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Introduction. The purpose of the present note is to show the role played by non-

commutative Lp-spaces in the theory of quantum dynamical semigroups. We consider

both the C∗-algebra and von Neumann algebra case, concentrating on the latter. The

two cases are very different, a phenomenon easy to explain on the grounds of noncommu-

tative measure theory. If we take a locally compact space with a Radon measure, then the

isomorphism class of the corresponding Lp-spaces (p 6= 2) depends crucially on the choice

of the measure. It is therefore only natural to expect the isomorphism class of Lp-spaces

associated with a noncommutative C∗-algebra to depend on the choice of a weight (or

state) on the algebra. This is further supported by the results of the final section of

the paper where the natural definition of Lp-spaces for UHF algebras leads to such a

dependence. On the other hand, two isomorphic von Neumann algebras lead to linearly

isometric Lp-spaces and that does not depend on the choice of (faithful) weights on the

algebras. This corresponds to the classical fact that two equivalent measures on a mea-

surable space give rise to isomorphic Lp-spaces. Note that a commutative von Neumann

algebra corresponds to a quasi-measure space, i.e. a measure space with an associated
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class of equivalent measures. Thus, although we build different theories for von Neumann

algebras with traces, states and weights, what really matters is whether the algebras

are respectively semifinite, σ-finite or arbitrary. The functional is needed for reference

purposes mainly. We can always choose a weight as our reference functional and, if the

type of the algebra allows it, we can use a trace or a state. The importance of build-

ing the theory of quantum dynamical semigroups on non-semifinite (i.e. type III) von

Neumann algebras is evident – these algebras arise frequently in physics. The usefulness

of non-σ-finite algebras is not so evident. Nevertheless, many well-known constructions

lead to such algebras (for example, the universal enveloping von Neumann algebra of a

C∗-algebra). Also, a specific weight might be most natural in some situations, even if a

state exists. That is why we insist on considering the most general set-up.

We seek to exploit as far as possible the idea of establishing a link between semigroups

on a von Neumann algebra A, and semigroups on the Hilbert space L2(A). The aims

are twofold. First, we can use Hille-Yosida theory and Dirichlet form techniques for the

analysis of quantum dynamical semigroups on the algebra. Second, we may obtain new

and interesting classes of semigroups on the algebra by suitable choices of generator (or

form generator) on the Hilbert space L2(A).

Here we concentrate on semigroups of positive contractions on the algebra and try to

associate with them corresponding semigroups of self-adjoint contractions on L2(A). The

link is provided by the most natural, positivity preserving embedding of A into L2(A),

the so called symmetric embedding. To guarantee both self-adjointness and contractivity

of the L2-semigroup, we impose an appropriate symmetry condition on the semigroup

on the algebra, namely KMS-symmetry. The selfadjont contraction semigroup on L2(A)

thus obtained is not arbitrary—it satisfies an interval preservation condition, explained

below. We are currently also considering non-symmetric semigroups on A. In this case, the

symmetry condition is replaced by an integrability condition, guaranteeing contractivity

of the corresponding L2-semigroup. In any case, to move from the algebra to the Hilbert

space setting we use interpolation (see [GL 3]), and here the usefulness of the Lp(A)-

spaces manifests itself. While it is possible to avoid Lp-spaces (at least for p 6= 1, 2,∞),

using Haagerup’s spaces has the particular advantage of putting the whole machinery of

measurable operators at one’s disposal.

Many authors contributed to the theory of quantum Markov semigroups and noncom-

mutative Dirichlet forms—Albeverio, Høegh-Krohn, Davies, Sauvageot, Cipriani, Fag-

nola, Guido, Isola, Scarlatti, Matsui and the authors ([AH-K], [DL 1], [Dav], [Sau], [Cip],

[CFL], [GIS], [Mat], [GL 1], [GL 2]). Haagerup’s Lp-spaces were introduced by Haagerup

[Haa] and investigated by Terp [Te 1]. The interpolation of noncommutative Lp-spaces is

described, among others, in [Te 2] and [GL 3]. Lp-spaces for C∗-algebras were constructed

by Majewski and Zegarliński [MZ 1], [MZ 2]. The proofs of the results given here will

appear in [GL 2] and [GPh].

Lp-spaces and embeddings. We consider here the whole scale of Haagerup’s Lp-

spaces, Lp(A), p ∈ [1,∞], for an arbitrary von Neumann algebra A. We choose a reference

weight ϕ which is assumed faithful normal and semifinite. We denote by A the crossed



Lp-SPACES AND QUANTUM DYNAMICAL SEMIGROUPS 213

product of A by the modular automorphism group associated with ϕ and by τ the canon-

ical trace on A. With each normal weight ω on A one can associate the dual weight ω̃

on A and then the Radon-Nikodym derivative hω = dω̃
dτ , a generalized positive operator

affiliated with A. It turns out that hω is measurable if and only if ω is finite, and the map

ω 7→ hω can be extended linearly to the whole predual A∗ of A. On the other hand, the

operator h := hϕ, which plays a crucial role in the theory, is in general nonmeasurable.

Measurable operators stand out among other closed, densely defined operators af-

filiated with a von Neumann algebra as much as analytic functions among infinitely

differentiable ones. It is their rigidity which makes them so interesting and useful — if

two measurable operators coincide on a dense subspace of their domains, they must be

equal.

The nonmeasurability of h is the feature that makes the theory more difficult, but also

more interesting. The operator h should be regarded as a ‘unit’ in L1(A), note however

that it does not belong to the space. Similarly, h1/2 plays a role of a unit in L2(A).

The space L1(A) consists of operators hω, ω ∈ A∗, and the norm of L1(A) is defined in

such a way that ‖hω‖1 = ‖ω‖. L∞(A) is simply A (or, more precisely, its isomorphic image

in A) and Lp(A) consists of operators with polar decomposition x = u|x| in which u ∈ A
and |x|p ∈ L1(A), with ‖x‖p = ‖|x|p‖1/p1 . A trace-like functional is defined on L1(A) by

tr(hω) = ω(1), and the norm on L2(A) is induced by the inner product (x, y) 7→ tr(x∗y).

For purposes of application, we need to single out that part of A which can be naturally

embedded into Lp(A). It should be noted that there is no canonical way of doing it. We

are interested in the noncommutative counterpart of Lp ∩ L∞. The proper, set-theoretic

intersection of Lp(A) and A = L∞(A) consists of the zero operator alone. We define a

family of ideals, n(q), q ∈ [2,∞], and a family of subalgebras m(p), p ∈ [1,∞], by

n(q) := {a ∈ A : ah1/q is closable and [ah1/q] ∈ Lq(A)},
m(p) := lin{b∗c : b, c ∈ n(2p)}.

Both families turn out to be increasing, n(∞) = m(∞) = A, n(2) = nϕ := {a ∈ A:ϕ(a∗a) <

∞} and m(1) = mϕ := {a ∈ A:ϕ(|a|) <∞}.
Now we can construct a left embedding j(q) of n(q) into Lq(A) and a symmetric em-

bedding i(p) of m(p) into Lp(A). They are given by

j(q): a 7→ [ah1/q],

i(p) is a linear extension of m
(p)
+ 3 a 7→ j(2p)(a1/2)∗j(2p)(a1/2) ∈ Lp(A).

The symmetric embeddings are manifestly positivity preserving; the ideals n(q) and sub-

algebras m(p) are all σ-weakly dense in A and their images j(q)(n(q)) and i(p)(m(p)) are

norm dense in Lq(A) and Lp(A), respectively.

To sum up, the ‘intersections’ are closely related to the embeddings and one can treat

them as subspaces of A or Lp(A), as the needs arise.

Markov operators and Markov semigroups. We are now in a position to intro-

duce the notions of Markov (on Lp(A), w.r.t. h1/p) and KMS-symmetry (on A) for both

operators and semigroups of operators. An operator S on Lp(A) is Markov with respect to

h1/p (Lp-Markov for short) if (i) Dom(S) ⊃ [0, h1/p]Lp and (ii) S([0, h1/p]Lp) ⊂ [0, h1/p]Lp ;
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an operator T on A is KMS-symmetric with respect to ϕ if (i) Dom(T ) ⊃ m; (ii)

tr (Ta · i(b)) = tr(i(a) · Tb) ∀ a, b ∈ m. We are mainly interested in establishing a link

between operators on A and operators on L2(A). It is given by the following intertwining

formula:

(∗) i(2) ◦ T = S ◦ i(2).
Now let T be a positivity preserving contraction on A. It is easy to check that the

operator S defined on i(2)(m(2)) by (*) is necessarily positivity preserving and L2-Markov.

The hard question is to decide whether S is bounded. When T is KMS-symmetric, the

boundedness of S follows by interpolation. The following interpolation inequality turns

out to be crucial:

‖i(2)(a)‖ ≤ ‖a‖1/2‖i(1)(a)‖1/2 ∀a ∈ m.

Using the KMS-symmetry we first show that T can be extended to a bounded operator

on L1(A). The above inequality then gives the boundedness of S.

Going in the other direction, from Hilbert space to algebra, requires first establishing

i(2) as an order isomorphism of [0, 1]m(2) and [0, h1/p]Lp . This is a consequence of the

following result.

Theorem 1 (Radon-Nikodym Type Theorem). Let x ∈ Lp(A) satisfy 0 ≤ x ≤ h1/p,

where p ∈ [1, ∞[. Then there is b ∈ n(2p) such that

x1/2 = h1/2pb∗ = [bh1/2p] ; || b || ≤ 1.

Self-adjointness of S guarantees that the operator T obtained from (*) is, in fact,

KMS-symmetric. This implies that lifting T to L2(A) leads us back to S. Here is the

statement of the precise result.

Theorem 2. The identity (* ) establishes a bijective correspondence between positive

normal contractions T on A which are KMS-symmetric with respect to ϕ, and positive

selfadjoint contractions S on L2(A) which are Markov with respect to h1/2.

Similar results hold also for semigroups of operators. A Markov semigroup on (A,ϕ)

is a semigroup of positive normal contractions (Tt) on A such that t 7→ Tta is σ-weakly

continuous for all a ∈ mϕ, and a Markov semigroup on (L2(A), h1/2) is a strongly contin-

uous (i.e. pointwise norm continuous) semigroup of Markov operators. Here is the proper

statement.

Theorem 3. Let (Tt) be a KMS-symmetric Markov semigroup on (A,ϕ), then (St ),

where St correspond to Tt as in Theorem 2 , is an L2-Markov semigroup. Conversely , if

(St) is a symmetric Markov semigroup on (L2(A), h1/2), then there is a KMS-symmetric

Markov semigroup (Tt) on A such that St correspond to Tt as in Theorem 2—in particular

(St) is a self-adjoint contraction semigroup.

The results extend to all values p ∈ [1,∞[, by interpolation ([GL3]). We have therefore

unified the results obtained in [AH-K], [DaL] for traces and in [Cip], [GL1] for states.

Moreover the form generators of symmetric L2-Markov semigroups are again charac-

terised allowing the application of Dirichlet form techniques in the present general context

([GL2]).
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Lp-spaces for C∗-algebras. The aim of the section is to persuade the reader that

Lp-spaces may be ‘canonically’ associated with a pair consisting of a UHF algebra A and

a state ϕ on the algebra. Obviously, no sensible definition would give any dependence on

ϕ in case A is finite-dimensional—for any two states ϕ1, ϕ2 on A the spaces Lp(A,ϕ1)

and Lp(A,ϕ2) should be isometric Banach spaces. For UHF algebras, it is most natural

to define the Lp-norm as a limit of Lp-norms of an approximating sequence of finite-

dmensional factors. It turns out that for an important class of states the isometry class

of Lp(A,ϕ), p 6= 2, depends on the isomorphic class of the von Neumann algebra πϕ(A)′′.

For a finite-dimensional factor A, we put Lp(A,ϕ) := A and the norm in Lp(A,ϕ),

p ∈ [1,∞[, is given by

‖a‖p = τ(|h1/2pah1/2p|p)1/p, where h :=
dϕ

dτ
.

Now let A be a UHF algebra and ϕ a faithful product state on A for an approxi-

mating sequence (An) of finite dimensional subfactors. Let ‖ · ‖(n)p denote the norm of

Lp(An, ϕ|An). We define the norm ‖a‖p of an element of
⋃
An by

‖a‖p = ‖a‖(n)p when a ∈ An.
The norm ‖ · ‖p turns

⋃
An into a normed space. We denote by Lp(A,ϕ) the completion

of the space.

The main result can be stated as follows.

Theorem 4. Let A be a UHF C∗-algebra, ϕ a faithful product state on A for an

approximating sequence An of finite-dimensional subfactors of A. Then Lp(A,ϕ) and

Lp(πϕ(A)′′) are isomorphic as Banach spaces. In particular , the space Lp(A,ϕ) does not

depend on the choice of the approximating sequence for which ϕ is product.

This result can be generalized to a larger class of states and a larger class of C∗-

algebras.
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[MZ 1] A. W. Majewski and B. Zegarl i ń sk i, Quantum stochastic dynamics I : Spin Systems

on a lattice, Math. Phys. Electron. J. 1 (1995), no. 1.
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