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Abstract. We consider smooth knottings of compact (not necessarily orientable) n-dimen-

sional manifolds in R
n+2 (or Sn+2), for the cases n = 2 or n = 3. In a previous paper we

have generalized the notion of the Reidemeister moves of classical knot theory. In this paper we

examine in more detail the above mentioned dimensions. Examples are given; in particular we

examine projections of twist-spun knots. Knot moves are given which demonstrate the triviality

of the 1-twist spun trefoil. Another application is a smooth version of a result of Homma and

Nagase on a set of moves for regular homotopies of surfaces.

1. Introduction. In this paper we consider codimension two smooth embeddings

of a closed n-dimensional manifold, Mn, into R
n+2 (or sometimes Sn+2), in the case

n = 2 or n = 3. (In general, Rk will refer to the standard k-dimensional Euclidean space

and Sk will refer to the standard k-dimensional sphere; each of these manifolds with

the standard differentiable structure.) Most of our results hold whether or not Mn is

orientable.

Commonly, one refers to a knot as an ambient isotopy class of an embedding; however,

the word “knot” is also used to refer to an embedding which represents this class—or

sometimes just the image of such an embedding.We will adopt the following terminology:

a smooth codimension two embedding will be called a (smooth) knotting. The correspond-

ing ambient isotopy class will be called a knot. The smooth isotopy extension theorem

(see, for example, [HR2]) implies that a smooth isotopy gives rise to an ambient isotopy.

The basic questions in knot theory are: When are two given knots the same? (In our

terminology this translates to—When are two given knottings equivalent?) When are two

given knots different? Most is known about the last question; answers are given by using

a number of well-known algebraic invariants. To show two knots are the same, requires
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geometric techniques. In this paper we discuss a very general geometric technique, namely,

looking at projections of knots and associated elementary changes called knot moves.

In classical knot theory, the study of knotted and linked circles in R
3, the standard

way two knottings are shown to be equivalent, is to represent the knottings by projec-

tions to a plane and then to study changes, called knot moves, one could make in such

projections. Knot moves generate all equivalent knottings. In this paper we consider the

higher dimensional versions of these combinatorial ideas, and discuss some examples.

In two previous papers we have developed tools to study isotopies of higher dimen-

sional knots. In [RS3] we defined a general position for projecting higher dimensional

knots. In [RS4] we applied these results to isotopies of knots. In Section 2 of this paper,

we apply these results to the case of knotted surfaces in R
4, and give a generalization

of the Reidemiester knot moves to surfaces in four space, answering a question raised in

[GL]. In Section 3, we apply our results to knotted 3-dimensional manifolds in R
5. In

[HM-NG] a sequence of elementary moves is given, in the piecewise linear category, for

regular homotopies of surfaces in R
3. In Section 4, we show how our techniques can lead

to a different proof of the corresponding result in the smooth category. Section 5 contains

some specific calculations to illustrate these ideas. We examine twist-spun knots, and in

particular show explicitly how to “unknot” the one-twist spun trefoil knotting by using

elementary moves.

To make this paper more self contained, we include here some of definitions of [RS3]

and [RS4].

Suppose f : P p → Qp+1 is a smooth map from a p-dimensional manifold to a (p+1)-

dimensional manifold. The branch set of f is the subset of points b ∈ P p for which f

fails to be an immersion. If x ∈ P and f−1(f(x)) consists of exactly k points, we will say

that x has multiplicity k. The double point set , denoted D is the closure, in P p, of the

set of points d ∈ P p such that d has multiplicity at least 2.

If we are looking at a 2-dimensional manifold in R
3, the local picture of the image

of a branch point is well known and has several names: pinch point, Whitney umbrella,

cone on a figure eight curve, see for example [F].

We will let B denote the set of branch points. In the generic situation, B will be a

(p − 2)-dimensional submanifold of P , with each point being a limit point of the set of

points of P p such that f is not one-to-one.

Let’s take a closer look at a branch point, b, b ∈ B. We have b ∈ D. Locally, in an

appropriate neighborhood of b, D looks like a (p − 1)-dimensional submanifold and the

branch set is a (p − 2)-dimensional submanifold and the map f |D can be described as

“folding of D with crease along B”. In particular, locally, f |D is a two-to-one, except at

points of B, where {b} = (f |D)−1(f(b)).

If we consider the global situation, we may have points b ∈ B with {b} 6= f−1(f(b)).

However, we will always have f−1(f(b)) ⊆ D.

In our analysis which is to follow we will need to distinguish points of d ∈ D in three

situations:

1. f−1(f(d)) ⊆ D − B If d has multiplicity 2, we will call it a pure double point ; if

multiplicity three, a pure triple point , etc.
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2. f−1(f(d)) ⊆ B. If d has multiplicity 2, we will call it a branch double point ; if

multiplicity three, a branch triple point , etc.

3. Otherwise some points of f−1(f(d)) are in B, and some are elsewhere in D; we

call this the “mixed case”. If d has multiplicity 2, we will call it a mixed double point ; if

multiplicity three, a mixed triple point , etc.

In this paper we will have a smooth manifold Mn where n = 2, 3, and a smooth

isotopy which we take to be a level preserving embedding F : Mn × I → R
n+2 × I; that

is, for all t ∈ I we will have F (Mn × {t}) ⊆ R
n+2 × {t}.

We consider π◦F : Mn × I → R
n+1×I, where the projection π : Rn+2×I → R

n+1×I

is defined using standard projection on the first factor, the identity map on the I factor.

In either case n = 2, 3, we will let B denote the set of branch points, D,T , and Q the set

of pure double, pure triple and pure quadruple points respectively. Note that Q ⊆ T ⊆ D,

and B ⊆ D and B ∩ T = ∅.

In general if X⊆M2×I we will let X∗ denote the image π◦F (X). If x has multiplicity

k we will say that x∗ is a k-fold point of (Mn× I)∗. If π ◦F is in general position, the set

(Mn × I)∗ is not necessarily a manifold but is a disjoint union of smooth submanifolds

of the (n+ 2)-dimensional manifold R
n+1 × I as follows:

(Mn × I)∗ −D∗ is an (n+ 1)-dimensional submanifold,

D∗ −B∗ − T ∗ is an n-dimensional submanifold,

B∗ is an (n− 1)-dimensional submanifold,

T ∗ is an (n− 1)-dimensional submanifold,

Q∗ is an (n− 2)-dimensional submanifold, etc.

Roughly, general position of an isotopy means an isotopy in which “each point of

the image of π ◦ F looks generic”. In the case n = 2 when π ◦ F is a smooth map of a

3-manifold into a 4-manifold, this means that for each x ∈ (M2 × I)
∗
,

1. If x ∈ (M2 × I) −D then π ◦ F is immersive at x, thus (M2 × I)
∗
looks, locally

like a 3-dimensional hyperplane.

2. If x ∈ B then, generally, in a neighborhood of x∗, (Mn × I)∗ looks like “a cone

on a figure-8 crossed with I”. There may be some isolated exceptional points, where x is

of mixed type where there is a point of D − B such that f(d) = f(x). In this case, in a

neighborhood of x∗, (Mn × I)∗ looks like “a cone on a figure-8 crossed with I”, together

with a hyperplane through x∗ which is transverse to “the cone point crossed with I”.

3. If x ∈ D− T then, in a neighborhood of x∗, (Mn × I)∗ looks like two transversely

intersecting (3-dimensional) hyperplanes in a 4-ball. (The mutual intersection points will

be 2-dimensional.)

4. If x ∈ T −Q then, in a neighborhood of x∗, (Mn× I)∗ looks like three transversely

intersecting (3-dimensional) hyperplanes in a 4-ball. (The mutual intersection points will

be 1-dimensional.)

5. If x ∈ Q then, in a neighborhood of x∗, (Mn × I)∗ looks like four transversely

intersecting (3-dimensional) hyperplanes in a 4-ball. (The mutual intersection will be a

single point.)
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To define our knot moves, we consider the map φ, φ : (Mn × I) → I defined as π′ ◦F

where π′ denotes projection onto the second factor of Rn+1× I. In addition we will want

to make the map φ “as nice as possible” with respect to the subsets D,T,Q, etc. Our

condition is that φ restricted to these sets is a Morse function. (Note that by definition of

smooth isotopy, we have φ({{x}, {t}}) = t; it follows that φ itself has no non-degenerate

singularities and thus is a Morse function. Also, if f is any function from a 0-dimensional

manifold, X , into I, then every point of X is a critical point of f ; we will say that any

such f is a Morse function.)

If we are concerned with a submanifold, N∗, of D∗ (for example points of N∗ = B∗,

N∗ = T ∗, etc.) then we will say x∗ ∈ N∗ is a singularity of a certain type if x∗ = F (x)

and φ|N has a Morse singularity of that type at x.

The basic idea of a theory of knot moves is to analyze an isotopy as a finite sequence

of a changes, called “knot moves” where each change is one of a finite number of possible

changes. In our analysis, a knot move will correspond to a singularity of D∗. To insure

that we do not have two simultaneous changes, we will insist, as we may without loss

of generality, that if x∗ and y∗ are distinct points of D∗ then they do not project, in

R
n+1 × I, to the same point of I. If an isotopy has all the above properties we say that

it is prepared for moves.

The main theorem of [RS4] then states that every isotopy can be expressed by knot

moves where these knot moves which are in dimension n are denotedMn. Each knot move

corresponds to a singularity of D∗, with different types of Morse singularities giving rise

to various types of knot moves. We list our classification below. In this paper we need

only consider n = 2 or 3.

It is simplest if we combine cases which are dual in the sense of dual Morse sin-

gularities, as will be seen—this is in accord with the usual practice in knot theory of

considering a move and its inverse (sometimes called “reverse”) to be of the same type,

thus reducing the number of knot moves to consider. If F : Mn × I → R
n+2 × I

represents a knot move, then the inverse of F is the isotopy F ′ where F ′(y, t) =

F (y, 1 − t). This will have an effect on the singularities so that on a k-dimensional

manifold, a singularity of index i will correspond, in the inverse, to a singularity of

index k − i. For example a local minimum, index 0, will correspond to a local maxi-

mum, index k in the inverse. We will say that a knot move and its inverse are of the

same type; thus the number of types of moves is roughly half the number of knot moves

of Mn.

For high dimensional knot moves, analysis of the singularities of D∗ is complicated,

with many cases involvingB∗. But for n = 2 or 3 we can simplify the general classification

as pointed out below.

We consider three cases: pure multiple points, branch multiple points, and the mixed

case. The first of these is the simplest—here locally, at x∗ ∈ R
n+1 × I, it looks like a

certain number of mutually intersecting hyperplanes. This is the simplest generalization

of the idea of a “crossing point” in a classical knot diagram. In the second case, we need

to remember also that B has codimension 1 in D so that our analysis of the singularity

will need to take into account this “extra” transverse direction.
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1. Singularities of type S(c, k, p) are all singularities, x∗, of D∗ which are not points

of B∗; the c indicates the singularity is of this type (“c” refers to the word “crossing”).

Here x∗ is a k-fold point. Locally, the set of such k-fold points (if non-empty) looks like a

submanifold of dimension n+2− k. Finally p is the Morse index at x∗, when we restrict

to this submanifold.

2. Singularities, x∗, of type S(b, k, p, q) are all singularities of B∗ which are not points

of T ; the b indicates the singularity is of this type.

Although B is a sub-manifold of Mn × I, B∗ is not necessarily a sub-manifold of

R
n+1 × I—in high enough dimensions, we will generically expect “self-crossings” of B∗.

(Note we are concerned here with self-crossings of B∗ as opposed to self-crossings of D∗).

So if x ∈ B we say that x∗ is a k-fold point of B∗ if F ◦ F−1(x) consists of k points of

B; k is the second argument of S(b, k, p, q). This k now gives the entry in S(b, k, p, q).

We are interested in n = 2 or 3 and thus the dimension of Mn × I is 3 or 4. In

the first case, B is a 1-dimensional manifold mapped to a 4-dimensional manifold and,

generically we may avoid self-intersections of B∗. Similarly, in the second case, B is a

2-dimensional manifold mapped to a 5-dimensional manifold and, generically we may

avoid self-intersections of B∗. Thus, in this paper we need only consider singularities of

type S(b, 1, p, q).

Finally p is the Morse index at x of φ|B. Since B has codimension 1 in D, we need

to consider a transverse Morse index which is our q. In the case k = 1 there is, of course,

only one such direction. Here q = 0 means that we have a local minimum at x in this

transverse direction, and q = 1 means that we have a local maximum at x. Another way

of expressing this is:

q = (Morse index at x of φ|D) − (Morse index at x of φ|B).

For the record, if 1 < k, then we define:

i=k∑

i=1

((Morse index at xi of φ|D)− (Morse index at xi of φ|B)).

3. Singularities x∗ of type S(m, (i, j), p, q) occur at points of B which are of mixed

type and the m indicates this. Here F ◦ F−1(x) consists of i + j points—i points of B

and j points of T .

In the first case, B is a 1-dimensional manifold and (M2 × I)∗ is a 3-dimensional

manifold both mapped to a 4-dimensional manifold. Generically we may expect a 0-

dimensional intersection. However, in the second case, B is a 2-dimensional manifold

and (M3 × I)∗ is a 4-dimensional manifold mapped to a 5-dimensional manifold and,

generically we will not have self intersection points ofB∗. Thus, generically, for a knotting

of a 3-manifold, we may expect either a 1-dimensional set of mixed double points or

0-dimensional set of mixed triple points. Thus we need only consider singularities for

knotted 3-manifolds of types S(m, (1, 1), p, q) and S(m, (1, 2), p, q).)

As in the previous case, p is the Morse index at x of φ|B and q is defined:

q = (Morse index at x of φ|D) − (Morse index at x of φ|B).
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Also for the general case, not used in this paper, if 1 < k, then we define:

i=k∑

i=1

((Morse index at xi of φ|D)− (Morse index at xi of φ|B)).

One final comment on the practicality of higher dimensional knot moves. Our tech-

niques are rather tedious for hand calculation, but quite tractable for computer calcula-

tions. We have already begun such a project and hope to discuss this in the near future.

2. Knot moves for surfaces in R
4. We now wish to consider the knot moves for

surfaces in R
4.

Theorem 1. If F : M2×I → R
4×I is an isotopy of a closed 2-dimensional manifold

and if F |M2 × {0} and F |M2 × {1} are in general position with respect to projection,

then F is equivalent to an isotopy by elementary moves where these moves are of seven

types which we list below by the corresponding singularities :

(a) Local maximum or local minimum of the crossing set D∗.

(b) Saddle point of D∗.

(c) Local maximum or local minimum of the branch set B∗ which is a local maximum

or local minimum (respectively) of D∗ in direction transverse to B∗.

(d) Local maximum or local minimum of the branch set B∗ which is a local minimum

or local maximum (respectively) of D∗ in direction transverse to B∗.

(e) Local maximum or local minimum of the crossing set of D∗.

(f) A point where B∗ meets the crossing set of D∗.

(g) A triple point of D∗.

P r o o f. We replace F by an isotopy, F ′, arranged for moves as described in Section 1.

We need to examine the map π′◦F : M2×I → R
3×I. Let D∗ and B∗ be the crossing

set of this map and image of the branch point set, respectively. We are considering a map

from a 3-manifold, M2 × I into a 4-manifold R
3 × I, here D∗ is an immersed 2-manifold

and B∗, being 1-dimensional, may be taken to be embedded. In addition, we will not have

points of multiplicity more than 4. In the paragraphs below we will refer, parenthetically,

to the singularity notation of [RS4], also described in Section 1.

Since D∗ is 2-dimensional, we can expect to have singularities of D∗ −B∗ −T ∗ index

0, 1, or 2. Index 0 and 2 correspond to the same type and give rise to (a) (singularities

S(c, 2, 0), S(c, 2, 2)); index 1 gives rise to (b) (singularity S(c, 2, 1)).

Since B∗ is 1-dimensional, and generically would not have self-intersections we expect

two possibilities (c) and (d), depending on the behavior in the direction in D transverse

to B. Either the tangential and the transverse singularities are of the same index or they

differ. The first case gives us (c) (and corresponds to S(b, 1, 0, 0) and S(b, 1, 1, 1)). The

second case gives us (d) (and corresponds to S(b, 1, 0, 1) and S(b, 1, 1, 0)).

The crossing set ofD∗, where we have pure triple points of (M3×I)∗, is 1-dimensional,

giving rise to (e) (singularities S(c, 3, 0) and S(c, 3, 1)).

Finally the set of mixed singularities, where B∗ intersects D∗ transversely, as well as

the set of mixed triple points of D∗ (pure quadruple points of (M2 × I)∗) are
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0-dimensional. This gives us, respectively, move (f) (singularity S(m, (1, 2), 0, 0) or

S(m, (1, 2), 0, 1), according to whether or not we have, transversely to B in D, a local

minimum or local maximum) and (g) (singularity S(c, 4, 0)).

We have now considered all possible singularities.

We want to draw pictures of these elementary local knot moves in two ways. The first,

Figure 1 shows the local changes in the projection; the second shows the corresponding

changes in what we term, below, the projection link—this describes how D looks in Mn.

Fig. 1(a)

Fig. 1(b)

Fig. 1(c)

Fig. 1(d)

Fig. 1(e)
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Fig. 1(f)

Fig. 1(g)

When looking at the double point set D the following idea yields a helpful graphical

device. Consider a canonical triple point, x∗, obtained by projecting, into R
3, an embed-

ding of M2 into R
4. Locally we have three subdisks of M (say A, B, and C) whose image

in R
3 is as shown in Figure 3. Let a, b, and c be the points of A, B, and C (respectively)

which are mapped onto x∗. Consider the intersection of the double point set of the map

and the disk A. It will look like the letter “x” with a at the crossing point; part of this is

from the intersection of A∗ and B∗, and part from the intersection of A∗ and C∗. Now

in R
4, the images of A, B, and C are disjoint. Let us suppose, as we may without loss

of generality, that A lies over B and B lies over C. Replace the “x” in A by an overpass

diagram (that is, “break the line corresponding to C”). You may also think about this

as a drawing on the surface M . Now do the same sort of thing for B and C as shown

in Figure 3. If we do this for each triple point we will get drawing of the double point

set as collection of curves drawn on M with “overs and unders” at the crossing points.

We call such a drawing a projection link. We will discuss further examples in Section 4.

In our classification of knot moves, as is done with the classical Reidemeister moves, we

ignore the particularities of height relations, so what is pictured in Figure 2 is the local

projection link for a choice of height relations.

In the first, Figure 1, we illustrate these moves by showing a typical picture in R
3×{a},

shown on the left, and R
3 × {b}, shown on the right. Here, [a, b] is a small interval in I

containing a single critical point of the type in question. In Figures 1(a) and (b) our move

involves two disks. These are shown as two separate disks (drawn as rectangles) thought
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of as lying somewhere in M2 in Figures 2(a) and (b). However, Figure 1(c) involves only

one disk. Thus we have only one in Figure 2(c), etc. The single heavy dots indicate

branch points. We next consider Figures 1 and 2 in detail.

A move of type (a), in the projection, (Figure 1(a)), looks like a plane passing through

the vertex of a parabaloid in a direction perpendicular to the tangent plane at that vertex.

It corresponds to an introduction (or elimination) of a pair of circles in the double point

set, each of these circles bounding disks which contain no other double points. This move

is analogous to Ω2 of Reidemeister.

Fig. 2(a)

Fig. 2(b)

Fig. 2(c)

Fig. 2(d)
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Fig. 2(e)

Fig. 2(f)

Fig. 2(g)

A move of type (b), in the projection, looks like a plane passing through the saddle

point of a hyperbolic paraboloid in a direction perpendicular to the tangent plane at the
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saddle point. In the double point set we see a pair of hyperbolas of one kind changing into

a pair of the other kind. To use the terminology frequently employed in knot theory this

Fig. 3

corresponds to a pair of band moves. That is, given, say, the left hand side of Figure 2(b)

we imagine two bands B1 and B2 as shown in Figure 4(a). These bands are rectangles

situated as shown, the band move then consists of erasing the sides of B1 and B2 which

touched the double point set and replacing these with those sides which didn’t, thus

obtaining Figure 4(b).

Fig. 4(a) Fig.4(b)

A move of type (c), in its projection might be described as a suspension of the Reide-

meister Move Ω1. In the double point set this introduces a single circle which contains
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exactly two branch points; this circle bounds a disk, B1, which contains no other double

points.

Fig. 5(a)

Fig. 5(b)

A move of type (d) is a cancellation (or introduction) of a pair of branch points. The

drawing on the left in Figure 1(d) may be thought of as the projection of the trace of the

isotopy shown in Figure 5(a) (or perhaps the isotopy of the mirror images). (Warning:

This is not the same as using the isotopy shown in 5(b)). A projection of a knotting of a

2-disk into R
3 whose image is as shown on the left in Figure 1(d) (with height relations

as shown or reversed) will be called a “c-disk” since it can be used “to cancel branch

points.” In the double point set we see, left side of Figure 2(d), two double point arcs,

Fig. 6(a) Fig.6(b) Fig.6(c)

each containing a branch point. In Figure 6(a), we label these branch points b1 and b2
and these divide these arcs into subarcs α, β, α′, and β′ as shown, where we will assume

α is part of the overset paired with β and similarly α′ paired with β′. Then α and α′ are

seen to merge to form an arc α′′ which is paired with and lies over the merging of β and

β′, called β′′. The double point set of the projection of the isotopy of Figure 5(b) with

notations as above would be as shown in Figure 6(a), with α′ and β′ interchanged. Given

the picture on the left of Figure 2(d), and using notations as in Figure 6(b) we may think

of the one on the right as obtained by merging the branch points b1 and b2 along an arc

γ which connects them and intersects no other points of the double point set. Given two

paired arcs of double points, we could view the inverse operation as obtained by taking

the drawing on the right in Figure 2, drawing an arc γ′ connecting corresponding points

as shown and intersecting no other points of the double point set and “shrinking and

splitting along γ′”, see Figure 6(c).
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Fig. 7(a) Fig.7(b) Fig.7(c)

A move of type (e) may be described, in the projection, as looking like a paraboloid

passing through the intersection of two intersecting planes as shown n Figure 1(e). If the

height relations happen to be that plane A passes over B and that the paraboloid passes

under both A and B then using the conventions outlined above, the local projection link

may be drawn as in Figure 2(e). Details are shown in Figure 7 where the circles α and α′

are mapped to the circle a, and β and β′ are paired and sent to b. We may describe the

passage from right to left in Figure 2(e) as follows. If we have two circles of double points

and which intersect in exactly two points which bound disks B1 and B2, which intersect

the double point set only as indicated in Figure 7(a) and if the corresponding circles

also intersect paired arcs as shown, these circles bound disks, B3 and B4, intersecting

the double point set only as shown in Figure 7(b) and (c), then we can eliminate these

circles.

Fig. 8

In the projection, a move of type (f) may be described: a branch point is pushed

through a plane. In the double point set, if we have the plane A higher than B, then we

will see the branch point pass under the arc and a loop introduced as shown in Figure

2(f). Given the figures on the right in Figure 2(f) we may describe the change in the

double point set as follows. Suppose there is a branch point b and an arc of double points

α and a disk B1 which intersects the double point set as shown in Figure 8(a) and suppose

α is paired with an arc α′ which is a simple loop bounding a disk B2 which intersects

the double point set exactly as shown in Figure 8(b), then we can “pull b under α and

shrink the loop α′.”

Fig. 9
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Finally a move of type (g), in the projection, may be described as follows: there are

three planes A,B,C, intersecting transversely in a triple point and a fourth plane, D,

moves across that triple point. This is a higher dimensional analogue of Ω3 of Reide-

meister. In the double point set the effect of this can be described as “four simultaneous

Ω3 moves” ; here we use the example where A is above B, B above C, and C above D

and the arcs of double points are paired α to α′, etc. We may describe this as finding, in

the double point set, triangles B1, B2, B3 and B4 which intersect the double point set

exactly as shown in Figure 9, with the parings and height relations as shown, then we

perform simultaneously the Reidemeister moves of type Ω3.

3. Immersions of surfaces. In [HM-NG], Homma and Nagase have defined a se-

quence of elementary moves which describe a homotopy of a surface in a three-manifold.

Locally these moves look like the projections of the knot moves described above. Their

proof is in the piecewise linear category. We point out that the techniques we have used

above can furnish a proof in the differentiable category. In outline such a proof would

proceed as follows. A smooth homotopy of a surface M2 in a 3-submanifold N3 can be

viewed as a map F : M2×I → N3×I and since this is to be level preserving, the co-rank

of the map is at most one, thus the nature of the branch set and double point set will be

as in the case of the projection of an isotopy. We can then define a notion of “arranged

for moves” (as before, this will be a “generic” situation) by using Morse functions, on the

I-coordinate of a point in N3 × I. Continuing we would obtain moves according to the

elementary singularities.

Moreover, one can generalize the Homma-Nagase results, to homotopies of 3-manifolds

in 4-manifolds or even more generally to homotopies of n-manifolds in (n+1)-manifolds;

the principal complication would be that branch singularities would have more compli-

cated types. However, Morin’s Theorem does give a local model for many different types

of singularities, and would apply in this case. We also note in passing that Homma and

Nagase show in their paper relations of moves which imply that some of our elementary

moves may be obtained from combinations of others.

4. Moves for knotted three-dimensional manifolds. We conclude this section

with a brief discussion of knot moves for 3-dimensional manifolds embedded in R
5. (Note

that all closed 3-dimensional manifolds do embed in R
5, see for example [HR1], with the

non-orientable case covered in [W] and [RH].)

We will use D, B, T and Q as before. In addition, because of increase in dimensions,

we will need to also consider 5-fold generic points, pure “quintuple points” which we

will denote Q′. Our analysis is similar to that in Theorem 1. We have a map from a

four-manifold M3×I into a five-manifold R
4×I; here D∗ is an immersed 3-manifold and

B∗ is 2-dimensional, and may be taken to be embedded. Also the dimensions of T,Q,Q′

are 2, 1 and 0, respectively. Examining the possible knot moves in these dimensions we

obtain the following.

Theorem 2. If F : M3 × I → R
5 × I is an isotopy of a closed 3-dimensional man-

ifold and if F |M3 × {0} and F |M3 × {1} are in general position with respect to the the



REIDEMEISTER-TYPE MOVES 361

projection, then F is equivalent to an isotopy by moves where these moves are of twelve

types , which we list below by the corresponding singularities :

(a) Local maximum or a local minimum of pure double points.

(b) A critical point of pure double points of index 1 or of index 2.

(c) Local maximum or a local minimum of the crossing set of T ∗.

(d) A saddle point of the crossing set of T ∗.

(e) Local maximum or local minimum of Q∗.

(f) Quintuple points , (Q′)∗.

(g) Local maximum or local minimum of the branch set B∗ which is a local maximum

or a local minimum (respectively) of D∗ in direction transverse to B∗.

(h) Local maximum or local minimum of B∗ which is a local minimum or a local

maximum (respectively) of D∗ in direction transverse to B∗.

(i) Saddlepoint of B∗.

(j) Local maximum or local minimum of the intersection of B∗ and the crossing set

of D∗ which is local maximum or local minimum (respectively) of D∗ in a direction

transverse to B∗.

(k) Local maximum or local minimum of the intersection of B∗ and the crossing set

of D∗ which is a local minimum or local maximum (respectively) of D∗ in a direction

transverse to B∗; here we have a 2-fold point of mixed type.

(l) A point of B∗ which is a triple point of D∗; here we have a 3-fold point of mixed

type.

P r o o f. Since D∗ is 3-dimensional, we can expect to have singularities of index 0,

1, 2, or 3. Index 0 and 3 correspond to the same type, S(p, 2, 0) and S(p, 2, 3) and give

rise to (a) above; index 1 and 2 give rise to (b) for types S(p, 2, 1) and S(p, 2, 2). The

crossing set of D∗, where we have pure triple points of (M3 × I)∗, is 2-dimensional.

The singularities of index 0 and 2, S(p, 3, 0) and S(p, 3, 2), correspond to (c); index 1

corresponds to (d) and type S(p, 3, 1). The triple point set of D∗ (quadruple points of

(M3×I)∗) is 1-dimensional; the associated singularities, S(p, 4, 0) and S(p, 4, 1), are local

maxima and local minima giving rise to one type which corresponds to (e). Lastly we

have isolated pure five-fold points; these are accounted for in (f), type S(p, 5, 0).

Since B∗ is 2-dimensional, we need to consider six possibilities since a branch point

could have index 0, 1, or 2, and we could have either a local minimum or local maximum

in the direction tangent to the double point set, transverse to the branch set. The case

of index 0 on B and local minimum transversely, and the case of index 2 on B and local

maximum transversely are of the same type, S(b, 1, 0, 0) and S(b, 1, 2, 1), and give us (g).

The case of index 0 on B and local maximum transversely, and index 2 on B and a

local minimum transversely are of the same type and give rise to (h). If we find index 1

singularity on B then the two possibilities for transverse singularity give rise to the same

type, S(b, 1, 1, 1) and S(b, 1, 1, 0), and correspond to (i).

Finally we consider mixed types of singularities. Note that B∗ could meet disks of

(M3 × I)∗ in a 1-dimensional set giving rise to four possibilities since we could have



362 D. ROSEMAN

a local minimum or a local maximum on that set as well as local minimum or local

maximum transversely. If both of these are local minima or both are local maxima, then

we have a type, S(m, (1, 1), 0, 0) and S(m, (1, 1), 1, 1), corresponding to (k). The other

two possibilities, types S(m, (1, 1), 0, 1) and S(m, (1, 1), 1, 0), correspond to (j). Now it is

possible that B∗ meetsD∗ transversely; if so, it is in a collection of points, and whether we

have a transverse local maximum or minimum, we have the same type, S(m, (1, 2), 0, 0)

and S(m, (1, 2), 0, 1); this corresponds to (l).

Although we cannot directly show these moves of Theorem 2 as we did in Figure 1

for Theorem 1, we can draw the corresponding changes in the double point sets as we

did in Figure 2.

We could adopt an “under-over” convention exactly as we did in the lower dimension

and define a higher dimensional projection link. We might then use a convention, such

as the one used in [RS1], to show this graphically. One could also define non-elementary

knot moves for 3-manifolds as we will do for TΩ2 as described in Section 5. However, for

simplicity, we will not do these here.

The potential use for all this is the following. Suppose for simplicity we consider

isotopies of S3 in R
5. Given a projection of a particular knotting we would look at the

projection link, which is now a collection of immersed manifolds in S3 (which we could

actually draw in R
3). We might analyze and discover isotopies by means of our moves.

(But we must keep in mind the “realization problem”—we discuss this problem in the

case of knotted surfaces in Section 5.1.)

Referring to Figure 10, we now show the changes in our double point sets. Move

(a) introduces or eliminates a pair of spheres. Move (b) corresponds to two changes

from a hyperboloid of two sheets to a hyperboloid of one sheet. In move (c) we see a

pair of paraboloids and two planes moving so as to introduce (or eliminate) a circle of

crossing points of the double point set (i.e., a circle of triple points of the projection of

the 3-manifold). Move (d) has two paired planes of double points passing through the

saddle points of paired hyperbolic paraboloids of double points; this looks like two copies

of Figure 1(b). However in Figure 1 we show portions of the projection of the knotting;

in Figure 10 we show portions of the double point set (a subset of the manifold we are

knotting).

Fig. 10(a)
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Fig. 10(b)

Fig. 10(c)

Fig. 10(d)
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Fig. 10(e)

Fig. 10(f)
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Fig. 10(g)

Fig. 10(h)

Fig. 10(i)

Fig. 10(j)

Fig. 10(k)

Fig. 10(l)
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Similarly, in Figure 10, move (e) looks like two copies of Figure 1(e), and move (f)

looks like five copies of Figure 1(g). A move of type (g) introduces (or eliminates) a sphere

of the double point set which contains a circle of branch points (shown as a bold curve

in Figure 10); this move is analogous to move (c) for 2-dimensional knots. In move (h) a

circle of branch points is seen to disappear (locally), separating the double point set; this

is analogous to a move of type (d) for 2-dimensional knots. For a move of type (i), we

look at a plane of double points and we see two arcs of the branch set, drawn in Figure

10(i) as a hyperboloid. The branch set changes from one type hyperbola to the other. In

a move of type (j), a paraboloid containing a branch point arc goes through a plane of

double points; this is analogous to the 2-dimensional move of type (f). A move of type

(k) shown in Figure 10 is similar to the previous move (j) except we have a hyperbola

and plane. Finally, for a move of type (l) we see a triple point of double points where

one plane contains an arc of branch points; this arc moves in its plane through the triple

point.

5. Geometric calculations. A principal use of Theorem 1 is to show two given

knottings are isotopic and we will now show examples. There are two approaches we may

use. The most straightforward is to draw the projection of a given knotting, then apply a

sequence of local knot moves as shown in Figure 1. However, in practice, the drawing of

the projection of a surface knotting in R
3 without computer assistance is rather difficult,

thus this approach is limited to relatively simple isotopies of relatively simple knots. A

potentially useful method is to look at a projection of a knotting, then at the projection

link and try to accomplish the moves by making the appropriate changes on the projection

link. This idea has particular appeal for the case of a knotting of a 2-sphere for then

the projection link is drawn on a 2-sphere which then can be represented as a drawing of

the projection of a link in a plane. Given such a drawing one of the more natural things

to do is, if possible, to change the projection link using moves as indicated in Figure 2.

There is, however, a serious but not necessarily insurmountable problem in doing this—a

realization problem.

5.1. Realizing changes for projection links. The realization problem is whether or not

changes in the projection link, as shown in Figure 2 and characterized in our discussions

and Figures 6–9, can, in fact, correspond to knot moves. A basic problem here is that the

projection link, labeled so as to identify branch points and points corresponding to the

same k-fold points, describes the projection of a knotting as a set but not as a subset

of R
3.

We discuss the various seven moves.

Given a part of a projection link in which we find two circles bounding disks B1 and

B2 as described for a move of type (a), this can always be realized as a knot move. This

is because, in the projection in R
3, B1 and B2 fit together to form a 2-sphere which must

bound a 3-ball. Thus in R
3 the planes must have fit together as shown in the right hand

side of Figure 1(a), thus allowing us to realize this change as a knot move.

However, given a pair of paired arcs and disks B1 and B2 as described in Figure 4(a)

it may not be possible to change to Figure 4(b) by a knot move of type (b). We can
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realize this as a knot move if and only if two arcs γ1 and γ2 as shown (where we choose

them so that their endpoints are identified) form a circle which bounds a disk B3 in R
4

such that this disk only meets the projection of the knotting in the curve γ1 ∪ γ2.

Given a circle with disk B1 as described in Figure 2(c), this will correspond to a knot

move of type (c) since in R
3 the disk B1 will have a spherical image, this will bound a

ball, allowing us to reconstruct the situation shown in Figure 1(c).

The move of type (d) is a very useful one as we will see, but has a subtlety that

deserves special mention. Consider the cross cap Figure 11(a); this is the projection of

an embedded projective plane in R
4. The double point set of this projection is clearly a

Fig. 11(a) Fig.11(b)

circle containing two branch points, call them b1 and b2. This circle corresponds to the

center-line of the Möbius band (if one thinks of the projective plane as the union of a

Möbius band and a disk). It is tempting to think one could take an arc, γ, from b∗1 and b∗2
and use it as indicated to make a knot move of type (c). (Figure 11(a) shows γ drawn on

the crosscap.) This would eliminate the branch points giving us an immersed projective

plane. But this is impossible since no immersed projective plane in R
3 is the projection

of an embedded projective plane in R
4. What went wrong? It is not a problem of the

height relations. A careful look at a neighborhood of the arc γ in R
3 reveals the problem:

it looks like Figure 11(b) and not like the figure on the left side of Figure 1(d). In Figure

1(d) the “cones” are on the same side, in 11(b) they are on opposite sides.

To realize the moves, given data as indicated by Figures 7, 8 and 9 for moves of

type (e), (f) and (g), respectively, is no problem. As before, the disks {Bi} indicated fit

together, in R
3, to form spheres which bound balls in R

3 which in turn will allow us to

realize the corresponding models as in Figure 1.

5.2. Some non-elementary knot moves. Another idea which seems natural to consider

when examining a given projection link is to try and use the classical knot moves Ω1, Ω2

and Ω3. It is clear that one cannot simply use these moves to change a projection link—one

immediate objection is that the projection link is not just a collection of immersed circles

but a collection of paired immersed circles. Nonetheless, these moves frequently do give

rise to some important simple local isotopies.

If we find a simple loop in a projection link, then clearly in a portion of R3 our projec-

tion of the knotting must look like Figure 12(a). There is an isotopy which corresponds
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Fig. 12(a) Fig.12(b)

Fig. 12(c)

to Ω1 whose projection will change Figure 12(a) to Figure 12(b). Figure 12(c) shows the

local effect on the projection link. Clearly this move is obtained by a move of type (d)

followed by one of type (f). If in our projection link, we attempt a move of type Ω2, then

in the projection, the situation must have looked as in Figure 13(a). In the projection the

result will look like Figure 13(b); and Figure 13(c) is the local picture in the projection

link if we consider the situation where A lies over B, and B lies over C.

Fig. 13(a) Fig.13(b)



REIDEMEISTER-TYPE MOVES 369

Fig. 13(c)

Finally for a knot move Ω3 we will obtain figures as in Figure 14 where we illustrate

the situation where A lies over B, B lies over C, and C lies over D.

Fig. 14(a) Fig.14(b)

Fig. 14(c)
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The local isotopies described above may be defined more precisely, using the trace of

the isotopies Ω1, Ω2 and Ω3. We will therefore use the notations TΩ1, TΩ2 and TΩ3,

respectively, to describe these (non-elementary) knot moves. In trying to use these moves

we may see the utility of the over-under convention we have adopted for the projection

link. Although TΩ1, TΩ2 and TΩ3 are not elementary, they do have two advantages.

First, there is no “realization problem”; if we see a possible move Ωj then we can do a

move TΩj. Secondly, to recognize these moves one needs only look at one disk in the

given 2-manifold, not two or three.

5.3. Using knot moves on the Klein bottle. We will illustrate the moves defined in the

previous section for surfaces in R
4.

A simple way to embed the Klein bottle in R
4 is as follows: take a circle in 3-

dimensional half-space, R3
+, which does not touch the bounding plane. If we spin this

circle, we will obtain an embedded torus in R
4, but if we give the circle a rotation of 180◦

about an axis in the plane of the circle as we spin it, we will obtain an embedding of a

Klein bottle. By arranging our geometry appropriately we will obtain a projection of this

embedding as shown in Figure 15(a)—this projection has two branch points, a and b,

Fig. 15(a) Fig.15(b) Fig.15(c)

with an arc of crossing points connecting them. Let γ be an arc from a to b on the pro-

jection as shown in Figure 15(b); a careful examination of a neighborhood of γ shows

that we may perform a knot move of type (d). If we do this knot move, we will obtain

an immersion of the Klein bottle with a circle of self- intersection. Upon redrawing, one

can see this is the familiar drawing as shown in Figure 15(c). A general version of this

process of “eliminating branch points” will be discussed at the end of this section.

5.4. Triviality of one-twist spun trefoil. Next we consider projections of twist-spun

knottings, for definitions see [ZM]. The most straightforward method of obtaining a pro-

jection of a twist-spun knotting is similar to that used to get the projection of the spun

knotting. View the twisting as an isotopy ht of a knotted arc, α, in half-space R3
+, where

0 ≤ t ≤ 2π. Let α∗
t be the projection onto R

2
+ of ht(α). Then the projection of the twist

spun knotting will be ∪0≤t≤2πa
∗
t where a∗t is a path in R

2
+(t) corresponding to α∗

t , where

using cylindrical coordinates (r, t, z), R3
+(t) is the half-plane determined by fixed angle t.

This is described in more detail in [RS2].

In Figure 16 we indicate how to obtain the projection link of the one-twist spun trefoil.

The first step is to analyze the spinning isotopy, ht, as a sequence of elementary knot

moves. These are shown in Figure 16(a), for values ti where 0 < t1 < t2 < · · · < t11 < 2π.
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Fig. 16(a)

Fig. 16(b)

Think of this as an isotopy of a large proper subarc, α′, of α, then consider the rectangle in

the sphere corresponding to [t1, t11]×α′. This is the rectangle shown in Figure 16(b). The

intersection of the projection link with the segment {ti} × α′ corresponds to the double

point set of the projection at {ti} as shown in Figure 16(a). In the region [ti, ti+1]× α′

we see the effect of a single knot move (heavy dots on the curves are to indicate branch

points). To draw the completed projection link (as a subset of the plane) we connect the

arcs within the rectangle with the arcs outside as shown. In Figure 17(a) we show three

disks in the projection link, and note that the portion of the projection link within these

is of the type shown in Figure 13 (with different relative positions of the heights of the

three disks). Thus we can make a move of type TΩ2 and obtain a new projection link

as shown in Figure 17(b). We may do another type TΩ2 move on the diagram shown in

Figure 17(b). Recall that the projection link really lies on a sphere; one of the disks we

need for our move will contain the point of the sphere not shown in our planar drawing

in Figure 17(b). After our move we get Figure 17(c). The projection link now has been
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Fig. 17(a)

Fig. 17(b)
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Fig. 17(c)

transformed to two disjoint circles on the sphere, each of which contains two branch

points; after two moves of type (c) we will obtain the empty projection link. Thus we

have explicitly shown an isotopy which “unknots” the one-twist spun trefoil. Of course

the triviality of one-twist spun knotting, for any knotted arc, is well known [ZM], but

our technique is quite different.

5.5. Projections and projection links for twist spun knots. The principle problem

with the projection of the twist-spun knotting mentioned above is that it is necessary

to express the isotopy which gives the twist as a sequence of elementary knot moves, a

tedious, ad hoc process. The next description avoids these problems. For these examples

we are concerned with the case of an arbitrary number of twists.

We begin our analysis by viewing the arc which we are twisting as being an arc with

“the knotted part” contained in a thick disk in R
3
+. The twisting isotopy is then thought

of as a rotation of this disk with the “the knotted part” rigidly embedded inside, see Fig-

ure 18(a). (Note: In Figure 18 we will not draw the knot inside our thickened disk.) Next

we deform this isotopy by tilting the plane of the disk slightly as shown in Figure 18(b).

Fig. 18(a)
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Fig. 18(b)

Fig. 18(c)

Fig. 18(d)

In Figure 18(c) we show this isotopy deformed so that the plane of the disk has tipped

by 90◦, here we see this disk rotating in a plane. We can then deform this isotopy so as

to “look down at the disk as it spins” and we will get Figure 18(d). If the knot in the

disk would be trivial then we could draw our projection link as shown in Figures 19(a)

and 19(b). After a knot move of type (f) we obtain Figure 19(c) (which we can reduce to

the empty projection link by a move of type (c).

Fig. 19(a)

Fig. 19(b)
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Fig. 19(c)

In Figure 20(a) we do the same construction with the one-twist spun trefoil. Figure

20(b) shows the portion of the projection link within a rectangle as has been done for

Fig. 20(a)

Fig. 20(b)

Fig. 20(c)

our previous examples. Performing a move of type (f) we can draw the projection link

as shown in Figure 20(c). With careful graphical bookkeeping, it can be seen that the

projection itself looks as shown in Figure 21(a). To understand Figure 21(a) we can divide
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it into three pieces; these are displayed in Figure 21(b). A similar analysis will show the

Fig. 21(a)

Fig. 21(b)

Fig. 21(c)

(non-trivial) two-twist spun trefoil to have a projection as indicated in Figure 21(c). By

viewing Figure 21(a) as being a subset of S3 by taking a different point (such as indicated

by the point y in Figure 21(b)) for the point at infinity, one can see that the one-twist

spun trefoil has a projection as shown in 22(a). We thus obtain the following description

Fig. 22(a)
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Fig. 22(b)

Fig. 22(c)

of the one-twist spun trefoil: Take the two knotted arcs joined at their endpoints a and

b which lie in R
2 ⊆ R

3
+; spin this set while doing the interchange isotopy as shown in

Figure 22(b). The subset of R4 we obtain is the one-twist spun trefoil. A similar analysis

for the two-twist spun trefoil would show that it can be described as follows: Take the
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three joined arcs as shown in Figure 22(c) and spin, keeping the endpoints fixed while

performing the isotopy which takes the arc on the left and passes it over the other two.

Returning to the projection shown in Figure 21(a), we might wish to “simplify” it

by eliminating the branch points. One way to do this is as shown in Figure 23. The

idea here is to bring the two branch points close together, then use a knot move of type

(d) to eliminate the branch points. (For more details, compare with Figure 24 which is

later discussed.) Figure 24(a) shows another view of this knotting. To get a better look

at details of this projection, we redraw the portions of the projection enclosed in the

3-balls, shown in Figure 24(b) These portions are shown in Figures 24(c) and (d). In the

language introduced in [RS2] we can now describe this knotting as: The knot is obtained

by taking a non-trivial link, L, of two components with a projection with two crossings,

spinning the trefoil (with its usual projection) about one component, and spinning the

trivial knot (with a one-crossing projection) about the other. In Figure 24(a), we think

of one component of L as being equatorial, the other a small circle. However such a link

can be drawn on the sphere so that both circles are nearly equatorial, thus obtaining a

Fig. 25(a)
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Fig. 25(b)

projection of our knotting as shown in Figure 25(a). Now the line in R
3 through the north

pole and south pole in this projection is the image under our projection of a plane in R
4

and with this plane as our axis of rotation, we can see that the given knotting is the one

obtained by projecting the spinning of the isotopy as shown in Figure 25(b) (similarly

one can see that if we spin the isotopy which repeats that shown in Figure 25(b) twice,

we obtain the two-twist spun trefoil).

6. History of this paper and update. At the request of the editors of these

Proceedings, I append a note on the history of this paper. The contents of this pa-

per originally constituted approximately 1/3 of a monograph “Projections and Moves

of Higher Dimensional Knots”. The submitted monograph was returned, unread, after

several years, whereupon it was subdivided into three journal-sized papers, [RS3, RS4]

and this paper. This paper was then submitted manuscript, returned, unread, after two

years; resubmitted elsewhere and finally accepted for publication.

At this point I had gone on to other things (computational aspects related to these re-

sults) and lost enthusiasm to publish until encouraged by the editors of these Proceedings.

During this time period, some of this material has appeared elsewhere:

• The graphics associated with the knot moves for surfaces in R
4 have been reproduced

in [RS6].

• Carter and Saito, following the author’s papers in preprint form, as they mention,

defined a refinement of the knot moves for surfaces by a further slicing, [C-S].

• Based on the preprint and other personal communications, the demonstration of

the unknottedness of the 1-twist spun trefoil, Figures 17(a)–(c) has appeared in very nice

computer graphics form in [H1], together with three-dimensional graphics showing the

projections of the knot moves. Software [H2] allows visualization of projection links as

shown in [H1].

• Computational work of the author has progress in two areas. A program to realize

knot moves for knotted surfaces: a preliminary program to do similar calculations for clas-

sical knottings has been written [RS5, RS6]; knot moves for surfaces, however, involves

problems in computational geometry that have made progress very slow. Videos [RS7,

RS8, RS9] provide visualization of aspects of knotted surfaces and in each one can find

many examples of isotopies of knotted surfaces and the knot moves discussed in this paper.
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