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DISPERSIVE FUNCTIONS

AND STOCHASTIC ORDERS

Abstract . Generalizations of the hazard functions are proposed and gen-
eral hazard rate orders are introduced. Some stochastic orders are defined
as general ones. A unified derivation of relations between the dispersive
order and some other orders of distributions is presented.

1. Introduction. Denote by φ, ψ, χ real functions, A, B, C, D
intervals on the real line R, X, Y , Z random variables, F , G, H their
respective probability distribution functions and by f , g, h their respective
density functions, if they exist. Define F = 1 − F and F−1(u) = inf{x :
F (x) ≥ u}, u ∈ (0, 1) (and analogously for G). We identify the distribution
functions F , G, H with the respective probability distributions and denote
their supports, which are intervals, by SF , SG, SH respectively. We denote
by φψ the superposition of functions φ and ψ: in particular, G−1F denotes
the superposition of G−1 and F . We use increasing in place of nondecreasing

and decreasing in place of nonincreasing .

Alzaid and Proschan (1992) have introduced the following definition.

Definition 1. A function φ : A→ R is dispersive on the interval A ⊂ R

if φ(x) − x is increasing on A.

It is easy to see that the superposition of two dispersive functions is also
dispersive.

We give two theorems on dispersive functions which are modifications of
two known results.
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Bartoszewicz (1987) has proved a theorem on the preservation of the
dispersiveness under transformations. Its modified version is the following
(see also Shaked and Shanthikumar (1994)).

Theorem 1. Let A, B, C, D be intervals on the real line R and B ⊂
C ⊂ A. Let φ : A → B be a dispersive function on A such that there exists

x0 for which
φ(x) ≤ x if x < x0,

and
φ(x) ≥ x if x > x0.

If a function ψ : C → D is increasing (decreasing) concave (convex ) on

the set {x : x = ψ−1(u) < x0, u ∈ D} and convex (concave) on the set

{x : x = ψ−1(u) > x0, u ∈ D}, then the function ψφψ−1 is dispersive

on D.

We recall that φ : R → R is superadditive (subadditive) on A ⊂ R if
φ(x+ y) ≥ (≤) φ(x) + φ(y) for x, y, x+ y ∈ A. It is well known that if φ is
convex (concave), then it is superadditive (subadditive) and if φ is increasing
superadditive (subadditive), then φ−1 is subadditive (superadditive). It
is also well known that the superposition of two increasing superadditive
(subadditive) functions is also superadditive (subadditive).

Theorem 2.3 of Ahmed et al . (1986) can be modified as follows (see also
Bartoszewicz (1987)).

Theorem 2. Let A ⊂ R be an interval and φ : A → R be an increasing

function such that there exists x0 for which

lim
x→x0−0

φ(x)

x
≤ 1 and lim

x→x0+0

φ(x)

x
≥ 1.

If φ is subadditive for x < x0 and superadditive for x > x0, then φ is

dispersive on A.

Recall the definitions of two stochastic orders. F is stochastically smaller

than G (F ≤st G orX ≤st Y ) if F (x) ≥ G(x) for every x. F is less dispersive

than G (F ≤disp G or X ≤disp Y ) if

(1) F−1(β) − F−1(α) ≤ G−1(β) −G−1(α) whenever 0 < α < β < 1.

Shaked (1982) has proved that F ≤disp G if and only if G−1F (x) − x is
increasing on SF , i.e. φ = G−1F is dispersive on SF . Thus Theorem 1
may be treated as a preservation theorem for the dispersive order. In par-
ticular, we have the following statement (Bartoszewicz (1987), Shaked and
Shanthikumar (1994)).

Corollary 1. Let F (0) = G(0) = 0, SF and SG be intervals and ψ be

an increasing convex function. If X ≤st Y and X ≤disp Y , then ψ(X) ≤disp

ψ(Y ).
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Bartoszewicz (1987) has used Theorems 1 and 2 to prove some relations
between the dispersive and the hazard rate orders of distributions. In this
paper we remark that many other stochastic orders may be defined by dis-
persive functions. In Section 2 a general approach is proposed by introduc-
ing operators and general hazard functions. Particular cases are considered.
Many orders of distributions are defined by dispersiveness of these hazard
functions. Properties of the hazard operators are given in Section 3. Some
relations between the dispersive and some other orders are established in
Section 4.

2. Generalizations of the hazard function. Let F be the class
of distributions with a common support S which is an interval. It is well
known that the function RF (x) = − logF (x), x ∈ S, is the hazard function
of F ∈ F . If the density f exists, we have

RF (x) =

x\
−∞

rF (t) dt,

where

(2) rF (t) = f(t)/F (t)

is the hazard rate function of the distribution F . Thus F may be represented
in the form

(3) F (x) = 1 − e−RF (x), x ∈ S.

We generalize (3) in two ways.

2.1. Hazard functions defined on S. Let H be a class of real functions
defined on S. Consider a one-to-one mapping (operator) Λ : F → H with
H = Λ(F). Denote by Λ−1 : H → F the inverse operator. Thus for every
F ∈ F we have

F (x) = (Λ−1 ◦ Λ(F ))(x), x ∈ S,

where ◦ denotes the superposition of operators. By analogy we introduce
the following definition.

Definition 2. The function RF (x) = Λ(F )(x), x ∈ S, is called the
Λ-hazard function of the distribution F ∈ F .

Also by analogy with the hazard rate order (see Example 1 below) we
propose the following definition.

Definition 3. Let F,G ∈ F . We say that F is smaller than G in the

Λ-order (F ≤Λ G or X ≤Λ Y ) if RF (x) −RG(x) is increasing on S.

It is easy to see that under general assumptions about Λ the Λ-order is
a preorder. If R−1

G , the inverse of RG, exists and is increasing, then we may
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define the Λ-order in the following way:

F ≤Λ G ⇔ RFR
−1
G is dispersive on RG(S).

Now we give examples of stochastic orders which may be defined as
Λ-orders. Properties of these may be found in Shaked and Shanthikumar
(1994). The orders defined in Examples 1, 3 and 4 are commonly called
uniform stochastic orders and were studied in detail by Keilson and Sumita
(1982) and Lynch et al. (1987).

Example 1 (The hazard rate order). Let F be the class of continuous
distributions with common support S = [0,∞). Let F,G ∈ F . We say that
F is smaller than G in the hazard rate order (F ≤hr G or X ≤hr Y ) if

(4) F/G decreases in x ∈ S.

If the densities f and g exist, then (4) holds if, and only if,

rF (x) ≥ rG(x), x ∈ S,

where rF and rG are the hazard rate functions of F and G respectively,
defined by (2). We define Λ(F ) = − logF for F ∈ F , and Λ−1(φ) = 1− e−φ

for φ ∈ H. Hence

F ≤Λ G ≡ F ≤hr G.

Example 2 (The generalized hazard rate order). Let F be the class of
continuous distributions with a common support S which is an interval. Let
H be a distinguished distribution from F and

Λ(F ) = H−1F.

We may call this Λ-order a generalized hazard order and denote it by ≤ghr.
The function RF (x) = H−1F (x), x ∈ S, is called a generalized hazard

function. If the density h exists, the function

d

dx
RF (x) =

f(x)

hH−1F (x)

is called a generalized hazard rate function of F (Barlow et al . (1972)). If
S = [0,∞) and H(x) = 1 − e−x, x ≥ 0, we obtain the usual hazard rate
function and the usual hazard rate order.

Example 3 (The reversed hazard rate order). Let now F be the class of
continuous distributions with common support S = (−∞, a], a < ∞. Let
F,G ∈ F . We say that F is smaller than G in the reversed hazard rate order

(F ≤rh G or X ≤rh Y ) if

(5) F (x)/G(x) decreases in x ∈ S.
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If the densities f and g exist, we may define the corresponding reversed
hazard rate functions

r̆F (x) =
f(x)

F (x)
and r̆G(x) =

g(x)

G(x)
, x ∈ S,

and then (5) holds if, and only if,

r̆F (x) ≤ r̆G(x), x ∈ S.

We define Λ(F ) = − logF for F ∈ F , and Λ−1(φ) = e−φ for φ ∈ H. Thus
from (5) we have

F ≤Λ G ≡ F ≤rh G.

R e m a r k 1. The reversed hazard rate order may also be treated as
the generalized hazard rate order defined in Example 2 with H(x) = ex−a,
x ≤ a.

Example 4 (The likelihood ratio order). Let F be the class of abso-
lutely continuous distributions with respect to the Lebesgue measure with
a common support S. Let F,G ∈ F . We say that F is smaller than G in

the likelihood ratio order (F ≤lr G or X ≤lr Y ) if

f(x)/g(x) decreases in x ∈ S.

We define the operator Λ : F → H by

(6) Λ(F ) = − log
d

dx
F, F ∈ F .

The inverse operator has the form

Λ−1(φ) =
\
e−φ, φ ∈ H.

Thus we have

F ≤Λ G ≡ F ≤lr G.

Example 5 (The mean residual life order). Let F be the class of con-
tinuous distributions on S = [0,∞) with finite means. If X is a random
variable with distribution F ∈ F , we define the mean residual life of X at
x > 0 as

(7) mF (x) = E[X − x | X > x] =

T
∞

x
F (u) du

F (x)
.

Since µF = E(X) =
T
∞

0
F (x) dx < ∞ we have mF (x) < ∞ for x < ∞.

For a random variable Y with distribution function G ∈ F , mG and µG are
similarly defined.

We say that F is smaller than G in the mean residual life order (F ≤mrl

G or X ≤mrl Y ) if

mF (x) ≤ mG(x), x > 0.
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One can easily prove (Shaked and Shanthikumar (1994)) that

F ≤mrl G ⇔

T
∞

x
F (u) duT

∞

x
G(u) du

decreases in x > 0.

We define the operator Λ : F → H by

(8) Λ(F )(x) = RF (x) = − log

∞\
x

F (u) du, x > 0.

The inverse operator Λ−1 is of the form

Λ−1(φ) = 1 +
d

du
e−φ, φ ∈ H.

Thus we have

F ≤Λ G ≡ F ≤mrl G.

Since RG is increasing, F ≤mrl G ⇔ RFR
−1
G is dispersive on (− log µG,∞).

Example 6 (The memory order). Let F be the class of continuous
distributions on S = [0,∞) with finite means and F (0) = 0 for all F ∈ F .
Let mF and mG be the respective mean residual lifes of distributions F and
G from F , defined by (7), and µF and µG their respective means. Following
Ebrahimi and Zahedi (1992) we say that F is smaller than G in the memory

order (F ≤m G or X ≤m Y ) if

µF ≥ µG and mF (x) −mG(x) increases in x > 0.

Ebrahimi and Zahedi (1992) have proved that F ≤m G implies G ≤mrl F .
We define the operator Λ : F → H by

Λ(F )(x) = RF (x) = mF (x) =

T
∞

x
F (u) du

F (x)
.

Thus for F,G ∈ F with µF ≥ µG, we have

F ≤Λ G ≡ F ≤m G.

Example 7 (Monotone convex and concave orders). Let X and Y be two
random variables and F and G be their respective distribution functions.
We say that F is smaller than G in the increasing convex [concave] order

(F ≤icx G or X ≤icx Y [F ≤icv G or X ≤icv Y ]) if

E[φ(X)] ≤ E[φ(Y )] for all increasing convex [concave] functions φ : R → R.

One can prove (Shaked and Shanthikumar (1994)) that

F ≤icx G ⇔

∞\
x

F (u) du ≤

∞\
x

G(u) du for all x
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and

F ≤icv G⇔

x\
−∞

F (u) du ≥

x\
−∞

G(u) du for all x.

It is easy to notice that we may define these orders as Λ-orders. For the
increasing convex order we put

Λ(F )(x) = −

x\
−∞

∞\
t

F (u) du dt

and for the increasing concave order we put

Λ(F )(x) =

x\
−∞

t\
−∞

F (u) du dt.

2.2. Hazard functions defined on (0, 1). Let Λ̃ : F → H̃ be a one-to-one

operator, where H̃ = Λ̃(F) is the class of real functions defined on (0,1).

Denote by Λ̃−1 : H̃ → F the inverse operator. We introduce the following
definition.

Definition 5. The function R̃F (u) = Λ̃(F )(u), u ∈ (0, 1), is called the

Λ̃-hazard function of the distribution F ∈ F .

We also propose the following definition.

Definition 6. Let F,G ∈ F . We say that F is smaller than G in the

Λ̃-order (F ≤Λ̃ G or X ≤Λ̃ Y ) if R̃G(u) − R̃F (u) is increasing on (0, 1).

Similarly to the Λ-order, it is easy to see that under general assumptions
about Λ̃ the Λ̃-order is a preorder. If R̃−1

F , the inverse of R̃F , exists and is

increasing, then we may define the Λ̃-order as follows:

(9) F ≤Λ̃ G ⇔ R̃GR̃
−1
F is dispersive on R̃F ((0, 1)).

Example 8 (The dispersive order). This order defined by (1) may also be

defined as the Λ̃-order for Λ̃(F ) = F−1, i.e. R̃F (u) = F−1(u), u ∈ (0, 1). The

inverse operator is Λ̃−1(φ) = φ−1, φ ∈ H̃. Thus (1) holds iff R̃G(u)− R̃F (u)
is increasing on (0, 1), i.e.

F ≤Λ̃ G ≡ F ≤disp G.

Example 9 (The star order). Let F be the class of continuous distri-
butions on (0,∞) and F , G ∈ F . We say that F is smaller than G in the

star order (F ≤∗ G or X ≤∗ Y ) if G−1F is starshaped, i.e. G−1F (x)/x is
increasing in x > 0, i.e. G−1(u)/F−1(u) is increasing in u ∈ (0, 1). Putting

Λ̃(F ) = logF−1 and Λ̃−1(φ) = ψ−1, where ψ = eφ, φ ∈ H̃, we have

F ≤Λ̃ G ≡ F ≤∗ G.
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Example 10 (The convex transform order). We say that F is smaller

than G in the convex transform order (F ≤c G or X ≤c Y ) if

(10) G−1F is convex on SF .

If F , G ∈ F , the class of absolutely continuous distributions on an interval
S, then (10) is equivalent to

fF−1(u)

gG−1(u)
is increasing on (0, 1).

Thus putting Λ̃(F ) = log d
du
F−1 and Λ̃−1(φ) = ψ−1, where ψ =

T
eφ, φ ∈ H̃,

we have

F ≤Λ̃ G ≡ F ≤c G.

Example 11 (The s-order). Let F and G be continuous symmetric
distributions on R, i.e. F (x) = 1 − F (−x), x ∈ R (and analogously for G).
We say that F is smaller than G in the s-order (F ≤s G or X ≤s Y ) (van
Zwet (1964)) if

(11) G−1F is concave on (−∞, 0) and convex on (0,∞).

If F,G ∈ F , the class of absolutely continuous symmetric distributions on
R, then (11) is equivalent to

fF−1(u)

gG−1(u)
is decreasing on (0, 1/2) and increasing on (1/2, 1).

Thus putting

Λ̃(F )(u) = R̃F (u) =

{
− log d

du
F−1(u), u ∈ (0, 1/2),

log d
du
F−1(u), u ∈ (1/2, 1),

and Λ̃−1(φ) = ψ−1, where ψ = sign(ψ)
T
eφ, φ ∈ H̃, we have for F,G ∈ F ,

F ≤Λ̃ G ≡ F ≤s G.

Example 12 (The Lorenz order). Let F be the class of distributions on
[0,∞) with a common mean µ. Let F,G ∈ F . We say that F is smaller

than G in the Lorenz order (F ≤L G or X ≤L Y ) if
x\
0

F−1(t) dt ≥

x\
0

G−1(t) dt, x ∈ [0, 1].

Putting

Λ̃(F )(u) = −

u\
0

x\
0

F−1(t) dt dx, u ∈ (0, 1),

and Λ̃−1(φ) = ψ−1, where ψ = − d2

du2φ, φ ∈ H̃, we have

F ≤Λ̃ G ≡ F ≤L G.
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Example 13 (The usual stochastic order). The order ≤st may be defined

as a Λ-order and a Λ̃-order as well. Let F be the class of distribution
functions with the common support S = [a,∞), a > −∞. We define the
operator Λ : F → H by

Λ(F )(x) = RF (x) =

x\
a

F (u) du, x ∈ S.

The inverse operator is Λ−1(φ) = d
du
φ, φ ∈ H. Thus for F,G ∈ F ,

F (x) ≥ G(x) for all x ∈ S ⇔ RF (x) −RG(x) increases in x ∈ S,

i.e.
F ≤Λ G ≡ F ≤st G.

It is clear that F ≤st G if and only if F−1(u) ≤ G−1(u) for all u ∈ (0, 1).

Define the operator Λ̃ : F → H̃ by

Λ̃(F )(u) = R̃F (u) =

u\
0

F−1(t) dt, u ∈ (0, 1).

The inverse operator is Λ̃−1(F ) = ψ−1, where ψ = d
du
φ, φ ∈ H̃. Thus for

F,G ∈ F ,

F (x) ≥ G(x) for all x ∈ S ⇔ R̃G(u) − R̃F (u) increases in u ∈ (0, 1),

i.e.

F ≤Λ̃ G ≡ F ≤st G.

3. Preservation theorems. Let F be a class of distributions on which
the operators Λ and Λ̃ are defined. It is easy to see that if

RF = Λ(F ) = ψF, F ∈ F ,

where ψ is a function for which ψ−1 exists, then for F,G ∈ F we have

(12) R−1
G RF = G−1F.

Similarly, if

R̃F = Λ̃(F ) = ψF−1, F ∈ F ,

and ψ−1 exists, then

R̃−1
G R̃F = GF−1.

The following lemma gives conditions under which (12) holds.

Lemma 1. Let F,G ∈ F , Λ and Λ̃ be defined on F such that R−1
F , R−1

G ,

R̃−1
F , R̃−1

G exist. Let φ : R → R be a function for which Fφ−1 ∈ F . Then:

(a) R−1
G RF = G−1F if , and only if ,

(13) Λ(Fφ−1) = Λ(F )φ−1;
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(b) R̃GR̃
−1
F = G−1F if , and only if ,

(14) Λ̃(Fφ−1) = φΛ̃(F ).

P r o o f. We prove the statement (a) only. The proof of (b) is similar.

Sufficiency . Assume (13) holds. Then for φ = R−1
G RF we have

Λ(FR−1
F RG) = Λ(F )R−1

F RG = RFR
−1
F RG = RG = Λ(G).

Therefore we have FR−1
F RG = G, i.e. R−1

G RF = G−1F .

Necessity . Assume (12) holds for every F , G ∈ F . From (12) we have

(15) Λ(G) = Λ(F )F−1G.

Putting G := Fφ−1 in (15) we have

Λ(Fφ−1) = Λ(F )F−1Fφ−1 = Λ(F )φ−1.

From Lemma 1 and Definition 1 we obtain the following corollaries.

Corollary 2. Let F,G ∈ F , Λ satisfy (13) and H = Λ(F) be a class of

strictly increasing functions. Then

F ≤disp G ⇔ R−1
G RF is dispersive on S.

Corollary 3. Let F,G ∈ F and Λ satisfy (13). If R−1
F and R−1

G exist

and are increasing , then

X ≤Λ Y ⇔ RF (X) ≤disp RF (Y ) ⇔ RG(X) ≤disp RG(Y ).

P r o o f. Since F0 = FR−1
F andG0 = GR−1

F are the distribution functions
of RF (X) and RF (Y ) respectively, we have RFR

−1
G = RFR

−1
G RFR

−1
F =

RFG
−1FR−1

F = G−1
0 F0.

Similarly we prove the second equivalence.

Immediately from Lemma 1 and Theorems 1 and 2 we obtain the follow-
ing results.

Corollary 4. Let F,G ∈ F , Λ satisfy (13) and H = Λ(F) be a class of

strictly increasing functions.

(a) If φ = RFR
−1
G and ψ = R−1

G (or ψ = R−1
F ) satisfy the assumptions

of Theorem 1 with A = C = RG(S), B = RF (S) and D = S, then

F ≤Λ G ⇒ F ≤disp G.

(b) If φ = R−1
G RF and ψ = RF (or ψ = RG) satisfy the assumptions of

Theorem 1 with A = B = C = S and D = RF (S) (or D = RG(S)), then

F ≤disp G ⇒ F ≤Λ G.
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Corollary 5. Let F,G ∈ F , Λ satisfy (13) and H = Λ(F) be a class of

strictly increasing functions. Let x0 ∈ S be a point such that

lim
x→x0−0

G−1F (x)

x
≤ 1 and lim

x→x0+0

G−1F (x)

x
≥ 1.

If RF is subadditive for x < x0 and superadditive for x > x0 and RG is

superadditive for x < x0 and subadditive for x > x0, then

F ≤disp G ⇔ F ≤Λ G.

Similar corollaries may be formulated for the Λ̃-order, putting in Corol-
laries 4 and 5: RF := R̃−1

F and RG := R̃−1
G and assuming that Λ̃ satis-

fies (14).

4. The relation between the dispersive and some other stochas-

tic orders. Some Λ- and Λ̃-hazard functions satisfy the condition (13) or
(14) and hence, applying Lemma 1 and Corollaries 4 and 5, we may obtain
particular relations between the dispersive order and some other stochastic
orders.

4.1. The generalized hazard rate order . Consider the class F of continu-
ous distributions with the common support S = [0,∞) and let H ∈ F be a
distinguished distribution. It is easy to see that Λ(F ) = H−1F satisfies (13).
Expressing the convexity of RF in terms of the convex transform order, i.e.
F ≤c H (see Example 10) we may reformulate Corollary 4 as follows.

Corollary 4.1. Let F,G ∈ F .

(a) If F ≤ghr G and H ≤c F or H ≤c G, then F ≤disp G.

(b) If F ≤disp G and F ≤c H or G ≤c H, then F ≤ghr G.

Recall now the following definition (Barlow and Proschan (1975)). We
say that F is smaller than H in the superadditive order (F ≤su G or X ≤su

Y ) if H−1F is superadditive on SF . Thus Corollary 5 may be stated in the
following form.

Corollary 5.1. Let F,G ∈ F . If F ≤su H and H ≤su G, then

F ≤disp G⇔ F ≤ghr G.

Let F0 be the class of continuous distributions on R symmetric with
respect to the origin and let H ∈ F0 be a distinguished distribution. It is
easy to see that for F,G ∈ F0, F ≤ghr G implies F (x) ≤ G(x) for x ≤ 0
and F (x) ≥ G(x) for x ≥ 0. Expressing the concavity and convexity of RF

in terms of the s-order (see Example 11) we may now formulate Corollary 4
in the following form.
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Corollary 4.2. Let F,G ∈ F0.

(a) If F ≤ghr G and H ≤s F or H ≤s G, then F ≤disp G.

(b) If F ≤disp G and F ≤s H or G ≤s H, then F ≤ghr G.

4.2. The hazard rate order . Let F be the class of continuous distributions
on [0,∞). PuttingH(x) = 1−e−x, x ≥ 0, in Section 4.1 we obtain results for
the usual hazard rate order. It is well known (Barlow and Proschan (1975))
that if logF is convex (H ≤c F ), then F is a DFR (decreasing failure rate)
distribution and if logF is concave (F ≤c H), then F is an IFR (increasing

failure rate) distribution. If logF is superadditive (H ≤su F ), then F is
an NWU (new worse than used) distribution and if logF is subadditive
(F ≤su H), then F is an NBU (new better than used) distribution. Thus
Corollary 4 may be formulated for this particular case as follows.

Corollary 4.3 (Bartoszewicz (1987)). Let F,G ∈ F .

(a) If F ≤hr G and F or G is DFR, then F ≤disp G.

(b) If F ≤disp G and F or G is IFR, then F ≤hr G.

Similarly Corollary 5 may be stated in the following form.

Corollary 5.2 (Bartoszewicz (1987)). Let F,G ∈ F . If F is NBU and

G is NWU , then

F ≤disp G ⇔ F ≤hr G.

R e m a r k 2. It seems interesting to compare Corollary 4.3(a) with the
following result.

Theorem 3 (Bartoszewicz (1985)). If SF = [0, a1], SG = [0, a2], 0 <
a1 ≤ a2 ≤ ∞ and F ≤c G or SF = [0,∞), SG = [b,∞), G(b) = 0, b ≥ 0
and G ≤c F , then

F ≤st G⇒ F ≤disp G.

4.3. The reversed hazard rate order . Consider the class F of distributions
and the reversed hazard rate order defined in Example 3. We say that F ∈ F
has increasing reversed failure rate (F is IRFR) if logF is convex, and F ∈ F
has decreasing reversed failure rate (F is DRFR) if logF is concave. Since
Λ(F ) satisfies (13), after some modifications (Λ(F ) = − logF is decreasing),
we obtain from Corollary 4 the following result.

Corollary 4.4. Let F,G ∈ F .

(a) If F ≤rh G and F or G is IRFR, then G ≤disp F .

(b) If F ≤disp G and F or G is DRFR, then G ≤rh F .

4.4. The mean residual life order . Consider now the class F of distri-
butions defined in Example 5 and the mean residual life order defined as
the Λ-order with Λ(F ) given by (8). We say that F is a DMRL (decreasing

mean residual life) distribution if mF is decreasing, i.e. RF is convex. We
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say that F is an IMRL (increasing mean residual life) distribution if mF

is increasing, i.e. RF is concave. It is well known (see e.g. Hollander and
Proschan (1984)) that if F is IFR, then F is DMRL, and if F is DFR, then
F is IMRL. Unfortunately, Λ(F ) does not satisfy (13) and we cannot obtain
relations between the mean residual life and the dispersive orders directly
from Corollary 4. Notice, however, that

RF (x) = − log

∞\
x

F (u)du = − log
[
µF −

x\
0

F (u) du
]

= − log[1 − F ∗(x)] − log µF = − logF ∗(x) − log µF ,

where

F ∗(x) =
1

µF

x\
0

F (u) du

is the stationary renewal distribution corresponding to F (Barlow and Pros-
chan (1975)). G∗ is defined similarly. It is obvious that

mF (x) =
µFF ∗

F (x)
=

1

rF∗(x)
, x ∈ S,

and thus

(16) F ≤mrl G ≡ F ∗ ≤hr G
∗,

i.e.

F ≤Λ G ≡ F ∗ ≤hr G
∗.

From (16) and Corollary 4.3 we have the following implications.

Lemma 2.

(a) F is IMRL ⇔ F ∗ is DFR ⇒ F ∗ is IMRL;
(b) F is DMRL ⇔ F ∗ is IFR ⇒ F ∗ is DMRL;
(c) F is IMRL ⇔ F ≤hr F

∗;
(d) F is DMRL ⇔ F ∗ ≤hr F ;
(e) F is IMRL ⇒ F ≤disp F

∗.

We also have the following lemma.

Lemma 3. Let F,G ∈ F . If F is DMRL and G is IMRL, then

F ≤st G ⇒ F ∗ ≤disp G
∗

and also

(17) F ≤disp G ⇒ F ∗ ≤disp G
∗.

P r o o f. If F is DMRL and G is IMRL, then from Lemma 2(d) we
have F ∗ ≤st F and G ≤st G

∗. Thus F ∗ ≤st G
∗. From Lemma 2(b) we

have F ∗ ≤c K, where K is the exponential distribution and also K ≤c G
∗.
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Thus F ∗ ≤c G
∗. Therefore by Theorem 3 we have F ∗ ≤disp G∗. Since

F ≤disp G⇒ F ≤st G, (17) also holds.

Directly from (16), Corollary 4.3 and Lemma 3 we obtain the relation
between the mean residual life and the dispersive orders.

Corollary 4.5. Let F,G ∈ F .

(a) If F ≤mrl G and F or G is IMRL, then F ∗ ≤disp G
∗.

(b) If F ∗ ≤disp G
∗ and F or G is DMRL, then F ≤mrl G.

(c) If F ≤disp G and F is DMRL and G is IMRL, then F ≤mrl G.

4.5. The likelihood ratio order . We consider the particular case presented
in Example 4. Let F1 be the class of absolutely continuous distributions with
respect to the Lebesgue measure with common support S = [0,∞) and with
decreasing densities. Let Λ : F1 → H be defined by (6). Thus for F,G ∈ F1

the functions R−1
F and R−1

G exist. As in Section 3.3, Λ(F ) does not satisfy
(13) and also we cannot obtain relations between the likelihood ratio and
the dispersive orders in the class F1 directly from Corollary 4. However,
notice that

RF (x) = − log f(x) = − log
f(x)

f(0)
− log f(0)

= − logF∗(x) − log f(0),

where

F∗(x) = 1 −
f(x)

f(0)
, x ∈ S,

is a distribution function. It is easy to notice that µF∗
= 1/f(0) and

F (x) =
1

µF∗

x\
0

F∗(u) du,

so F is the stationary renewal distribution corresponding to F∗ (G∗ is sim-
ilarly defined). Since

f(x)

g(x)
=
f(0)

g(0)
·
F∗(x)

G∗(x)
,

we have

(18) F ≤lr G ≡ F∗ ≤hr G∗,

i.e.

F ≤Λ G ≡ F∗ ≤hr G∗.

One can easily verify the following implications.

Lemma 4. (a) log f is convex ⇔ F∗ is DFR ⇒ F is DFR;
(b) log f is concave ⇔ F∗ is IFR ⇒ F is IFR;
(c) F∗ is IMRL ⇔ F is DFR;
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(d) F∗ is DMRL ⇔ F is IFR;
(e) F is DFR ⇔ F∗ ≤hr F ;
(f) F is IFR ⇔ F ≤hr F∗;
(g) log f is convex ⇒ F∗ ≤disp F .

Putting in Lemma 3: F := F∗, G := G∗ and F ∗ := F , G∗ := G we
obtain the following statement.

Lemma 5. Let F,G ∈ F1. If F is IFR and G is DFR, then

F∗ ≤st G∗ ⇒ F ≤disp G

and also

F∗ ≤disp G∗ ⇒ F ≤disp G.

The relation between the likelihood ratio and the dispersive orders in
the class F1 follows from (18), Corollary 4.3 and Lemma 5.

Corollary 4.6. Let F,G ∈ F1.

(a) If F ≤lr G and log f or log g is convex , then F∗ ≤disp G∗.

(b) If F∗ ≤disp G∗ and log f or log g is concave, then F ≤lr G.

(c) If F ≤lr G, log f is concave and log g is convex , then F ≤disp G.

R e m a r k 3. It is well known that if f is logarithmically concave (con-
vex), then F is IFR (DFR) (Barlow and Proschan (1975)). If F is IFR
(DFR), then F is DMRL (IMRL) and also NBU (NWU) (Hollander and
Proschan (1984)). On the other hand, for distributions F , G with the com-
mon support S = [0,∞), we have the implications (Shaked and Shanthiku-
mar (1994))

F ≤lr G ⇒ F ≤hr G ⇒ F ≤mrl G
⇓

F ≤disp G ⇒ F ≤st G

Comparing Corollaries 4.3(b), 4.5(b)–(c) and 4.6(b) we see that, as usual,
stronger assumptions imply stronger results.

4.6. The star order . Consider the star order defined in Example 9 and
F the class of continuous distributions on (0,∞). For F,G ∈ F we have

(19) F ≤∗ G ⇔ R̃G(u) − R̃F (u) increases in u ∈ (0, 1).

Since R̃F (u) = logF−1 is increasing, (19) is equivalent to

F ≤∗ G ⇔ R̃GR̃
−1
F (x) is dispersive.

Assume that F ≤st G and F ≤∗ G. Applying Theorem 1 to the functions
φ(x) = R̃GR̃

−1
F (x) = logG−1F (ex) and ψ(x) = ex we find that ψφψ−1 =

G−1F is dispersive, i.e. F ≤disp G. Thus we obtain the following known
result (Sathe (1984), Shaked and Shanthikumar (1994)).

Corollary 6. Let F,G ∈ F . If F ≤st G and F ≤∗ G, then F ≤disp G.
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