distribution function F is
said to be NBU (NWU) if 1 − F (x+ y) ≤ (≥) (1 − F (x))(1 − F (y)) for all
x, y, x+ y in the support of F .

2. Generalized order statistics. Let X(1, n,m, k), . . . ,X(n, n,m, k)
be generalized order statistics based on the absolutely continuous distribu-
tion function F with density function f , which means that the joint density
function of the above quantities is given by

fX(1,n,m,k),...,X(n,n,m,k)(x1, . . . , xn)

= k
(

n−1
∏

j=1

γj

)(

n−1
∏

i=1

(1 − F (xi))
mf(xi)

)

(1 − F (xn))k−1f(xn),

F−1(0+) < x1 ≤ . . . ≤ xn < F−1(1),

with n ∈ N, k > 0, m ∈ R such that γr = k + (n − r)(m + 1) > 0 for all
1 ≤ r ≤ n.

In the case m = 0 and k = 1 this model reduces to the joint density of
ordinary order statistics, and in the case m = −1 and k ∈ N we obtain the
joint density of the first n kth record values based on a sequence X1,X2, . . .
of i.i.d. random variables with distribution function F .

The marginal density function of the rth generalized order statistic is
given by

fX(r,n,m,k)(x) =
cr−1

(r − 1)!
(1 − F (x))γr−1f(x)gr−1

m (F (x))
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(see Kamps 1995, p. 64), and the density function of the spacings

Wr−1,r,n = X(r, n,m, k) −X(r − 1, n,m, k), 2 ≤ r ≤ n,

has the following representation:

fX(r,n,m,k)−X(r−1,n,m,k)(y)

=
cr−1

(r − 2)!

∞\
−∞

(1 − F (x))mf(x)gr−2
m (F (x))(1 − F (x+ y))γr−1f(x+ y) dx

with

cr−1 =
r

∏

j=1

γj , 1 ≤ r ≤ n,

hm(x) =
\
(1 − x)m dx =











−
1

m+ 1
(1 − x)m+1, m 6= −1,

log
1

1 − x
, m = −1,

gm(x) = hm(x) − hm(0), x ∈ [0, 1) (see Kamps 1995, p. 69).

Generalizing Sukhatme’s (1937) result it is shown in Kamps (1995, p.81)
that the normalized spacings

D(1, n,m, k) = γ1X(1, n,m, k),

D(r, n,m, k) = γr(X(r, n,m, k) −X(r − 1, n,m, k)), 2 ≤ r ≤ n,

based on an exponential distribution with parameter λ are independent and
identically distributed according to Exp(λ).

As a consequence, Wr−1,r,n and X(1, n − r + 1,m, k) are identically
distributed, since

Wr−1,r,n ∼
γ1

γr
X(1, n,m, k) = Z

and

fZ(z) =
γr

γ1
fX(1,n,m,k)

(

γr

γ1
z

)

= γr

(

1 − F

(

γr

γ1
z

))γ1−1

f

(

γr

γ1
z

)

= γr exp{−λγrz} = fX(1,n−r+1,m,k)(z).

Hence, in the following characterization results it remains to show that the
respective properties determine exponential distributions uniquely.

3. Characterization results. In Theorem 1 it is shown that, under
certain regularity conditions, a weaker assumption than identical distribu-
tions of D(r, n,m, k) and D(s, n,m, k) is sufficient to characterize exponen-
tial distributions within the class of distributions with the IFR or DFR prop-
erty. This result includes the characterizations by ordinary order statistics
and record values established in Gajek & Gather (1989).
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Let rY (x) = g(x)/(1−G(x)) denote the failure rate of a random variable
Y with distribution functionG and density function g. The appearing failure
rates as well as the density f in Theorem 1 and in Remark 1 are supposed
to be continuous from the right. If rY is monotone, then the limit rY (0) =
limx→0 rY (x) is assumed to be finite (cf. Gajek & Gather 1989).

Theorem 1. Let F be absolutely continuous with density function f ,
F (0) = 0, and suppose that F is strictly increasing on (0,∞), and either

IFR or DFR. Then F ≡ Exp(λ) for some λ > 0 iff there exist integers r, s
and n, 1 ≤ r < s ≤ n, such that rD(r,n,m,k)(0) = rD(s,n,m,k)(0).

P r o o f. Let r ≥ 2. Since

fD(r,n,m,k)(x) =
1

γr
fWr−1,r,n

(

x

γr

)

=
1

γr

cr−1

(r − 2)!

∞\
0

(1 − F (y))mf(y)gr−2
m (F (y))

×

(

1 − F

(

x

γr
+ y

))γr−1

f

(

x

γr
+ y

)

dy

and 1
γr

cr−1 = cr−2, we have (r(y) = f(y)/(1 − F (y)))

rD(r,n,m,k)(0) =
cr−2

(r − 2)!

∞\
0

ψr(y)r(y)f(y) dy

with

ψr(y) = (1 − F (y))γr+mgr−2
m (F (y)).

On the other hand, we obtain

fX(r−1,n,m,k)(x) =
cr−2

(r − 2)!
ψr(x)f(x),

which implies
∞\
0

ψr(x)f(x)dx =

(

cr−2

(r − 2)!

)−1

.

Thus we find

rD(r,n,m,k)(0) = rD(s,n,m,k)(0)

⇔
(

∞\
0

ψr(x)r(x)f(x) dx
)(

∞\
0

ψr(x)f(x) dx
)−1

=
(

∞\
0

ψs(x)r(x)f(x) dx
)(

∞\
0

ψs(x)f(x) dx
)−1

⇔ (I =)

∞\
0

∞\
0

(ψr(x)ψs(y) − ψs(x)ψr(y))r(x)f(x)f(y) dx dy = 0.
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We rewrite the integral I as follows:

I =
\\

{(x,y)∈(0,∞)2:x≤y}

. . .+
\\

{(x,y)∈(0,∞)2:x>y}

. . .

=
\\

x≤y

((ψr(x)ψs(y) − ψs(x)ψr(y))r(x)

+ (ψr(y)ψs(x) − ψs(y)ψr(x))r(y))f(x)f(y) dx dy

=
\\

x≤y

(ψr(x)ψs(y) − ψs(x)ψr(y))(r(x) − r(y))f(x)f(y) dx dy.

We now have

ψr(x)ψs(y) > ψs(x)ψr(y)

⇔ gm(F (x))/(1 − F (x))m+1 < gm(F (y))/(1 − F (y))m+1,

and the latter inequality can be seen to hold true for x < y. Since r is increas-
ing (decreasing) this yields

r(x) = r(y) for all x < y.

Thus we have got a constant failure rate and hence the assertion.
Let r = 1. Then we find

fD(1,n,m,k)(x) = (1 − F (x/γ1))
γ1−1f(x/γ1) and rD(1,n,m,k)(0) = f(0).

Thus,

rD(1,n,m,k)(0) = rD(s,n,m,k)(0)

⇔ f(0) =
(

∞\
0

ψs(x)r(x)f(x) dx
)(

∞\
0

ψs(x)f(x) dx
)−1

,

which implies
∞\
0

ψs(x)f(x)(f(0) − r(x)) dx = 0.

The assertion follows since r(x) ≥ (≤) r(0) = f(0), x > 0.

R e m a r k 1. It is easily seen that the property rD(r,n,m,k)(0) = r(0) for
some 2 ≤ r ≤ n is also a characteristic property of exponential distributions.
This assertion corresponds to Remark 2.1 in Gajek & Gather (1989) and
generalizes Theorem 2.2 in Ahsanullah (1981b) for ordinary order statistics
and Theorem 2.3 in Ahsanullah (1981a) for record values. As in the case
r = 1 in Theorem 1 it is obvious that the IFR or DFR assumption can be
replaced by the condition that zero is an extremal point of the failure rate
of F .

The following theorem generalizes Theorem 2.1 in Ahsanullah (1981b)
as well as Theorem 2.4 in Ahsanullah (1981a), which, in the case of ordinary
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order statistics and record values, characterize exponential distributions by
the equality of expectations of successive (normalized) spacings.

Theorem 2. Let F be absolutely continuous with density function f ,
F (0) = 0, F (x) < 1 for all x > 0, and suppose that F is IFR or DFR.

Moreover , let m ≥ −1. Then F ≡ Exp(λ) for some λ > 0 iff there exist in-

tegers r and n, 1 ≤ r ≤ n−1, such that ED(r, n,m, k) = ED(r+1, n,m, k).

P r o o f. Let r ≥ 2, and let F be IFR. By interchanging the order of
integration, we obtain

1 − FD(r,n,m,k)(x)

=
cr−2

(r − 2)!

∞\
x

∞\
0

(1 − F (y))mf(y)gr−2
m (F (y))

×

(

1 − F

(

z

γr
+ y

))γr−1

f

(

z

γr
+ y

)

dy dz

=
cr−2

(r − 2)!

∞\
0

(1 − F (y))mf(y)gr−2
m (F (y))

×

∞\
x

(

1 − F

(

z

γr
+ y

))γr−1

f

(

z

γr
+ y

)

dz dy

=
cr−1

(r − 1)!

∞\
0

(

1 − F

(

x

γr
+ z

))γr−1

f

(

x

γr
+ z

)

gr−1
m (F (z)) dz.

The latter representation remains valid for r = 1.

On the other hand, we have

1 − FD(r+1,n,m,k)(x)

=
cr−1

(r − 1)!

∞\
0

(1 − F (z))mf(z)gr−1
m (F (z))

(

1 − F

(

x

γr+1
+ z

))γr+1

dz.

Since F is IFR, log(1 − F ) is concave, and thus we find for m ≥ −1 that

log

(

1 − F

(

x

γr
+ z

))

= log

(

1 − F

(

(m+ 1)z

γr
+
γr+1

γr

(

x

γr+1
+ z

)))

≥
m+ 1

γr
log(1 − F (z)) +

γr+1

γr
log

(

1 − F

(

x

γr+1
+ z

))
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implies
(

1 − F

(

x

γr
+ z

))γr

≥ (1 − F (z))m+1

(

1 − F

(

x

γr+1
+ z

))γr+1

.

Since r(z) − r(x/γr + z) ≤ 0, x, z > 0, we conclude from

0 = ED(r + 1, n,m, k) − ED(r, n,m, k)

=
cr−1

(r − 1)!

∞\
0

∞\
0

gr−1
m (F (z))

(

(1 − F (z))mf(z)

(

1 − F

(

x

γr+1
+ z

))γr+1

−

(

1 − F

(

x

γr
+ z

))γr

r

(

x

γr
+ z

))

dz dx

≤
cr−1

(r − 1)!

∞\
0

∞\
0

(1 − F (z))m+1

(

1 − F

(

x

γr+1
+ z

))γr+1

× gr−1
m (F (z))

(

r(z) − r

(

x

γr
+ z

))

dz dx ≤ 0

that r(z) = r(x/γr + z) for all x, z > 0, which implies the assertion.

Under an NBU/NWU assumption, characterizations of exponential dis-
tributions can also be obtained by identical expectations of Xs,n −Xr,n and
Xs−r,n−r as well as by the corresponding identity for record values as shown
in Iwińska (1986) and Gajek & Gather (1989). The following theorem pro-
vides an extension of these results to generalized order statistics in the case
s = r + 1.

Theorem 3. Let F be absolutely continuous with density function f ,
F (0) = 0, and suppose that F is strictly increasing on (0,∞), and either is

NBU or NWU. Moreover , let the expected values involved be finite. Then

F ≡ Exp(λ) for some λ > 0 iff there exist integers r and n, 1 ≤ r ≤ n − 1,
such that EX (r + 1, n,m, k) − EX(r, n,m, k) = EX (1, n − r,m, k).

P r o o f. Making use of the representations

E(X(r + 1, n,m, k) −X(r, n,m, k))

=

∞\
0

∞\
x

fWr,r+1,n(w) dw dx

=
cr

(r − 1)!

∞\
0

∞\
x

∞\
0

(1 − F (y))mf(y)gr−1
m (F (y))

× (1 − F (y + w))γr+1−1f(y + w) dy dw dx
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=
cr

(r − 1)!γr+1

∞\
0

∞\
0

(1 − F (y))mf(y)gr−1
m (F (y))(1 − F (x+ y))γr+1 dy dx

=

∞\
0

∞\
0

fX(r,n,m,k)(y)((1 − F (x+ y))γr+1/(1 − F (y))γr+1) dy dx

and

EX (1, n − r,m, k) = γr+1

∞\
0

∞\
x

(1 − F (y))γr+1−1f(y) dy dx

=

∞\
0

(1 − F (x))γr+1 dx

=

∞\
0

∞\
0

fX(r,n,m,k)(y)(1 − F (x))γr+1 dy dx

we obtain

EWr,r+1,n = EX (1, n − r,m, k)

⇔

∞\
0

∞\
0

fX(r,n,m,k)(y)((1 − F (x+ y))γr+1/(1 − F (y))γr+1

−(1 − F (x))γr+1) dy dx = 0,

which implies the assertion.

R e m a r k 2. Without any further assumption, the equation

EX (r + 1, n,m, k) − EX (r, n,m, k) = EX (1, n − r,m, k)

for just one pair (r, n), 1 ≤ r ≤ n − 1, does not characterize exponential
distributions. For every choice of r, n and m 6= −1 there are distributions
different from exponentials with the above property as shown in Kamps
(1995, p. 128). E.g., the distributions given by

F (x) = 1 − (1 + cxd)−1/(m+1)

{

c > 0, x ∈ (0,∞), m > −1,

c < 0, x ∈ (0, (−1/c)1/d), m < −1,

with

d =
k + (n− 1)(m+ 1)

k + (n− 2)(m+ 1)

(

=
γ1

γ2

)

satisfy the moment condition for r = 1.
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