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LINEARIZATION OF THE PRODUCT OF
ORTHOGONAL POLYNOMIALS OF

A DISCRETE VARIABLE

Abstract. Let {Pk} be any sequence of classical orthogonal polynomials
of a discrete variable. We give explicitly a recurrence relation (in k) for the
coefficients in PiPj =

∑
k c(i, j, k)Pk, in terms of the coefficients σ and τ of

the Pearson equation satisfied by the weight function %, and the coefficients
of the three-term recurrence relation and of two structure relations obeyed
by {Pk}.

1. Introduction. Let {Pk(x)} be any system of classical orthogonal
polynomials of a discrete variable, i.e., Charlier polynomials Ck(x; a), Meix-
ner polynomials Mk(x;β, c), Krawtchouk polynomials Kk(x; p,N), or Hahn
polynomials Qn(x;α, β,N):

B−1∑
x=0

%(x)Pk(x)Pl(x) = δklhk (k, l = 0, 1, . . .),

where hk > 0 (k = 0, 1, . . .); the set of orthogonality is {0, 1, . . . , B − 1},
where B equals +∞, +∞, N + 1 and N , respectively.

Askey and Gasper [2] have given explicit forms for the coefficients in

(1.1) Pi(x)Pj(x) =
min(i+j,B−1)∑

k=|i−j|

cijk Pk(x) (i, j ≥ 0;x ∈ {0, 1, . . . , B − 1}),

called the linearization coefficients of the polynomials {Pk} (see [1], Lec-
ture 5), in terms of finite or infinite series.
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The aim of this paper is to show that cijk obey a linear recurrence relation

(1.2) L∗cijk ≡
r∑

h=0

A∗
h(k)cijk+h = 0.

Recurrence (1.2) may serve as a basis for a very efficient backward recursion
algorithm for evaluating these coefficients. The difference operator L∗ is
given explicitly in terms of the coefficients σ and τ of the Pearson equation
(see (2.2) below) satisfied by the weight function %, and the coefficients
of the three-term recurrence relation (see (2.1)) and of structure relations
obeyed by {Pk} (see (2.5), (2.6)). This result is contained in Theorem 3.5;
applications to some systems of polynomials are given.

The main tool used in the derivation of the recurrence relation is the
fourth-order difference equation

(1.3) Q4w = 0,

obeyed by the product w := PiPj . We give a determinantal form (see
Theorem 3.1), as well as two (equivalent) almost factorized forms of the
fourth-order operator Q4 (see Corollary 3.2 and Theorem 3.4).

2. Properties of the classical orthogonal polynomials

2.1. Basics of classical orthogonal polynomials of a discrete variable. In
the sequel, we make use of certain properties enjoyed by all classical families
of orthogonal polynomials (see [4], Chapter VI; [5]; [6]; [9], Chapter II; or
[10]). Besides the three-term recurrence relation

(2.1) xPk(x) = ξ0(k)Pk−1(x) + ξ1(k)Pk(x) + ξ2(k)Pk+1(x)
(k = 0, 1, . . . ; P−1(x) ≡ 0, P0(x) ≡ 1)

we need four other properties.
First, the weight function % satisfies a difference equation of the Pearson

type

(2.2) ∆[σ(x)%(x)] = τ(x)%(x),

where σ is a polynomial of degree at most 2, and τ is a first-degree polyno-
mial.

Second, for arbitrary i, the polynomial Pi obeys the second order differ-
ence equation

(2.3) P
(n)
2 Pi(x) ≡ {σ(x)∆∇+ τ(x)∆+ λiI}Pi(x) = 0,

where ∆ := E − I, ∇ := I −E−1, Em (m ∈ Z) is the mth shift operator,
Emf(x) = f(x+m), I is the identity operator, If(x) = f(x), and λi is the
constant given by

(2.4) λi := − 1
2 i[(i− 1)σ′′ + 2τ ′] (i ∈ N).
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(By convention, all the bold letter operators act on the variable x.)
Third, we have a pair of the so-called structure relations,

(2.5) [σ(x) + τ(x)]∆Pk(x) = d0(k)Pk−1(x) + d1(k)Pk(x) + d2(k)Pk+1(x),

and

(2.6) σ(x)∇Pk(x) = d0(k)Pk−1(x) + [d1(k) + λk]Pk(x) + d2(k)Pk+1(x).

Fourth,

(2.7) σ(x)%(x)xk|x=B
x=0 = 0 (k = 0, 1, . . .).

2.2. Identities involving the discrete Fourier coefficients. We shall need
certain properties of the Fourier coefficients of an arbitrary polynomial f ,
deg f < B, defined by

(2.8) ak[f ] :=
1
hk
bk[f ] (k = 0, 1, . . . , B − 1),

where

(2.9) bk[f ] :=
B−1∑
x=0

%(x)Pk(x)f(x)

i.e., the coefficients in the expansion

f =
deg f∑
k=0

ak[f ]Pk.

Let X, D and D̃ be the difference operators (acting on k) defined by

X := ξ0(k)E−1 + ξ1(k)I + ξ2(k)E,(2.10)
D := d0(k)E−1 + d1(k)I + d2(k)E,(2.11)

D̃ := D + λkI(2.12)

(cf. (2.1), (2.5) and (2.6), respectively) where I is the identity operator, and
Em the mth shift operator: Ibk[f ] = bk[f ], Embk[f ] = bk+m[f ] (m ∈ Z). For
the sake of simplicity, we write E in place of E1. (We adopt the convention
that all the script letter operators act on the variable k.)

Further, define the difference operators U , V and L (acting on x) by

U := σ(x)∇+ τ(x)I,(2.13)
V := [σ(x) + τ(x)]∆+ τ(x)I,(2.14)
L := V −U ,(2.15)

respectively. Notice that since ∆∇ =∆−∇, we can write

(2.16) P
(n)
2 = L+ λiI.

Using (2.1)–(2.7), the following lemma can be proved.
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Lemma 2.1 ([8]). The coefficients (2.9) obey the identities:

bk[qf ] = q(X)bk[f ] (q an arbitrary polynomial),

bk[Uf ] = −Dbk[f ], D̃bk[∇f ] = λkbk[f ],

bk[V f ] = −D̃bk[f ], Dbk[∆f ] = λkbk[f ],

bk[Lf ] = −λkbk[f ].

3. Main result

3.1. Fourth-order difference equation for the product PiPj . Using def-
initions (2.13) and (2.14), equation (2.3) can be written in the following
equivalent form:

(3.1) A(x)y(x+ 1) +Bn(x)y(x) + C(x)y(x− 1) = 0,

with y = Pn, and

(3.2) A := σ + τ, Bn := λn − 2σ − τ, C := σ.

In the sequel, we adopt the notation

(3.3) f (m)(x) := Emf(x) = f(x+m) (m ∈ Z).

The following theorem is a slightly improved version of a result of [7].

Theorem 3.1. The product w := PiPj (i, j ≥ 0, i 6= j) satisfies the
following difference equation of the fourth order :

(3.4) Q4w ≡

∣∣∣∣∣∣
C(1)C(2)R2w Bi 1
C(2)R3w −B(1)

j 1

R4w B
(2)
i 1

∣∣∣∣∣∣ = 0,

where
R2 := A2E −BiBjI − C2E−1,(3.5)
R3 := AER2 + FI,(3.6)
R4 := AER3 −GI.(3.7)

Here the notation used is in agreement with (3.3), and

(3.8) F := C(1)(BiB
(1)
i +BjB

(1)
j ), G := C(1)C(2)(BiB

(2)
j +BjB

(2)
i ).

P r o o f. We have

AP
(1)
i +BiP

(0)
i + CP

(−1)
i = 0,(3.9)

AP
(1)
j +BjP

(0)
j + CP

(−1)
j = 0.(3.10)

Multiplying (3.9) by AP (1)
j , and making use of (3.10), we obtain

(3.11) R2w = C[BiP
(0)
i P

(−1)
j +BjP

(0)
j P

(−1)
i ]

with the operator R2 given by (3.5).
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Applying the operator AE to both sides of Eq. (3.11), and making use
of (3.9) and (3.10), we get

(3.12) R3w = −CC(1)[B(1)
j P

(0)
i P

(−1)
j +B

(1)
i P

(0)
j P

(−1)
i ]

with the operator R3 given by (3.6).
Repeating the above process for Eq. (3.12), we obtain

(3.13) R4w = CC(1)C(2)[B(2)
i P

(0)
i P

(−1)
j +B

(2)
j P

(0)
j P

(−1)
i ],

where the operator R4 is given by (3.7).
Eqs. (3.11), (3.12) and (3.13) imply

(3.14)

∣∣∣∣∣∣
R2w Bi Bj

R3w −C(1)B
(1)
j −C(1)B

(1)
i

R4w C(1)C(2)B
(2)
i C(1)C(2)B

(2)
j

∣∣∣∣∣∣ = 0;

as B(m)
j = (λj − λi) +B

(m)
i (cf. (3.2)), this is equivalent to (3.4).

Corollary 3.2. An equivalent form of the difference equation (3.4) is

(3.15) (S2R2 + T1)w = 0,

where the difference operator R2 is given in (3.5), and

S2 := AA(1)W1E
2 +AC(2)W2E + C(1)C(2)W3I,(3.16)

T1 := AF (1)W1E +HI.(3.17)

Here we use the notation

W1 := Bi +B
(1)
j , W2 := B

(2)
i −Bi, W3 := −B(2)

i −B
(1)
j ,

H := C(2)FW2 −GW1.

P r o o f. Expanding the determinant (3.4) with respect to the first col-
umn, we obtain

Q4 = C(1)C(2)W3R2 + C(2)W2R3 +W1R4.

On using (3.6) and (3.7), and rearranging terms, the result follows.

If i = j, a slight modification of the argument given in the proof of
Theorem 3.1 and Corollary 3.2 leads to the following result.

Theorem 3.3. The square w := P 2
i (i ∈ N) obeys the third-order differ-

ence equation

(3.18) Q3w ≡
∣∣∣∣C(1)R2w Bi

R3w −B(1)
i

∣∣∣∣ = 0,
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notation used being that of (3.5) and (3.6) (with i = j). An equivalent form
of this equation is

(3.19) (S1R2 + T0)w = 0,

where

R2 := A2E −B2
i I − C2E−1,(3.20)

S1 := ABiE +B
(1)
i C(1)I,(3.21)

T0 := 2B2
iB

(1)
i C(1)I.(3.22)

In the next theorem, we give an alternative derivation of the fourth-order
difference equation for PiPj . It should be stressed that this time the case of
i = j is not excluded.

Theorem 3.4. For any i, j ≥ 0, the product w = PiPj satisfies the
fourth-order difference equation

(3.23) Q̃4w = 0

with

(3.24) Q̃4 =N2M2 − λiλjK2,

where

N2 := α(x)[ϕ0(x)V + ϕ1(x)I]− β(x)[ψ0(x)U + ψ1(x)I],(3.25)
M2 := L+ (λi + λj)I,(3.26)
K2 := α(x)[V + η(x)I]− β(x)[U + ϑ(x)I],(3.27)

and where

(3.28)

α := A(−1)[Bi +Bj +∇(A+ C)], ψ0 := C(−1),

β := C(1)[Bi +Bj −∆(A+ C)], ψ1 := −A[A(−1) + C(−1)]− 1
2α,

ϕ0 := A(1) η := C + C(1),

ϕ1 := [A(1) + C(1)]C + 1
2β, ϑ := −A−A(−1).

P r o o f. Let w := PiPj . Using Leibniz’ rules

(3.29)
{
∆(fg) = f∆g + g(1)∆f,
∇(fg) = f∇g + g(−1)∇f,

and the difference equations satisfied by Pi and Pj (cf. (2.3)), it can be
checked that

(3.30) M2w = A∆Pi∆Pj + C∇Pi∇Pj ,

where we use the notation (3.26) and (3.2). Using this result and the identity

C[λiPi∇Pj + λjPj∇Pi]−A[λiPi∆Pj + λjPj∆Pi] = 2λiλjw,
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we obtain

A∆(AM2w) = − (A2 + CC(1))M2w(3.31)
+ λiλj [A∆+ (A+ C(1))I]w − βA∆Pi∆Pj ,

C∇(CM2w) = (C2 +AA(−1))M2w(3.32)
+ λiλj [C∇− (C +A(−1))I]w + αC∇Pi∇Pj .

On subtracting the equations (3.31) and (3.32), multiplied by α and β,
respectively, and making use of (3.29) and (3.30), the result follows.

3.2. Recurrence relation for the linearization coefficients. For some
technical reasons, it is easier to construct a recurrence

(3.33) Lsij
k ≡

r∑
h=0

Ah(k)sij
k+h = 0

for

(3.34) sij
k :=

B−1∑
x=0

%(x)Pi(x)Pj(x)Pk(x),

obviously equivalent to (1.2), in view of

(3.35) sij
k = hkc

ij
k .

Now, we prove

Theorem 3.5. For arbitrary i, j ≥ 0, the recurrence relation

(3.36) Lsij
k = 0

holds, where

L := α(X){[ϕ1(X)− ϕ0(X)D̃](ωkI)− λiλj [η(X)− D̃]}(3.37)
− β(X){[ψ1(X)− ψ0(X)D](ωkI)− λiλj [ϑ(X)−D]},

with ωk := λi + λj − λk, notation being that of (2.10)–(2.12), (3.28).

P r o o f. Let w := PiPj . Obviously,

sij
k = bk[w], cijk = ak[w].

By virtue of Theorem 3.4,
bk[Q̃4w] = 0.

It suffices to show that the identity

bk[Q̃4w] = Lbk[w]

holds. Now, observe that by Lemma 2.1, we have the following identities:

bk[N2z] = {α(X)[ϕ1(X)− ϕ0(X)D̃]− β(X)[ψ1(X)− ψ0(X)D]}bk[z],
bk[M2w] = (λi + λj − λk)bk[w],
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bk[K2w] = {α(X)[η(X)− D̃]− β(X)[ϑ(X)−D]}bk[w].

From (3.24)–(3.27), applying again Lemma 2.1, we obtain (3.38).

Obviously, we have the following.

Corollary 3.6. The linearization coefficients cijk in (1.1) obey the re-
currence relation

(3.39) L∗cijk = 0

with L∗ := L(hkI), L being the difference operator given in (3.37).

Example 3.7. The coefficients {cijk } in

Ci(x; a)Cj(x; a) =
i+j∑

k=|i−j|

cijk Ck(x; a) (x ∈ N0),

where Cm(x; a) is the mth monic Charlier polynomial (see Appendix, Ta-
ble 1), satisfy the sixth-order recurrence relation

3∑
h=−3

Bh(k)cijk+h = 0 (|i− j|+ 3 ≤ k ≤ i+ j + 2),

with

B−3(k) = 2(k − s− 3),
B−2(k) = (k − s− 2)(6k + 8a− s+ 1) + 2ij,
B−1(k) = (k − s− 1)[6k2 + 2(11a− s+ 4)k − s+ 1 + 2a(4a+ 7)]

+ ij(4k + 12a− s+ 5),
B0(k) = (k − s){2k3 + (7− s+ 20a)k2

+ 2(11a2 + 23a+ 3− s)k + 2a2(3s+ 13)− a(s2 − 25)}
+ ij[2k2 + (7− s+ 22a)k + 6(a+ 1)(4a+ 1)− 2s(2a+ 1)],

B1(k) = a(k − s+ 1){6k3 + 10(2a+ 3)k2 + [49− s2 + a(9s+ 67) + 4a2]k
+ 4(s+ 1)a2 + (58 + 15s− s2)a− 2s2 + 26}
+ 2aij[5k2 + 2(9 + 10a− s)k + 2(a+ 2)(4a− s+ 8)− 16],

B2(k) = a2(k + 2){(k − s+ 2)[3(k + 3)(2k + 3) + 3(s+ 2a)(k + 1)
− (s− 6a− 4)(s+ 1)] + 4ij(4k − s+ 6a+ 8)},

B3(k) = 2a3(k + 2)2(k + i− j + 3)(k − i+ j + 3),

where s := i + j. The initial conditions are ciji+j = 1, and cijm = 0 for
m > i+ j. Actual forms for Bh’s were obtained using the computer algebra
system Maple [3].



Linearization of the product 453

Example 3.8. The coefficients {cijk } in

Ki(x; 1/2, N)Kj(x; 1/2, N) =
i+j∑

k=|i−j|

cijk Kk(x; 1/2, N) (0 ≤ x ≤ N),

where Km(x; 1/2, N) is a special case of the mth monic Krawtchouk poly-
nomial (see Appendix, Table 2), satisfy the three-term recurrence relation

16(k − s− 2)(2N − s− k + 2)cijk−2

+ 4[(k2 − d2)(k −N − 2)2 − (k + 1)2(k − s)(2N − s− k)]cijk

− (k + 1)2[(k + 2)2 − d](k −N)2c
ij
k+2 = 0 (|i− j|+ 2 ≤ k ≤ i+ j + 1),

where s := i + j, and d := i − j. The starting values are ciji+j = 1, and
cijm = 0 for m > i+ j. This result agrees with the explicit form given in [2].
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of the authors (S. L.) at the Université des Sciences et Technologies de Lille.
He is very indebted to Professor Claude Brezinski, Directeur du Labora-
toire d’Analyse Numérique et d’Optimisation, and Professor Jeannette Van
Iseghem for the kind invitation and their warm hospitality.

Appendix

T A B L E 1
Data for the monic Charlier and Hahn polynomials

Charlier Hahn
Ck(x; a) Qk(x;α, β,N)
(a > 0) (α, β > −1, N ∈ Z+)

σ x x(N + α− x)
τ a− x (β + 1)(N − 1)− (γ + 1)x

λk k k(k + γ)

X akE−1 + (k + a)I + E
k(N − k)(k + α)(k + β)(k + γ − 1)(k + γ +N − 1)

(2k + γ − 2)2(2k + γ − 1)2
E−1

+
{
α− β + 2N − 2

4
+

(β2 − α2)(γ + 2N − 1)
4(2k + γ − 1)(2k + γ + 1)

}
I + E

D akE−1
k(k + α)(k + β)(k + γ − 1)2(N − k)(k + γ +N − 1)

(2k + γ − 2)2(2k + γ − 1)2
E−1

−k(k + γ)[2k(k + γ) + (γ − α)(γ − 1)−N(α− β)]
(2k + γ − 1)(2k + γ + 1)

I− kE

hk k!ak
k!Γ (k + α+ 1)Γ (k + β + 1)(2k + γ + 1)N−k−1

(k + γ)k(N − k − 1)!

Note: γ := α+ β + 1.
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T A B L E 2
Data for the monic Meixner and Krawtchouk polynomials

Meixner Krawtchouk
Mk(x;β, c) Kk(x; p,N)

(β > 0, c ∈ (0, 1)) (p ∈ (0, 1), N ∈ Z+)

σ x x

τ βc+ (c− 1)x (1− p)−1(Np− x)
λk (1− c)k (1− p)−1k

X
ck(k + β − 1)

(1− c)2 E−1 p(1− p)k(N − k + 1)E−1

+
[(c+ 1)k + βc]

1− c I + E +[k + p(N − 2k)]I + E

D
ck(1− β − k)
c− 1

E−1 + ckI pk(1 +N − k)E−1 − p(1− p)−1kI

hk
k!(β)kc

k

(1− c)β+2k
N !k!

(N − k)!p
k(1− p)k
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UFR de Mathématiques Institute of Computer Science
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