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Abstract. We consider a cobordism category whose morphisms are punctured connected

sums of S1×S2’s (wormhole spaces) with embedded admissibly colored banded trivalent graphs.

We define a TQFT on this cobordism category over the field of rational functions in an inde-

terminant A. For r large, we recover, by specializing A to a primitive 4rth root of unity, the

Witten-Reshetikhin-Turaev TQFT restricted to links in wormhole spaces. Thus, for r large, the

rth Witten-Reshetikhin-Turaev invariant of a link in some wormhole space, properly normalized,

is the value of a certain rational function at e
πi

2r . We relate our work to Hoste and Przytycki’s

calculation of the Kauffman bracket skein module of S1 × S2.

Introduction. We wish to consider links and graphs in a connected sum of S1×S2’s.

Borrowing a phrase from the physicists, we will use the term ‘wormhole space’ to describe

this kind of oriented 3-manifold with a relatively simple topology. Let Q(A) denote the

field with involution consisting of the rational functions in the indeterminant A, with

involution given by sending A to A−1.

In section one, we associate to a framed link L in a wormhole space M an invariant

< L >∈ Q(A). This generalizes the Kauffman Bracket [K] version of the Jones polynomial

[J]. Let G ⊂ M be a banded trivalent graph in the sense of [BHMV] (4.5) with an

admissible coloring where the set of colors is taken to be all nonnegative integers. We

will also define < G >∈ Q(A). Here we make use of Roberts’ [R] fusion technique for

simplifying bracket calculations. The well-definedness of the invariant rests ultimately

on the well-definedness of the Witten-Reshetikhin-Turaev invariant [W] [RT]. See also [L]

and [KL]. It follows that for a link in a wormhole space, the Witten-Reshetikhin-Turaev

invariant for r large is given by the evaluation of a rational function in A at e
πi

2r , which

we denote Ar. In the introduction to [La], Lawrence remarks that while the Witten-
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Reshetikhin-Turaev invariant of a link in S3 (being essentially the Jones polynomial) can

be defined for all values of A, this is not so far known to be true for links in any other

3-manifolds. We now know how to do this for links in wormhole space. The function is

rational except at even roots of unity of small order where it may be discontinuous. These

discontinuities are unavoidable, as is demonstrated in §5.

In section two, we define the related TQFT using the universal construction given

in [BHMV]. We describe now the cobordism category C on which the TQFT is defined.

A punctured wormhole space is a wormhole space with the interiors of some smooth

closed 3-balls deleted. The boundary of a punctured wormhole space is a collection of

2-spheres. A punctured wormhole space with a properly embedded admissibly colored

graph (M,G) has boundary a disjoint union of 2-spheres with colored banded points.

The objects of C are disjoint unions of 2-spheres with colored banded points. We also

include the empty surface. A morphism from object Σ1 to object Σ2 is a triple (M,G, f).

Here f is a diffeomorphism of ∂(M,G) to −Σ1

∐

Σ2, and M is a punctured wormhole

space or a disjoint union of punctured wormhole spaces or is the empty set. It is pleasant

that no additional further structure such as a 2-framing or p1 structure is needed. This

is because our 3-manifolds are so simple.

Since < > is a multiplicative involutive invariant, the universal construction provides

a cobordism generated quantization functor from C to the category of vector spaces

over Q(A). We show that the vector spaces are finite dimensional and that the tensor

product axiom holds. Thus we have a TQFT [A] which assigns V (Σ) to an object Σ and

ZM : V (Σ1) → V (Σ2) to a morphism M from Σ1 to Σ2. If Σ is the 2-sphere with 2k

banded points all colored one, the dim(V (Σ)) is the kth Catalan number. A version of

this TQFT with many fewer objects and morphisms was introduced in [G, §4].

C appears to be the largest category on which one may define a generic TQFT which

will specialize to the Witten-Reshetikhin-Turaev SU(2) invariant for r large. Thus is how

we were lead to it.

Hoste and Przytycki [HP] calculated S(S1 ×S2), the Kauffman bracket skein module

of S1 × S2. S(S1 × S2) as a module over Z[A,A−1] has a rank one free part, and some

torsion. Thus a framed link in S1×S2 determines a Laurent polynomial in A. In section

3, we show that this polynomial agrees with our < L > . However our work provides an

alternative method of calculating the Hoste-Przytycki polynomial. This polynomial is also

(up to sign) the penultimate coefficient of Γ(L), defined in [G]. The invariant <L> is new

for links in a connected sum of more than one S1×S2. The fourth section gives two worked

examples. The fifth section, improves estimates on how large r must be to guarantee that

< G > evaluated at A at Ar is essentially the rth Witten-Reshetikhin-Turaev invariant.

We think that the TQFT introduced here is useful from a pedagogical point of view

for the following reasons. On the one hand, the objects and morphisms of the cobordism

category are simple topological spaces without any extra structure such as a 2-framing

or p1 structure. On the other hand, the theory is not completely trivial either.

1.Graphs in a wormhole space. Let r be an integer greater than two. By a graph,

we will mean a trivalent banded colored graph as above. Let G be a graph in a worm-
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hole space M. Suppose that k is greater than all the colors on G. Let Zr(M,G) denote

the Witten-Reshetikhin-Turaev invariant. This is IAr
(M,L) evaluated at the element of

S(S1×I)⊗#L given by taking Si(α) on a component colored i where L is the colored link

obtained by expanding G [L]. Also Zr(M,G) is < M,G >2r , where M has been given a

p1 structure whose σ invariant is zero [BHMV][MV]. We let

< G >r=
Zr(M,G)

Zr(M)

M is given by zero framed surgery on the unlink. The number of components of the

unlink is the number of S1×S2 summands. We mark the components of the unlink with

dots to indicate along which components 0-framed 1-surgery is to be performed, thinking

perhaps of doing a 0-surgery along two three balls on ether side of the spanning disk

[Ki, p. 5]. Thus (M,G) may be described by a trivalent colored graph drawn on black-

board with standard diagram of unlink whose components have been dotted. We may

assume that G is transverse to the disks which bound the components of the unlink. Thus

Zr(M,G) is the generalized bracket evaluation [KL] of this diagram after replacing each

component of the unlink with the ω2r of [BHMV]. Zr(M) is simply the generalized bracket

evaluation of the unlink after replacing each dotted component with ω2r. Thus if we were

to change ω by a scale factor in the above computation, < G >r would remain unchanged.

Thus we could as well take ω to be Lickorish’s ω =
∑

i = ∆iSi(α) or [BHMV]’s Ω2r.

Suppose r is larger than the sum of the colors on the strands of G which pass through

each disk. Then we may use recoupling theory to rewrite the evaluation as a linear

combination of evaluations where at most a single strand passes through each disk. This

is called fusion. One simply makes repeated use of the two strand fusion identity. See

the identity of Figure 31 in [L] for example. Then we may discard all the terms in

the linear combination where the single strand has a nonzero color using Lickorish’s

Lemma [L, Lemma 6]. This method of simplification is due to Roberts [R, Figure 7,

Figure 16] [KL,§12.11]. Figure 1 shows this method applied to 3 strands. Recall a triple

of nonnegative integers which are less than r are called r-admissible if |i− j| ≤ k ≤ i+ j,

i+ j + k ≡ 0 (mod 2), and i+ j + k ≤ 2r − 4.

i j k

Figure 1

=

i j k

0

if i,j,k are r-admissible

otherwise

i j k

θ(i,j,k)

1

Fig. 1

In our situation, it is important to see that the above simplification can be made inde-

pendent of r, as long as r is greater than the sum of colors passing through each disk. If
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r is greater than the sum plus one, then all the two strand fusions may be done indepen-

dently of r. If r is equal to the sum plus one, then all but the last fusion can be done with

the same formulas as for larger r. In the last fusion, the expansion we get is obtained by

taking the expansion for larger r and discarding all terms with a nonzero color on the

single strand. However for larger r these same terms get discarded later using Lickorish’s

lemma.

One now has a linear combination of trivalent colored graphs completely unlinked

from the unlink. Thus < G >r is given by the bracket evaluation of the graph after we

delete the unlink. Let G′ denote this new trivalent graph. < G >r is given by the bracket

evaluation of G′ after we set A = Ar.

Let < G >∈ Q(A) be the bracket evaluation of G′. Then < G >r is simply < G >

evaluated at A = Ar. Since by, say, [BHMV] or [L], < G >r is a well defined isotopy

invariant of G, we can conclude that < G >∈ Q(A) is also. Here we use the elementary

fact that if two rational functions agree at infinitely many distinct points then they must

agree. This is an immediate consequence the fundamental theorem of algebra. It is

important to realize that this argument shows that the result of calculating < G > as

above does not depend on the original surgery description of M or on any choices made

in performing fusion.

We note that if L is a link diagram, then it describes a framed link in the wormhole

space S3. If we color this framed link one, we get a graph in S3 which we also denote by

L. In this situation < L > is the ordinary Kauffman bracket [K] of the link diagram L,

which in turn is version of the Jones polynomial [J]. Thus < G >∈ Q(A) generalizes the

Kauffman bracket or Jones polynomial of links in S3 to graphs in a wormhole space.

Lemma (1.1). If G ⊂ M meets an embedded 2-sphere S ⊂ M in a single non-zero

colored point , then < G > is zero.

P r o o f. Cut M along S and attach two 3-disks to obtain a space M ′. If M ′ is con-

nected, then M ′ is a wormhole space and M is obtained from M ′ by a 0-surgery. In this

case Lickorish’s lemma shows < G >r to be zero for r large. Thus < G > must be zero.

If M ′ is disconnected, then M ′ is the disjoint union of two wormhole spaces and M is

obtained by taking their connected sum. Now < G >r is zero for r large, making use of

one basic properties of the Temperley-Lieb idempotents f (n)ei = 0 [L, Lemma 1]. Thus

< G > must be zero.

This invariant is extended multiplicatively to disjoint union of wormhole spaces with

graphs. This invariant is involutive: Let −G denote G in M with the orientation on M

reversed. Then < −G >= < G >.

Note that < G > is really an invariant of the pair (M,G). Thus if f is an orientation

preserving diffeomorphism of M, then < f(G) >=< G > . Equivalently < G > does not

depend on a particular way of viewing M as the connected sum of some S1 × S2’s.

2.A TQFT. Consider the cobordism category C described in the introduction. <>

is an involutive multiplicative invariant on the closed objects of C. The universal construc-

tion of Blanchet, Habegger, Masbaum, and Vogel then provides a cobordism generated
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quantization functor (Z, V ) to the category of vector spaces over Q(A). To show that

(Z, V ) is a TQFT we must show that the tensor product axiom holds, and that the

vector spaces associated to surfaces are finite dimensional . Recall elements of V (Σ) are

equivalence classes of linear combinations of graphs in a punctured wormhole space whose

boundary is Σ. We note that V (Σ) comes equipped with a nonsingular Hermitian form

< , >Σ.

Lemma (2.1). Let Σ be an object of C. Let N be a punctured 3-sphere with boundary

the underlying manifold of Σ. V (Σ) is generated by graphs in N.

P r o o f. Let (N,G) be a Wormhole space with graph whose boundary is Σ. We may

represent G by a graph in a punctured 3-sphere N ′ together with a dotted unlink. Ap-

plying the method of calculation in §1, we obtain a linear combination of graphs G′

in N ′. Then we have the following equality of conjugate linear forms: < (N,G), >Σ=

< (N ′, G′), >Σ . Thus (N,G) and (N ′, G′) represent the same element in V (Σ).

Lemma (2.2). The natural map V (Σ1)⊗ V (Σ2) → V (Σ1

∐

Σ2) is surjective.

P r o o f. Let (N,G) be a punctured 3-sphere with graph whose boundary is Σ1

∐

Σ2.

Let S be a 2-sphere in N such that Σ1 and Σ2 lie in different components of N − S.

Let N ′ denote N surgered along S.We may use fusion to represent the same element of

V (Σ1

∐

Σ2) as (N,G) by a linear combination of graphs in N which each meet S in at

most a single point. By Lemma (1.1), we may discard those which meet S in a single

point. Let G′ be the resulting linear combination of graphs in N ′. < (N,G), >Σ=<

(N ′, G′), >Σ . Thus (N,G) and (N ′, G′) represent the same element in V (Σ). But such

an element is in the image of V (Σ1)⊗ V (Σ2).

LetΣ be a 2-sphere with some banded colored points ℓ. S is the boundary of a 3-ball

B. Let G be an embedded trivalent (noncolored) tree in B, such that G∩S = ℓ. Admissible

colorings of G give graphs in B and thus elements of V (Σ, ℓ). As in [BHMV] (see also

[KL, Chapter 7]), one may show:

Lemma (2.3). The set of admissible colorings of a fixed tree G as above forms an

orthogonal basis for V (Σ) with respect to the Hermitian form < , >Σ.

Theorem (2.4). (Z, V ) is a TQFT.

P r o o f. By Lemmas (2.2) and Lemma (2.3), V (Σ) is finite dimensional for any Σ. If

we equip V (Σ1)⊗ V (Σ2) with the tensor product of the forms on V (Σ1) and V (Σ2), the

map V (Σ1)⊗ V (Σ2) → V (Σ1

∐

Σ2) is an isometry , and thus injective. Thus the map is

an isomorphism.

Proposition (2.5). If Σ is a sphere with 2n points colored one, then V (Σ) is given

in the obvious way by the set of diagrams in the disk without crossings and with boundary

2n fixed points. Thus dim V (Σ) is the nth Catalan number c(n) = 1
n+1

(

2n
n

)

.

P r o o f. Using the Kauffman relations, it is clear that this set generates V (Σ). Con-

sider the matrix we get when we pair this set of elements against itself under < , >Σ .

Its determinant is easily seen to be a polynomial of degree n c(n) in d = −A2 −A−2. So

this set of elements is linearly independent.
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3. Relation to Hoste and Przytycki’s work. S(S1 × S2) modulo its Z[A,A−1]-

torsion submodule is isomorphic to Z[A,A−1], [HP]. This quotient can be identified with

Z[A,A−1]. The equivalence class of the free generator 1 given by the empty link is iden-

tified with one. Following Hoste and Przytycki, we let π denote the projection from

S(S1 × S2) to this quotient. Thus we have π : S(S1 × S2) → Z[A,A−1]. The application

of < > to links L in S1 × S2 colored one defines a Z[A,A−1]-module homomorphism

to Q(A) which must vanish on the torsion submodule. Let ∅ denote the empty link in

S1 × S2, then < ∅ >= π(1) = 1 ∈ Z[A,A−1]. This proves:

Proposition (3.1). If L is a framed link in S1 × S2 colored one, then < L >= π(L).

The element of S(S1 × S2) given by m standardly framed longitudes is denoted zm.

Let Lm denote this link viewed now as a closed morphism of C. We have by [BHMV,

(1.2)], < Lm >= Trace(IdSm
) = dimV (Sm). Using Proposition (2.5), we have a new

proof of [HP, Corollary 5].

Corollary (3.2) (Hoste-Przytycki). π(z2n+1) = 0, and π(z2n) is the nth Catalan

number.

We remark that it follows from Proposition (3.1) that, for a link L colored one in

S1 × S2, < L > actually lies in Z[A,A−1]. This also follows from the fact shown in [G]

that Γ(T ) has coefficients in Z[A,A−1]. The first example in §4 shows this is not true for

a knot colored one in the connected sum of two S1 × S2s.

Although a relationship has been given between [HP] and [G, §4], the lower bounds

given for the wrapping number of links in S1 × S2 given by these two papers still seem

different, but a detailed comparison has not been made.

4. Two examples

=
1

d

_

Fig. 2

Using the fusion identity on the left of Figure 2, we compute < K >= 1
d
for the knot

in the connected sum of two S1 × S2s pictured on the left.

Consider the link T in S2 × I pictured on the left of Figure 3. In [G], we calculated

a matrix for Z(S2×I,T ) with respect to the basis given in Proposition (2.5). The trace of

this matrix was A−12 − A−8 − A−4 + 1 − 2A4 + A12 − A16. This must be < L > where

L is the link in S1 × S2 pictured on the right of Figure 3.
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Fig. 3

We will now calculate < L > directly by the method described in §1. We will make use

of the fusion formula given in Figure 4. All unlabelled and undotted strands are colored

one.

=
1

d
2

+_
1

∆
2

_
2

2

Fig. 4

Thus < L >= 1
d2 < G1 > + 1

∆2

< G2 >, where G1 and G2 are the graphs in S3 pictured

in Figure 5.

G 1 G 2

2

2

Fig. 5

We expand each one using Figure 6.

=   (A  d   +2)
2

+  A
-2



Fig. 6

< G1 > is easily seen to be d2(A2d + 2 + A−2d). After we expand G2 as in Figure 4,

we may discard the term with coefficient A−2 using the vanishing of the idempotent
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f (2) times a hook. We are left with two simply linked theta curves each with edges

one, one and two. We may replace these with loops labelled two. See for instance [KL,

p. 40]. Thus < G2 > is A2d+ 2 times the evaluation of a Hopf link colored two which is

A−16
∑

j= 0, 2, 4 ∆jA
j(j+2). This is a special case of a formula in [KL, p. 217] and is also

easily found using [KL, 9.15]. Putting this together one calculates that < L > is indeed

the previously calculated trace.

5. How large must r be. Suppose M is a wormhole space which has been identified

as zero framed surgery on an unlink and that disjoint spanning disks Di have been chosen

for the components of the unlink. Let G be a graph in M which is transverse to the Di.

< G >r may be calculated by the above fusion process, but if r is small, < G >r may not

be < G > evaluated at A = Ar. However if the sum of the colors on the strands passing

through any of these disks is odd, then < G >r= 0 for all r, and of course < G >= 0.

Suppose now each of these color sums is even, let Ci denote the list of colors on the

strands passing though the ith disk. Here a list allows repetitions but is unordered.

Given a finite list C of n colors, we may consider a 2-sphere S(C) with n framed colored

points whose colors are given by this list. Fix a trivalent tree T (C) in the 3-ball with

boundary these points, and assume r is greater than the maximum color plus two. Thus

every color is less than r−1. Let Vr(S(C)) denote the vector space denoted V2r(S(C))⊗C

in [BHMV]. It is given by admissible colorings of T (C) by nonnegative integers less than

r − 1 which extends the colorings of of the boundary with the extra condition that the

sum of the colors on any three edges which meet at a point is less than or equal to 2r−4.

If r is large enough , this extra condition does not exclude any admissible colorings. In

this case we have dimVr(S(C)) = dimV (S(C)). Let r(C) be the least such r. It is easy to

see that if C is a list of 2m ones, then r(C) = m+ 2, [G, 4.6].

A slight variant of the fusion process for calculating Zr(M,G) is given as follows. We

consider a 3-ball neighborhood of Di. The strands that go through each disk Di represent

an element of Vr(S(Ci ∐ Ci)). Here Ci ∐ Ci denotes the list Ci repeated twice. Consider

the tree Ti in the 3-ball given as a connected sum of two 3-balls with one copy of T (Ci)

in each joined by an extra straight edge. An orthogonal basis for Vr(S(Ci ∐ Ci)) is given

by colorings of Ti. We may expand the element given by the original strands in terms of

this orthogonal basis. If r ≥ r(Ci), it is easy to see that the coefficients of a basis element

which is given by a coloring for which the extra edge is colored zero is given by a rational

function in A evaluated at A = Ar. The numerator of this rational function is simply

the bracket evaluation of the expansion of the closure of the colored tree by straight

strands. The denominator of this rational function is simply the bracket evaluation of

the expansion of the double of the colored tree. On the other hand, the terms coming

from colorings where the extra strand has a nonzero coloring contribute zero to the total

evaluation of Zr(M,G) by Lickorish’s Lemma. Thus we have:

Proposition (5.1). In the situation above, if r is greater than or equal to the maxi-

mum of r(Ci), then < G >|A=Ar
=< G >r .

Now consider the example of a link L in S1 × S2 considered in the previous section.

It intersects a spanning disk in four points colored one. Thus if r ≥ 4, we have < L >r=
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< L >|A=Ar
. On the other hand if r = 3, then the second term on the right hand side of

the equation pictured in Figure 4 should be deleted. Thus < L >3=
1
d2 < G1 >|A=A3

= 1.

Whereas < L >|A=A3
= 4− 3A3.

The above proposition may be used to give ‘lower bounds’ on {Ci}. In particular, we

have the following result on the wrapping number of links in S1 × S2.

Proposition (5.2). Let L be a link in S1 × S2 with even wrapping number w(L). If

< G >|A=Ar
6=< G >r, then w(L) ≥ 2r − 2.
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