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SOME RESULTS ON CONVERGENCE

ACCELERATION FOR THE E-ALGORITHM

Abstract. Some new results on convergence acceleration for the
E-algorithm which is a general extrapolation method are obtained. A
technique for avoiding numerical instability is proposed. Some applica-
tions are given. Theoretical results are illustrated by numerical experi-
ments.

1. Introduction. The E-algorithm [2], [7] is a general extrapolation
process. It depends on some auxiliary sequences (gi(n)), i ≥ 1. For some
choices of the auxiliary sequences, one obtains some known convergence
acceleration methods (see [2], [3]). When applied to a sequence (sn) of
complex numbers, the algorithm has the following rules:

E
(n)
0 = sn, g

(n)
0,i = gi(n), n ≥ 0, i ≥ 1,

E
(n)
k =

g
(n+1)
k−1,kE

(n)
k−1 − g

(n)
k−1,kE

(n+1)
k−1

g
(n+1)
k−1,k − g

(n)
k−1,k

, k ≥ 1 (main rule),

g
(n)
k,j =

g
(n+1)
k−1,k g

(n)
k−1,j − g

(n)
k−1,k g

(n+1)
k−1,j

g
(n+1)
k−1,k − g

(n)
k−1,k

, j > k (auxiliary rule).

Some results on convergence acceleration for the E-algorithm were ob-
tained by Brezinski [2] when the auxiliary sequences satisfy the following
condition:

∀i ≥ 1,
gi(n + 1)

gi(n)
−→

n→∞
bi 6= 1, and bi 6= bj for i 6= j.

This condition will be called Brezinski’s condition.
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In this article, we give some results on convergence acceleration in three
cases where Brezinski’s condition is not satisfied.

All the sequences considered are sequences of real numbers.
In Section 1, we consider the case where gi(n + 1) = g(n)bn

i for all i ≥ 1
with g(n + 1)/g(n) → 0 as n → ∞. Since gi(n + 1)/gi(n) → 0 as n → ∞ for
all i ≥ 1, we cannot apply the results obtained by Brezinski [2].

In Section 2, we study the E-algorithm when the auxiliary sequences are
such that for each i ≥ 1, gi(n) has an asymptotic expansion of the form

gi(n) ≈ λn
i nθi

(

ai,0 +
ai,1

nαi,1
+ . . . +

ai,j

nαi,j
+ . . .

)

.

When the numbers λi are close to 1, the E-algorithm is numerically unstable.
In order to avoid numerical instability, we propose to apply the E-algorithm
with some subsequences of (gi(n)) as auxiliary sequences. This technique
is very interesting in particular when (sn) has the following asymptotic
expansion:

sn − s ≈ a1g1(n) + a2g2(n) + . . . + aigi(n) + . . .

By choosing appropriately the subsequences of the auxiliary sequences, we
can apply the results of Section 1 where the auxiliary sequences converge
superlinearly to 0. This technique is illustrated by numerical examples in
Section 3.

Section 3 is devoted to the application of the E-algorithm to the sum-
mation of series and computation of integrals.

2. Superlinear convergence. Let us begin by the following notations
and definitions. N denotes the set of positive integers, and R the set of
real numbers. If (sn) is a convergent sequence, we denote by s its limit;
un = o(vn) means that un/vn → 0 as n → ∞.

Definitions. Let (f1(n)), (f2(n)), . . . , (fi(n)), . . . be some sequences of
real numbers.

• We say that (f1, f2, . . . , fi, . . .) is an asymptotic sequence if for each
index i, fi+1(n) = o(fi(n)) as n → ∞.

Let (un) be a sequence of real numbers, and (f1, f2, . . . , fi, . . .) be an
asymptotic sequence.

• We say that (un) has an asymptotic expansion with respect to the
asymptotic sequence (f1, f2, . . . , fi, . . .) if there exist constants ai ∈ R, i ≥ 1,
such that for all k ≥ 1,

un =

k
∑

i=1

aigj(n) + o(gk(n)) as n → ∞.
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Then we write

un ≈ a1g1(n) + . . . + akgk(n) + . . .

Definitions. Let A be a set of convergent sequences.

• We say that the E-algorithm is regular on A if for all (sn) ∈ A and
k ≥ 1,

E
(n)
k − s = o(1) as n → ∞.

• We say that the E-algorithm is effective on A if for all (sn) ∈ A and
k ≥ 1, either

∃n0,∀n ≥ n0, E
(n)
k = E

(n)
k−1 = s or E

(n)
k − s = o(E

(n)
k−1 − s) as n → ∞.

Let us now assume that the auxiliary sequences of the E-algorithm are
such that

(H1) ∀i ≥ 1, gi(n) = g(n)bn
i ,

where g(n + 1) = o(g(n)), b1 = 1, and bi 6= bj for i 6= j.

Then Brezinski’s condition is not satisfied.

Lemma 1. For any k ≥ 0 and i > k, we have

(i) ∀n,
g
(n+1)
k,i

g
(n)
k,i

=
bi

bk+1
·
g
(n+1)
k,k+1

g
(n)
k,k+1

;

(ii) g
(n+1)
k,i = o(g

(n)
k,i ) as n → ∞.

P r o o f. By induction on k.

Theorem 1. Let (sn) be a convergent sequence. If the auxiliary sequences

(gi(n)) of the E-algorithm satisfy (H1), then E
(n)
k → s as n → ∞, for each

k ≥ 0.

P r o o f (induction on k). For k = 0, the result is obvious. Assume that

(1) E
(n)
k − s = o(1) as n → ∞.

From the main rule of the E-algorithm, we get

(2) E
(n)
k+1 − s =

g
(n+1)
k,k+1

g
(n)
k,k+1

(E
(n)
k − s) − (E

(n+1)
k − s)

g
(n+1)
k,k+1

g
(n)
k,k+1

− 1

.

From Lemma 1 we get

(3) g
(n+1)
k,k+1 = o(g

(n)
k,k+1) as n → ∞.

From (1)–(3) we deduce that E
(n)
k+1 − s = o(1) as n → ∞.
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Theorem 2. Let k ≥ 1. If the conditions of Theorem 1 are satisfied ,
then

(i) E
(n)
k − s = o(E

(n)
k−1 − s) as n → ∞ iff E

(n+1)
k−1 − s = o(E

(n)
k−1 − s) as

n → ∞;

(ii) E
(n)
k − s = o(E

(n+1)
k−1 − s) as n → ∞ iff

(E
(n+1)
k−1 − s)g

(n)
k−1,k

(E
(n)
k−1 − s)g

(n+1)
k−1,k

−→
n→∞

1.

P r o o f. (i) We have

(4)
E

(n)
k − s

E
(n)
k−1 − s

=

g
(n+1)
k−1,k

g
(n)
k−1,k

−
E

(n+1)
k−1 − s

E
(n)
k−1 − s

g
(n+1)
k−1,k

g
(n)
k−1,k

− 1

.

Lemma 1(ii) gives

(5) g
(n+1)
k−1,k = o(g

(n)
k−1,k) as n → ∞.

From (4), (5) we deduce that

E
(n)
k − s = o(E

(n)
k−1 − s) as n → ∞ ⇔ E

(n+1)
k−1 − s = o(E

(n)
k−1 − s) as n → ∞.

(ii) We have

(6)
E

(n)
k − s

E
(n+1)
k−1 − s

=

g
(n+1)
k−1,k

g
(n)
k−1,k

·
E

(n)
k−1 − s

E
(n+1)
k−1 − s

− 1

g
(n+1)
k−1,k

g
(n)
k−1,k

− 1

.

From (5), (6) we get

E
(n)
k − s = o(E

(n+1)
k−1 − s) as n → ∞ ⇔

(E
(n+1)
k−1 − s)g

(n)
k−1,k

(E
(n)
k−1 − s)g

(n+1)
k−1,k

−→
n→∞

1.

Property 1. If the auxiliary sequences (gi(n)) satisfy (H1) with |bi+1| <
|bi| for i ≥ 1, then for k ≥ 0 and i > k,

g
(n)
k,i+1 = o(g

(n)
k,i ) as n → ∞

(i.e. (gk,k+1, gk,k+2, . . . , gk,i, . . .) is an asymptotic sequence).

P r o o f. From Lemma 1 we get

g
(n+1)
k,i

g
(n)
k,i

=
bi

bk+1
·
g
(n+1)
k,k+1

g
(n)
k,k+1

,
g
(n+1)
k,i+1

g
(n)
k,i+1

=
bi+1

bk+1
·
g
(n+1)
k,k+1

g
(n)
k,k+1

.
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Thus

g
(n+1)
k,i+1

g
(n)
k,i+1

=
bi+1

bi
·
g
(n+1)
k,i

g
(n)
k,i

.

Consequently,

g
(n)
k,i+1

g
(n)
k,i

=

(

bi+1

bi

)n g
(0)
k,i+1

g
(0)
k,i

.

Since |bi+1| < |bi|, it follows that g
(n)
k,i+1 = o(g

(n)
k,i ) as n → ∞.

Let us mention that, if the auxiliary sequences (gi(n)) of the E-algorithm
form an asymptotic sequence, then in general, for k ≥ 1, (gk,k+1, gk,k+2,
. . . , gk,i, . . .) is not an asymptotic sequence. For example, let

gi(n) = (−1)n(i+1)/(n + 1)i, n ≥ 0, i ≥ 1.

Then (g1, g2, . . . , gi, . . .) is an asymptotic sequence, but (g1,2, g1,3, . . .
. . . , g1,i, . . .) is not.

Lemma 2. Let (sn) be a convergent sequence. If

(i) the auxiliary sequences (gi(n)) satisfy (H1) with |bi+1| < |bi| for

i ≥ 1,
(ii) sn − s ≈ a1g1(n) + a2g2(n) + . . . + aigi(n) + . . . ,

then for each k ≥ 0, E
(n)
k − s ≈ ak+1g

(n)
k,k+1 + . . . + aig

(n)
k,i + . . .

P r o o f. By induction on k.

R e m a r k. If aj = 0 for all j > k, then there exists n0 such that

E
(n)
k = s for n ≥ n0; this result is a particular case of a general result given

by Brezinski [2] for the kernel of step k of the E-algorithm.

Theorem 3. Let (sn) be a convergent sequence. If the auxiliary sequences

(gi(n)) satisfy (H1) with |bi+1| < |bi| for i ≥ 1, and if

sn − s ≈ a1g1(n) + a2g2(n) + . . . + aigi(n) + . . . ,

then for all k ≥ 1,

(i) if ai = 0 for all i > k, then there exists n0 such that E
(n)
k = s for

all n ≥ n0;

(ii) if ak 6= 0, then E
(n)
k − s = o(E

(n+1)
k−1 − s) as n → ∞;

(iii) if ak = 0 and there exists i > k such that ai 6= 0, then

E
(n)
k − s = o(E

(n)
k−1 − s) as n → ∞,

E
(n)
k − s 6= o(E

(n+1)
k−1 − s) as n → ∞.

P r o o f. (i) follows from the preceding remark.
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(ii) Assume that ak 6= 0. From Lemma 2, we get E
(n)
k−1 − s = akg

(n)
k−1,k +

o(g
(n)
k−1,k) as n → ∞. Thus

(E
(n+1)
k−1 − s)g

(n)
k−1,k

(E
(n)
k−1 − s)g

(n+1)
k−1,k

−→
n→∞

1,

and from Theorem 2 we deduce that E
(n)
k − s = o(E

(n+1)
k−1 − s) as n → ∞.

(iii) Let i0 > k be the smallest integer such that ai0 6= 0. From Lemma 2

we get E
(n)
k−1 − s = ai0g

(n)
k−1,i0

+ o(g
(n)
k−1,i0

) as n → ∞. Thus

(7)
E

(n+1)
k−1 − s

E
(n)
k−1 − s

=
g
(n+1)
k−1,i0

g
(n)
k−1,i0

(1 + o(1)) as n → ∞.

From Lemma 1, we get

(8) g
(n+1)
k−1,i0

= o(g
(n)
k−1,i0

) as n → ∞.

The relations (7), (8) and Theorem 2(i) give E
(n)
k − s = o(E

(n)
k−1 − s) as

n → ∞.
We have

(9)
(E

(n+1)
k−1 − s)g

(n)
k−1,k

(E
(n)
k−1 − s)g

(n+1)
k−1,k

=
g
(n+1)
k−1,i0

g
(n)
k−1,i0

·
g
(n)
k−1,k

g
(n+1)
k−1,k

(1 + o(1)) as n → ∞.

From Lemma 1, we deduce that

(10)
g
(n+1)
k−1,i0

g
(n)
k−1,i0

·
g
(n)
k−1,k

g
(n+1)
k−1,k

=
bi0

bk
.

The relations (9), (10) show that the sequence

(E
(n+1)
k−1 − s)g

(n)
k−1,k/((E

(n)
k−1 − s)g

(n+1)
k−1,k)

does not converge to 1; then, from Theorem 2, we deduce that E
(n)
k − s 6=

o(E
(n+1)
k−1 − s) as n → ∞.
Let us now assume that the sequence (sn) satisfies

(11) sn − s ≈ g(n)(a1c
n
1 + a2c

n
2 + . . . + aic

n
i + . . .),

where a1 6= 0, |c1| > . . . > |cn| > |cn+1| > . . . > 0. Let (r
(n)
j,i ), j ≥ 0,

i ≥ 1, be the sequences obtained by applying the E-algorithm with the
auxiliary sequences gk(n) = g(n)bn

k to the sequence (g(n)cn
i ). We have

r
(n)
0,i = g(n)cn

i , n ≥ 0,

r
(n)
j,i =

g
(n+1)
j−1,j r

(n)
j−1,i − g

(n)
j−1,j r

(n+1)
j−1,i

g
(n+1)
j−1,j − g

(n)
j−1,j

, j ≥ 1.
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By induction on k, one can easily prove the following lemmas.

Lemma 3. Let i ≥ 1. Then

∀k ≥ 0, ∀j > k, ∀n ≥ 0,
r
(n+1)
k,i

r
(n)
k,i

=
ci

bj
·
g
(n+1)
k,j

g
(n)
k,j

.

Lemma 4. If the auxiliary sequences (gi(n)) satisfy (H1), and if (sn)
satisfies (11), then for all k ≥ 0,

E
(n)
k − s ≈ a1r

(n)
k,1 + a2r

(n)
k,2 + . . . + air

(n)
k,i + . . .

Theorem 4. If the conditions of Lemma 4 are satisfied , then the

E-algorithm is effective on (sn).

P r o o f. Let k ≥ 0. Lemma 4 gives

(12) E
(n)
k − s ≈ a1r

(n)
k,1 + . . . + air

(n)
k,i + . . .

From Lemma 3, we get

r
(n+1)
k,1

r
(n)
k,1

=
c1

bk+1
·
g
(n+1)
k,k+1

g
(n)
k,k+1

.

Then, from Lemma 1, we obtain

(13) r
(n+1)
k,1 = o(r

(n)
k,1) as n → ∞.

From (12), (13) we deduce that E
(n+1)
k − s = o(E

(n)
k − s) as n → ∞, and

from Theorem 2 we obtain E
(n)
k+1−s = o(E

(n)
k −s) as n → ∞. Consequently,

the E-algorithm is effective on (sn).

2. Linear and logarithmic convergence. In this section, we shall
study the E-algorithm when the auxiliary sequences are such that

(H2) ∀i ≥ 1, gi(n) ≈ λn
i nθi

(

ai,0 +
ai,1

nαi,1
+ . . . +

ai,j

nαi,j
+ . . .

)

,

where ai,0 6= 0, 0 < αi,1 < αi,2 < . . . < αi,j < . . . , and (λi, θi) 6= (λj , θj) for
i 6= j.

R e m a r k. If λi 6= λj for i 6= j, then Brezinski’s condition is satisfied.

2.1. Linear convergence. From the sequence (θi), we define the following
double sequence:

θ0,i = θi for i ≥ 1,

and for k ≥ 1 and i > k,

θk,i =

{

θk−1,i − 1 if λi = λk,
θk−1,i else.



400 A. Fdil

One can easily prove the following property:

Property 2. Let k ≥ 0. Let j > i > k. If λi = λj , then

(i) θk,i 6= θk,j;
(ii) if θj < θi, then θk,j < θk,i.

Property 3. If the auxiliary sequences (gi(n)) satisfy (H2) with λi 6= 1
for i ≥ 1, then for all k ≥ 0 and i > k,

g
(n)
k,i ≈ λn

i nθk,i

(

ak,i,0 +
ak,i,1

nαk,i,1
+ . . . +

ak,i,j

nαk,i,j
+ . . .

)

where ak,i,0 6= 0 and 0 < αk,i,1 < . . . < αk,i,j < . . .

P r o o f (induction on k). For k = 0, the property is true. Assume that
it is true up to index k. Let i > k + 1. From the auxiliary rule of the
E-algorithm we get

(14)
g
(n)
k+1,i

g
(n)
k,i

=

g
(n+1)
k,k+1

g
(n)
k,k+1

−
g
(n+1)
k,i

g
(n)
k,i

g
(n+1)
k,k+1

g
(n)
k,k+1

− 1

.

From the induction assumption we get

(15) g
(n)
k,i ≈ λn

i nθk,i

(

ak,i,0 +
ak,i,1

nαk,i,1
+ . . . +

ak,i,j

nαk,i,j
+ . . .

)

,

where ak,i,0 6= 0 and 0 < αk,i,1 < . . . < αk,i,j < . . . , and

(16) g
(n)
k,k+1 ≈ λn

k+1n
θk,k+1

(

ak,k+1,0 +
ak,k+1,1

nαk,k+1,1
+ . . . +

ak,k+1,j

nαk,k+1,j
+ . . .

)

,

where ak,k+1,0 6= 0 and 0 < αk,k+1,1 < . . . < αk,k+1,j < . . . Thus

(17)
g
(n+1)
k,i

g
(n)
k,i

≈ λi

(

1 +
θk,i

n
+

di,1

npi,1
+ . . . +

di,j

npi,j
+ . . .

)

,

where 1 < pi,1 < . . . < pi,j < . . . , and

(18)
g
(n+1)
k,k+1

g
(n)
k,k+1

≈ λk+1

(

1 +
θk,k+1

n
+

dk+1,1

npk+1,1
+ . . . +

dk+1,j

npk+1,j
+ . . .

)

,

where 1 < pk+1,1 < . . . < pk+1,j < . . . From (14), (17), (18) we get

(19)
g
(n)
k+1,i

g
(n)
k,i

≈
(λk+1 − λi) +

λk+1θk,k+1 − λiθk,i

n
+ . . .

λk+1 − 1 +
λk+1θk,k+1

n
+ . . .

.
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If λi 6= λk+1, then the relations (15), (19) give

g
(n)
k+1,i ≈ λn

i nθk+1,i

(

ak+1,i,0 +
ak+1,i,1

nαk+1,i,1
+ . . . +

ak+1,i,j

nαk+1,i,j
+ . . .

)

with θk+1,i = θk,i,

ak+1,i,0 =
ak,i,0(λk+1 − λi)

λk+1 − 1
6= 0,

and 0 < αk+1,i,1 < . . . < αk+1,i,j < . . .

If λi = λk+1, then, from Property 2, we get θk,i 6= θk,k+1, and from (15),
(19) we deduce that

g
(n)
k+1,i ≈ λn

i nθk+1,i

(

ak+1,i,0 +
ak+1,i,1

nαk+1,i,1
+ . . . +

ak+1,i,j

nαk+1,i,j
+ . . .

)

with θk+1,i = θk,i − 1,

ak+1,i,0 =
ak,i,0(θk,k+1 − θk,i)λk+1

λk+1 − 1
6= 0,

and 0 < αk+1,i,1 < . . . < αk+1,i,j < . . .

Thus the property is true for k + 1.

Property 4. If the condition of Property 3 is satisfied , then for all k ≥ 0
and i > k,

g
(n+1)
k,i /g

(n)
k,i −→

n→∞
λi.

P r o o f. This is obvious.

An immediate consequence of Property 4 is

Theorem 5. Let (sn) be a convergent sequence. If the condition of Prop-

erty 3 is satisfied , then for all k ≥ 0, E
(n)
k → s as n → ∞.

Theorem 6. Let (sn) be a convergent sequence. If the condition of Prop-

erty 3 is satisfied , then for all k ≥ 0,

E
(n)
k+1 − s = o(E

(n)
k − s) as n → ∞ ⇔

E
(n+1)
k − s

E
(n)
k − s

−→
n→∞

λk+1.

P r o o f. We have

(20)
E

(n)
k+1 − s

E
(n)
k − s

=

g
(n+1)
k,k+1

g
(n)
k,k+1

−
E

(n+1)
k − s

E
(n)
k − s

g
(n+1)
k,k+1

g
(n)
k,k+1

− 1

.
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From Property 4, we get

(21)
g
(n+1)
k,k+1

g
(n)
k,k+1

−→
n→∞

λk+1.

From (20), (21) we deduce that

E
(n)
k+1 − s = o(E

(n)
k − s) as n → ∞ ⇔

E
(n+1)
k − s

E
(n)
k − s

−→
n→∞

λk+1.

R e m a r k. Since λk+1 6= 0, it follows that E
(n)
k+1 − s = o(E

(n)
k − s) as

n → ∞ iff E
(n)
k+1 − s = o(E

(n+1)
k − s) as n → ∞.

Let us now assume that the sequences (λn), (θn) of the assumption (H2)
satisfy

(H3) ∀n ≥ 1, 0 < |λn| < 1;

(H4) ∀n > m, either |λn| < |λm| or λn = λm and θn < θm.

Property 5. If the auxiliary sequences (gi(n)) satisfy (H2) and if (H3),

(H4) are satisfied , then for all k ≥ 0 and i > k, g
(n)
k,i = o(1) and g

(n)
k,i+1 =

o(g
(n)
k,i ) as n → ∞.

P r o o f. Let k ≥ 0 and i > k. From Property 3, we get g
(n)
k,i ≈

λn
i nθk,i(ak,i,0 + o(1)) as n → ∞, with ak,i,0 6= 0. Since |λi| < 1, it fol-

lows that g
(n)
k,i = o(1) as n → ∞.

From Property 3, we obtain

g
(n)
k,i+1

g
(n)
k,i

=

(

λi+1

λi

)n

nθk,i+1−θk,i

(

ak,i+1,0

ak,i,0
+ o(1)

)

as n → ∞.

If |λi+1| < |λi|, then g
(n)
k,i+1 = o(g

(n)
k,i ) as n → ∞. If λi+1 = λi, then

θi+1 < θi, and from Property 2 we get θk,i+1 < θk,i, thus g
(n)
k,i+1 = o(g

(n)
k,i )

as n → ∞.

R e m a r k. For each k ≥ 0, (gk,k+1, gk,k+2, . . . , gk,i, . . .) is an asymptotic
sequence.

Lemma 5. Let (sn) be a convergent sequence. If the conditions of Prop-

erty 5 are satisfied and

sn − s ≈ a1g1(n) + a2g2(n) + . . . + aigi(n) + . . . ,

then for all k ≥ 0,

E
(n)
k − s ≈ ak+1g

(n)
k,k+1 + . . . + aig

(n)
k,i + . . .
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P r o o f (by induction on k). For k = 0, this is obvious. Assume that

E
(n)
k−1 − s ≈ akg

(n)
k−1,k + . . . + aig

(n)
k−1,i + . . .

We shall prove that for all p > k,

E
(n)
k − s = ak+1g

(n)
k,k+1 + . . . + apg

(n)
k,p + o(g

(n)
k,p) as n → ∞.

Let p > k. From the induction assumption we get

(22) E
(n)
k−1 − s = akg

(n)
k−1,k + . . . + apg

(n)
k−1,p + rn

with

(23) rn = o(g
(n)
k−1,p) as n → ∞.

We have

(24) E
(n)
k =

g
(n+1)
k−1,kE

(n)
k−1 − g

(n)
k−1,kE

(n+1)
k−1

g
(n+1)
k−1,k − g

(n)
k−1,k

.

From (22)–(24) we deduce that

E
(n)
k = s +

p
∑

i=k+1

aig
(n)
k,i + dn with dn =

g
(n+1)
k−1,k rn − g

(n)
k−1,k rn+1

g
(n+1)
k−1,k − g

(n)
k−1,k

.

We shall prove that dn = o(g
(n)
k,p) as n → ∞. If ai = 0 for all i > p, then

dn = 0. Assume that the coefficients ai, i > p, are not all 0. Let i0 > p be

the smallest index such that ai0 6= 0. We have rn = g
(n)
k−1,i0

(ai0 + o(1)) as
n → ∞, and so

(25)
rn+1

rn
= λi0

(

1 +
a

n
+ o

(

1

n

))

as n → ∞.

We have

(26)
dn

g
(n)
k,p

=

g
(n+1)
k−1,k

g
(n)
k−1,k

−
rn+1

rn

g
(n+1)
k−1,k

g
(n)
k−1,k

−
g
(n+1)
k−1,p

g
(n)
k−1,p

·
rn

g
(n)
k−1,p

.

From Property 3, we get

g
(n+1)
k−1,k

g
(n)
k−1,k

= λk

(

1 +
θk−1,k

n
+ o

(

1

n

))

as n → ∞;(27)

g
(n+1)
k−1,p

g
(n)
k−1,p

= λp

(

1 +
θk−1,p

n
+ o

(

1

n

))

as n → ∞.(28)
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If λk 6= λp, then from (23), (25)–(28) we get dn = o(g
(n)
k,p) as n → ∞.

Assume that λk = λp. From Property 2 we deduce that θk−1,k 6= θk−1,p.
Then, from (25)–(28) we obtain

(29)
dn

g
(n)
k,p

=

(λk − λi0) +
λkθk−1,k − λi0a

n
+ o

(

1

n

)

λk(θk−1,k − θk−1,p) + o(1)
·

nrn

g
(n)
k−1,p

as n → ∞.

If λk = λi0 , then from (23), (29) we get dn = o(g
(n)
k,p) as n → ∞.

Assume that λk 6= λi0 . We have nrn = λn
i0

n1+θk−1,i0 (ai0ak−1,i0,0 + o(1))

and g
(n)
k−1,p = λn

pnθk−1,p(ak−1,p,0 + o(1)) as n → ∞. Thus

(30) nrn = o(g
(n)
k−1,p) as n → ∞.

The relations (29), (30) show that dn = o(g
(n)
k,p) as n → ∞. Finally,

E
(n)
k = s +

p
∑

i=k+1

aig
(n)
k,i + o(g

(n)
k,p) as n → ∞.

Theorem 7. Let (sn) be a convergent sequence. If (H2)–(H4) are satis-

fied and

sn − s ≈ a1g1(n) + a2g2(n) + . . . + aigi(n) + . . . ,

then for all k ≥ 1,

(i) if ai = 0 for all i > k, then E
(n)
k = s;

(ii) if ak+1 6= 0, then there exists bk 6= 0 such that E
(n)
k −s = λn

k+1n
θk,k+1

× (bk+1 + o(1)) as n → ∞;

(iii) if ak+1 = 0, then E
(n)
k − s = o(λn

k+1n
θk,k+1) as n → ∞.

P r o o f. The results follow from Property 3 and from Lemma 5.

R e m a r k. If ai 6= 0 for all i ≥ 1, then the E-algorithm is effective
on (sn).

Let 0 < |λ| < 1. Assume that the auxiliary sequences (gi(n)) satisfy
(H2) and

(H5) ∀i ≥ 1, λi = λ, and θ1 > θ2 > . . . > θi > θi+1 > . . .

One can easily check that θk,i = θi − k for all k ≥ 1 and i > k.

An immediate consequence of Theorem 7 is

Corollary 1. If sn−s ≈ a1g1(n)+ . . .+aigi(n)+ . . . then for all k ≥ 1,
either

• ∃n0, ∀n ≥ n0, E
(n)
k = s, or
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• E
(n)
k − s = λnnθk+1−k(bk + o(1)) as n → ∞, with bk 6= 0 if ak+1 6= 0,

or

• E
(n)
k − s = o(λnnθk+1−k) as n → ∞ if ak+1 = 0.

Theorem 8. Let k ≥ 1. Let (sn) be a convergent sequence. Assume that

the conditions (H2), (H5) are satisfied. If

E
(n)
k−1 − s ≈ λnnα

(

b0 +
b1

nα1
+ . . . +

bi

nαi
+ . . .

)

with b0 6= 0 and 0 < α1 < α2 < . . . < αi < . . . , then

E
(n)
k − s ≈ λnnβ

(

c0 +
c1

nβ1
+ . . . +

ci

nβi
+ . . .

)

with β ≤ α − 1, c0 6= 0, and 0 < β1 < β2 < . . . < βi < . . .

P r o o f. We have

(31) E
(n)
k − s =

g
(n+1)
k−1,k

g
(n)
k−1,k

−
E

(n+1)
k−1 − s

E
(n)
k−1 − s

g
(n+1)
k−1,k

g
(n)
k−1,k

− 1

(E
(n)
k−1 − s).

From Property 3, we get

(32)
g
(n+1)
k−1,k

g
(n)
k−1,k

≈ λ +
d1

nγ1
+

d2

nγ2
+ . . . +

di

nγi
+ . . . ,

where 1 ≤ γ1 < γ2 < . . . < γi < . . . Moreover, we have

(33)
E

(n+1)
k−1 − s

E
(n)
k−1 − s

≈ λ +
e1

nt1
+

e2

nt2
+ . . . +

ei

nti
+ . . . ,

where 1 ≤ t1 < t2 < . . . < ti < . . . From (32), (33) we obtain

(34)
g
(n+1)
k−1,k

g
(n)
k−1,k

−
E

(n+1)
k−1 − s

E
(n)
k−1 − s

≈
f1

np1
+ . . . +

fj

npj
+ . . .

with f1 6= 0 and 1 ≤ p1 < p2 < . . . < pj < . . . Furthermore, we have

(35) E
(n)
k−1 − s ≈ λnnα

(

b0 +
b1

nα1
+ . . . +

bi

nαi
+ . . .

)

.

From (31), (32), (34), (35) we deduce that

E
(n)
k − s ≈ λnnβ

(

c0 +
c1

nβ1
+ . . . +

cj

nβj
+ . . .

)

,

where β = α − p1, c0 = f1b0/(λ − 1), and 0 < β1 < β2 < . . . < βi < . . .
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An immediate consequence of Theorem 8 is

Corollary 2. Let (sn) be a convergent sequence. If the conditions (H2),
(H5) are satisfied and

(36) sn − s ≈ λnnα0

(

a0 +
a1

nα0,1
+ . . . +

ai

nα0,i
+ . . .

)

with a0 6= 0 and 0 < α0,1 < α0,2 < . . . < α0,i < . . . , then there exists a

strictly decreasing sequence (αk) such that αk ≤ α0 − k for all k ≥ 1, and

E
(n)
k − s ≈ λnnαk

(

ak,0 +
ak,1

nαk,1
+ . . . +

ak,i

nαk,i
+ . . .

)

with ak,0 6= 0 and 0 < αk,1 < . . . < αk,i < . . .

R e m a r k. The E-algorithm is effective on (sn).

It was shown by Brezinski [2] that the E-algorithm includes the following
sequence transformations: Shanks transformation (gi(n) = ∆sn+i−1) [1, 13],
the process p (g1(n) = λnnθ, θ ∈ R, and gi(n) = ∆sn+i−2 for i ≥ 2), Levin’s
transformations (gi(n) = g(n)∆sn−1/n

i−1, with g(n) = 1 (resp. g(n) = n,
g(n) = ∆sn∆sn−1/∆

2sn−1)) for the transformation T (resp. U, V ) [9].

If (sn) satisfies (36), then for each of these transformations, one can
easily prove that for all i ≥ 1,

gi(n) ≈ λnnθi

(

bi,0 +
bi,1

nβi,1
+ . . . +

bi,j

nβi,j
+ . . .

)

.

Then, from the preceding remark, we deduce

Corollary 3. If (sn) satisfies (36), then the Shanks transformation, the

process p, and Levin’s transformations (T , U , and V ) are effective on (sn).

Let us end this subsection with

Theorem 9. If (sn) satisfies (36), then the algorithm

E
(n)
0 = sn, n ≥ 0,

E
(n)
k+1 =

λE
(n)
k − E

(n+1)
k

λ − 1
, k ≥ 1,

is effective on (sn).

P r o o f. By induction on k, we prove that for all k ≥ 0,

E
(n)
k − s ≈ λnnαk

(

ak,0 +
ak,1

nαk,1
+ . . . +

ak,i

nαk,i
+ . . .

)

with αk < αk−1 and 0 < αk,1 < αk,2 < . . . < αk,i < . . . Then, the result
follows immediately.
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2.2. Logarithmic convergence. In this section, the auxiliary sequences
(gi(n)) of the E-algorithm are such that

∀i ≥ 1, gi(n) ≈ nθi

(

ai,0 +
ai,1

nαi,1
+ . . . +

ai,j

nαi,j
+ . . .

)

with ai,0 6= 0 and 0 > θ1 > θ2 > . . . > θi > . . .

Lemma 6. For all k ≥ 0 and i > k,

g
(n)
k,i ≈ nθi

(

ak,i,0 +
ak,i,1

nαk,i,1
+ . . . +

ak,i,j

nαk,i,j
+ . . .

)

,

where ak,i,0 6= 0 and 0 < αk,i,1 < αk,i,2 < . . . < αk,i,j < . . .

P r o o f. By induction on k.

By using Lemma 6, one can easily prove

Property 6. For all k ≥ 0 and i > k, g
(n)
k,i = o(1) and g

(n)
k,i+1 = o(g

(n)
k,i )

as n → ∞, and

g
(n+1)
k,i /g

(n)
k,i −→

n→∞
1.

R e m a r k. For each k ≥ 0, (gk,k+1, gk,k+2, . . . , gk,i, . . .) is an asymptotic
sequence.

Property 7. The E-algorithm is not regular on the set of convergent

sequences.

P r o o f. This follows from the fact that

∀k ≥ 0,
g
(n+1)
k,k+1

g
(n)
k,k+1

−→
n→∞

1.

Lemma 7. If sn − s ≈ a1g1(n) + . . . + aigi(n) + . . . , then for all k ≥ 0,

E
(n)
k − s ≈ ak+1g

(n)
k,k+1 + . . . + aig

(n)
k,i + . . .

P r o o f. By induction on k.

Using Lemmas 6 and 7, one can easily prove

Theorem 10. If sn−s ≈ a1g1(n)+ . . .+aigi(n)+ . . . , then for all k ≥ 1,
either

• ∃n0, ∀n ≥ n0, E
(n)
k = s, or

• E
(n)
k − s = nθk+1(bk + o(1)) as n → ∞, with bk 6= 0 if ak+1 6= 0, or

• E
(n)
k − s = o(nθk+1) as n → ∞ if ak+1 = 0.
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R e m a r k. If ai 6= 0 for all i ≥ 1, then the E-algorithm is effective
on (sn).

2.3. Numerical instability . Consider the E-algorithm of the preceding
subsections. We have for all i ≥ 1,

gi(n) ≈ λn
i nθi

(

ai,0 +
ai,1

nαi,1
+ . . . +

ai,j

nαi,j
+ . . .

)

and
g
(n+1)
i−1,i

g
(n)
i−1,i

−→
n→∞

λi.

When the numbers λi are close to 1, the E-algorithm is numerically unstable.
Then, in practice, the properties of convergence acceleration are lost, and a
good approximate value of the limit of (sn) cannot be computed. In order
to avoid numerical instability, we propose to use some subsequences of the
auxiliary sequences (gi(n)), i ≥ 1.

For example, set hi(n) = gi(2
n), i ≥ 1. Then for all i ≥ 1,

hi(n) ≈ λ2n

i 2nθi

(

ai,0 + ai,1

(

1

2αi,1

)n

+ . . .

)

.

If 0 < |λi| < 1 for all i ≥ 1, then

∀i ≥ 1,
hi(n + 1)

hi(n)
−→

n→∞
0.

If λi = 1 for all i ≥ 1, then

∀i ≥ 1,
hi(n + 1)

hi(n)
−→

n→∞
2θi

with 0 > θ1 > θ2 > . . . > θi > . . . Consequently, the E-algorithm with
(hi(n)) as auxiliary sequences is more stable than the E-algorithm with
(gi(n)) as auxiliary sequences.

Let us mention that the E-algorithm with (hi(n)) as auxiliary sequences
must be applied to the subsequence (s2n) of (sn).

Let us now compare the two algorithms in terms of the number of arith-
metical operations.

It was shown by Brezinski [2] that the computation of E0
k from s0, . . . , sk

by the E-algorithm needs approximately 5
3k3 arithmetical operations. Con-

sequently, for computing an approximate value of the limit of (sn) from
s0, . . . , s2n , the E-algorithm with (gi(n)) as auxiliary sequences needs O(23n),
and the E-algorithm with (hi(n)) as auxiliary sequences applied to (s2n)
needs only O(n3) arithmetical operations.

Some numerical examples illustrating this technique will be given in the
following section.
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3. Applications

3.1. Summation of series. Consider the power series s(x) =
∑∞

n=0 anxn,
where

an ≈ nθ

(

α0 +
α1

n
+ . . . +

αi

ni
+ . . .

)

with α0 6= 0.

Let sn(x) =
∑n

k=0 akxk for n ≥ 0. From a result of Wimp ([14], p. 19), we
deduce the following.

If |x| ≤ 1 and x 6= 1, then

sn(x) − s(x) ≈ xnnθ

(

β0 +
β1

n
+ . . .

)

with β0 6= 0.

If x = 1 and θ < −1, then

sn(1) − s(1) ≈ nθ+1

(

γ0 +
γ1

n
+ . . .

)

with γ0 6= 0.

1) Setting gi(n) = xnnθ−i+1 for i ≥ 1, the auxiliary sequences satisfy
the conditions of Section 2. Then the E-algorithm is effective on (sn(x)).

2) Let us now consider the subsequence (s2n(x)) of (sn(x)). We have

s2n(x) − s(x) ≈ (x2n

)2nθ

(

β0 +
β1

2n
+ . . . +

βi

(2i)n
+ . . .

)

.

If 0 < |x| < 1, then we can apply the results of Section 1 for the E-algorithm
with the auxiliary sequences

hi(n) = (x2n

)2nθbn
i and bi = 1/2i−1.

3) Let 0 < |x| < 1, x 6= 1. Then (sn(x)) satisfies (36), and from Corol-
lary 3 and Theorem 9 we deduce that the Shanks transformation, the pro-
cess p, Levin’s transformations, and the sequence transformation given in
Theorem 9 are all effective on (sn).

Let us now give some numerical examples. We begin by the following
linearly convergent series:

∞
∑

n=0

(n + 1)xn =
1

(x − 1)2
, x = 0.9, 0.99, 0.999.

The results obtained by applying the E-algorithm to (sn) (resp. (s2n))
with gi(n) = xnnθ−i+1 (resp. hi(n) = gi(2

n)) as auxiliary sequences are
summarized in Table 1 (resp. Table 2), where we indicate, at each step n,
the number of exact digits of E0

n.
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TAB L E 1

n .9 .99 .999

2 13 13 11
4 13 12 8
8 12 12 10
16 9 8 5
32 6 0 0

TAB LE 2

n .9 .99 .999

1 0 0 0
2 14 13 10
3 15 13 11
4 15 14 10
5 15 15 11

The comparison of Tables 1 and 2 shows that the E-algorithm with
(hi(n)) as auxiliary sequences is more stable than the E-algorithm with
(gi(n)) as auxiliary sequences.

Let us now consider the following logarithmic convergent series [4]:

1)
∞
∑

n=1

1

n2
=

π2

6
,

2)
∞
∑

n=1

n4 + n2 + 1

n2(1 + n4)
∼= 2.223411646515,

3)

∞
∑

n=1

(n + e1/n)−
√

2 ∼= 1.71379673554030,

4)

∞
∑

n=1

Log

(

n + 1

n

)

Log

(

n + 2

n + 1

)

∼= .68472478856,

5) 1 +
∞
∑

n=0

(

1

n + 1
+ Log

(

n

n + 1

))

∼= .57721566490153286.

The results obtained by applying the E-algorithm to (sn) with (gi(n)),
i ≥ 1, as auxiliary sequences are given in Table 3.

TAB LE 3

n 1) 2) 3) 4) 5)

sn E
0
n sn E

0
n sn E

0
n sn E

0
n sn E

0
n

2 1 1 0 1 0 1 1 2 1 3
4 1 3 0 2 0 2 1 4 1 4
8 1 6 1 5 0 5 1 8 1 10
12 1 11 1 9 0 9 1 10 1 10
14 1 11 1 9 0 9 2 10 1 11
16 1 9 1 8 0 8 2 9 1 9
32 2 4 1 5 1 3 2 4 2 5
40 2 4 1 3 1 3 2 4 2 4
50 2 2 2 4 1 3 2 3 2 3

Applying the E-algorithm to (s2n), with (hi(n)) as auxiliary sequences,
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we obtain the results given in Table 4.

TAB LE 4

n 1) 2) 3) 4) 5)

s2n E
0
n s2n E

0
n s2n E

0
n s2n E

0
n s2n E

0
n

1 1 1 0 1 0 0 1 1 1 1
2 1 2 0 2 0 1 1 2 1 2
3 1 4 1 3 0 1 1 2 1 3
4 1 6 1 4 1 3 2 4 1 4
5 2 7 1 5 1 4 2 4 2 5
6 2 9 2 9 1 6 2 7 2 7
7 2 11 2 10 1 8 2 8 2 9
8 3 13 2 12 1 10 3 10 3 12
9 3 15 3 14 1 11 3 12 3 15

The results of Tables 3 and 4 show that the E-algorithm with (hi(n)) as
auxiliary sequences is more effective than the E-algorithm with the auxiliary
sequences (gi(n)).

3.2. Numerical quadrature. The numerical computation of the integral

s =
T1
0
f(x) dx often leads to an asymptotic expansion of the form

T (h) − s ≈
∞
∑

j=1

mj
∑

i=0

aj,i(Log(h))ihγj

with aj,mj
6= 0, mj ∈ N, 0 < γ1 < γ2 < . . . < γj < . . . , where T (h)

is an approximate value of s obtained by some quadrature formulae with
steplength h ([0, 1] is divided into 1/h subintervals of length h; see [5–8,
10–12]).

Let σ ≥ 2, σ ∈ N. For hn = 1/σn, we have

T (hn) − s ≈

∞
∑

j=1

σ−nγj nmj

(

aj,mj
+ . . . +

aj,1

nmj−1
+

aj,0

nmj

)

.

Let (pn) be the sequence defined by p0 = 0, pn = n +
∑n

i=1 mi for n ≥ 1.
Let j ≥ 1. Set θi = pj − i and λi = σ−γj for i = 1 + pj−1, . . . , pj . The
sequence sn = T (hn) has the asymptotic expansion

sn − s ≈ a1g1(n) + . . . + akgk(n) + . . . with gi(n) = λn
i nθi for i ≥ 1.

Thus, we can apply the results of Section 2.

Let us end this section with a numerical example. We have

s =

1\
0

xLog x

x + 1
dx =

π2

12
− 1 ∼= −.1775329665759.
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Let T (h) be the approximate value of s obtained by the trapezoidal rule
with steplength h. We have

T (h) − s ≈

∞
∑

i=2

hi(ai,1 + ai,2 Log h) (see [5]).

For σ = 2, we have

n E
n

0 E
0
n

2 −.1758293422171846 −.1775484527978632
4 −.1773979134959518 −.1775329593577489
6 −.1775227574385099 −.1775329674394418
8 −.1775322183192145 −.1775329667708583
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[6] T. Håv ie, Error derivation in Romberg integration, BIT 12 (1972), 516–527.

[7] —, Generalized Neville type extrapolation schemes, ibid. 19 (1979), 204–213.

[8] D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Rev.
13 (1972), 435–487.

[9] D. Lev in, Development of nonlinear transformations for improving convergence of
sequences, Internat. J. Computer Math. 3 (1973), 371–388.

[10] J. N. Lyness, Applications of extrapolation techniques to multidimensional quadra-
ture of some integrand functions with a singularity , J. Comput. Phys. 20 (1976),
346–364.

[11] J. N. Lyness and E. de Doncker-Kapenga, On quadrature error expansions,
Part I , J. Comput. Appl. Math. 17 (1987), 131–149.

[12] J. N. Lyness and B. W. Ninham, Numerical quadrature and asymptotic expan-
sions, Math. Comput. 21 (1967), 162–178.

[13] D. Shanks, Non-linear transformations of divergent and slowly convergent se-
quences, J. Math. Phys. 34 (1955), 1–42.



Convergence acceleration for the E-algorithm 413

[14] J. Wimp, Sequence Transformations and their Applications, Academic Press, New
York, 1984.

A. Fdil
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