QUANTUM PROBABILITY BANACH CENTER PUBLICATIONS, VOLUME 43 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1998

COMPLETELY POSITIVE MAPS ON COXETER GROUPS AND THE ULTRACONTRACTIVITY OF THE q-ORNSTEIN–UHLENBECK SEMIGROUP

MAREK BOŻEJKO

Institute of Mathematics, University of Wrocław pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland E-mail: bozejko@math.uni.wroc.pl

1. Coxeter groups. In this note we give an application of the following result on the symmetric group S_n :

THEOREM 1. For fixed $n \in \mathbf{N}$ let us consider the permutation group S_n and denote by $\pi_i \in S_n$ (i = 1, ..., n - 1) the transposition between i and i + 1. Furthermore, let operators $T_i \in B(\mathcal{H})$ (i = 1, ..., n - 1) on some Hilbert space \mathcal{H} be given, with the properties:

(i) $T_i^* = T_i$ for all i = 1, ..., n - 1;

(*ii*) $||T_i|| \le 1$ for all i = 1, ..., n - 1;

(iii) The T_i satisfy the braid relations:

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$
 for all $i = 1, ..., n-2$,

$$T_i T_j = T_j T_i$$
 for all $i, j = 1, ..., n-1$ with $|i-j| \ge 2$.

Now let us define a function

$$\varphi: S_n \longrightarrow B(\mathcal{H})$$

by quasi-multiplicative extension of

$$\varphi(e) = 1, \qquad \varphi(\pi_i) = T_i$$

i.e. for a reduced word $S_n \ni \sigma = \pi_{i(1)} \dots \pi_{i(k)}$ we put $\varphi(\sigma) = T_{i(1)} \dots T_{i(k)}$. Then φ is a completely positive map, *i.e.* for all $l \in \mathbf{N}$, $f_i \in \mathbf{C}S_n$, $x_i \in \mathcal{H}$ $(i = 1, \dots, l)$ we have

$$\left\langle \sum_{i,j=1}^{l} \varphi(f_j^* f_i) x_i, x_j \right\rangle \ge 0.$$

1991 Mathematics Subject Classification: Primary 51F15, 20F55.

Research partially supported by KBN grant 2P03A05108.

The paper is in final form and no version of it will be published elsewhere.

[87]

M. BOŻEJKO

By our previous result from [BSp1], Theorem 1 is equivalent to the following:

THEOREM 2. Under the assumptions of Theorem 1 the operator

$$P^{(n)} = P_T^{(n)} = \sum_{\sigma \in S_n} \varphi(\sigma) =$$

= $(1 + T_1)(1 + T_2 + T_2T_1) \dots (1 + T_{n-1} + T_{n-1}T_{n-2} + \dots + T_{n-1}\dots T_1)$

satisfies

$$P^{(n)} \ge \prod_{k=2}^{n} c_k(q) > 0,$$

where

$$c_k(q) = (1 - q^2)^{-1} \prod_{l=1}^k (1 - q^l)(1 + q^l)^{-1}.$$

Moreover, by Gauss formula

$$c_k(q) \ge c(q) = (1-q)^{-1} \prod_{l=1}^{\infty} (1-q^l)(1+q^l)^{-1} = (1-q)^{-1} \sum_{l=-\infty}^{+\infty} (-1)^l q^{l^2}.$$

In the proof we need the following lemma:

LEMMA 3. If $T_i \in B(\mathcal{H})$ satisfy the braid relations of Theorem 1, then for $1 \leq r < k < n-1$, we have

$$(T_{n-1}T_{n-2}\dots T_k)(T_{n-1}T_{n-2}\dots T_r) = T_{n-1}(T_{n-1}T_{n-2}\dots T_r)(T_{n-1}\dots T_{k+1}).$$

Proof. The proof of the Lemma follows by induction on k: Let k = n - 2. Then by the braid relations we get

$$(T_{n-1}\underbrace{T_{n-2}}_{T_{n-1}})(T_{n-1}T_{n-2}T_{n-3}\dots T_r) = T_{n-1}\underbrace{T_{n-1}T_{n-2}T_{n-1}}_{T_{n-2}T_{n-1}}T_{n-3}\dots T_r = T_{n-1}(T_{n-1}T_{n-2}T_{n-3}\dots T_r)T_{n-1}.$$

The next step looks as follows:

$$\begin{split} (T_{n-1}T_{n-2}T_{n-3})(T_{n-1}T_{n-2}T_{n-3}\ldots T_r) &= \\ &= (T_{n-1}T_{n-2})(T_{n-1}\underbrace{T_{n-3}T_{n-2}T_{n-3}}\ldots T_r) = \\ &= (T_{n-1}\underbrace{T_{n-2}})(T_{n-1}T_{n-2}}{T_{n-3}T_{n-2}T_{n-4}}\ldots T_r) = \\ &= T_{n-1}T_{n-1}T_{n-2}T_{n-1}T_{n-3}T_{n-2}(T_{n-4}\ldots T_r) = \\ &= T_{n-1}T_{n-1}T_{n-2}T_{n-3}(T_{n-1}T_{n-2})(T_{n-4}\ldots T_r) = \\ &= T_{n-1}(T_{n-1}T_{n-2}T_{n-3}\ldots T_r)(T_{n-1}T_{n-2}). \quad \bullet \end{split}$$

Next we need the following important lemma:

LEMMA 4. Let $T_i \in B(\mathcal{H})$ and

 $R_k(T_1,\ldots,T_{k-1}) = R_k = 1 + T_{k-1} + T_{k-1}T_{k-2} + \ldots + T_{k-1}T_{k-2} \ldots T_1,$ where $k = 2, 3, \ldots, n$. Then

(a)
$$R_{k}(1 - T_{k-1}T_{k-2} \dots T_{1}) =$$

= $(1 - T_{k-1}^{2}T_{k-2} \dots T_{1})(1 + T_{k-1} + T_{k-1}T_{k-2} + \dots + T_{k-1}T_{k-2} \dots T_{2}) =$
= $(1 - T_{k-1}^{2}T_{k-2} \dots T_{1})R_{k-1}(T_{2}, T_{3}, \dots, T_{k-1}),$
(b)
$$R_{k}(1 - T_{k-1}T_{k-2} \dots T_{1})(1 - T_{k-1}T_{k-1} \dots T_{k-1}) = (1 - T_{k-1}) =$$

(b)
$$R_n(1 - T_{n-1}T_{n-2} \dots T_2T_1)(1 - T_{n-1}T_{n-2} \dots T_2) \dots (1 - T_{n-1}) =$$

= $(1 - T_{n-1}^2T_{n-2} \dots T_2T_1)(1 - T_{n-1}^2T_{n-2} \dots T_2) \dots (1 - T_{n-1}^2T_{n-2})(1 + T_{n-1})$

Proof. Let us start with the case k = 3. Since $R_3 = 1 + T_2 + T_2T_1$, we have

$$R_3(1 - T_2T_1) = 1 + T_2 - T_2^2T_1 - T_2T_1T_2T_1 =$$

= 1 + T_2 - T_2^2T_1 - T_2^2T_1T_2 =
= (1 - T_2^2T_1)(1 + T_2).

Now we consider the case k = 4. By natural calculations using Lemma 3 we get

$$R_4(1 - T_3T_2T_1) = (1 + T_3 + T_3T_2) - (T_3^2T_2T_1)(1 + T_3 + T_3T_2) =$$

= $(1 - T_3^2T_2T_1)(1 + T_3 + T_3T_2).$

Therefore, using the case k = 3, we have

$$R_4(1 - T_3T_2T_1)(1 - T_3T_2) = (1 - T_3^2T_2T_1)(1 - T_3^2T_2)(1 + T_2).$$

Repeating this process we get the proof of the Lemma. \blacksquare

This implies the next lemma.

LEMMA 5. If

$$P^{(n)} = \sum_{\sigma \in S_n} \varphi_T(\sigma) = P^{(n-1)} (1 + T_{n-1} + \dots + T_{n-1} \dots T_1) =$$

= $P^{(n-1)} R_n = R_2 R_3 \dots R_n,$

and $||T_i|| \le q < 1$, then

$$\|R_n^{-1}\| \le (1-q)^{-1} \prod_{k=1}^{n-1} (1+q^k) \prod_{k=3}^n (1-q^k)^{-1}.$$
(**)

Proof. By Lemma 4 we have

$$R_n = \prod_{k=1}^{n-2} (1 - T_{n-1}^2 T_{n-2} \dots T_k) (1 + T_{n-1}) \prod_{l=n-1}^{1} (1 - T_{n-1} \dots T_l)^{-1}.$$

But, since $||T_i|| < q < 1$, therefore

$$\|(1 - T_{n-1} \dots T_{(n-1)-k})^{-1}\| \le (1 - q^k)^{-1}$$

and we infer the estimation of Lemma 5. \blacksquare

Now we can state Theorem 2 in a stronger version.

THEOREM 6. If $||T_i|| \le q < 1$ and the assumptions of Theorem 1 are satisfied, then (i) $P^{(n)} \ge \omega(q)(P^{(n-1)} \otimes 1),$ where

(ii)

$$\omega(q)^2 = (1 - q^2)^{-1} \prod_{k=1}^{\infty} (1 - q^k)(1 + q^k)^{-1}.$$
$$P^{(n)} \le \frac{1}{1 - q} (P^{(n-1)} \otimes 1).$$

Proof. The proof follows from the following considerations:

(a) We know from the results of [BSp1] that

$$P^{(n)} \ge 0.$$

Since, by Lemma 5, $\|R_n^{-1}\| \leq \frac{1}{c}$ for some c>0, therefore

$$||(R_n^{-1})^* R_n^{-1}|| \le \frac{1}{c^2},$$

and this implies

$$R_n R_n^* \ge c^2$$

But, because

$$P^{(n)} = (P^{(n-1)} \otimes 1)R_n,$$

and $P^{(n)} = P^{(n)*}$, we obtain

$$[P^{(n)}]^2 = P^{(n-1)}R_nR_n^*P^{(n-1)} \ge c^2[P^{(n-1)}]^2$$

and hence

$$P^{(n)} \ge c(P^{(n-1)} \otimes 1)$$
, where $c = \omega(q)$.

(b) The statement (ii) of Theorem 2 follows from the two facts:

$$P^{(n)} = P^{(n-1)}R_n$$

and

$$R_n = 1 + T_{n-1} + T_{n-1}T_{n-2} + \ldots + T_{n-1}\ldots T_1$$

Therefore $||R_n|| < \frac{1}{1-q}$ and again as before we have

$$P^{(n)} \ge \frac{1}{1-q} (P^{(n-1)} \otimes 1).$$

So, the proof of Theorem 6 is complete. \blacksquare

This theorem is also valid for all finite and affine Coxeter groups (for more details see [BSp4]). Theorem 1 comes from investigations in harmonic analysis on groups (see [B1], [BSz]) and on perturbed cannonical commutation relations. In the paper with R. Speicher ([BSp1]) we considered the following relations

$$c_i c_j^* - q c_j^* c_i = \delta_{ij} \mathbf{1}$$

for a real q with $|q| \leq 1$, and we needed essentially the fact that the function

$$\varphi: S_n \longrightarrow \mathbf{C}, \qquad \qquad \pi \longmapsto q^{|\pi|}$$

is a positive definite function for all n, where $|\pi|$ denotes the number of inversions of π . For other proofs of that result see [BKS, BSp1, BSp2, BSp4, BSz, Spe, Z].

90

R. Speicher in [Spe] considered more general commutations relations

$$d_i d_j^* - q_{ij} d_j^* d_i = \delta_{ij} \mathbf{1}$$

for

$$-1 \le q_{ij} = q_{ji} \le 1,$$

and he founded the existence of a Fock representation by central limit arguments. Our construction of the q_{ij} relations depends on some operator T which is a self-adjoint contraction on a Hilbert space \mathcal{H} and satisfies the braid or Yang-Baxter relations of the following form:

$$T_1 T_2 T_1 = T_2 T_1 T_2,$$

where $T_1 = T \otimes \mathbf{1}$ and $T_2 = \mathbf{1} \otimes T$ on $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$ are the natural amplifications of T to $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$.

From Theorem 1 we get more general construction of deformed commutation relations of the Wick form:

$$d_i d_j^* - \sum_{r,s} t_{js}^{ir} d_r^* d_s = \delta_{ij} \mathbf{1}$$

(see also Jorgensen et al. [JSW] and [BSp4] for similar considerations).

2. Applications. Next we examine the deformed commutation relations from an operator spaces' point of view. If we assume that $||T|| = q \leq 1$ and if we take $G_i = d_i + d_i^*$, then we prove that the operator space generated by the G_i is completely isomorphic to the canonical operator Hilbert space $\mathcal{R} \cap \mathcal{C}$, which means

$$\left\|\sum_{i=1}^{N} a_{i} \otimes G_{i}\right\| \approx \max\left(\left\|\sum_{i=1}^{N} a_{i} a_{i}^{*}\right\|^{1/2}, \left\|\sum_{i=1}^{N} a_{i}^{*} a_{i}\right\|^{1/2}\right)$$

for all bounded operators $a_1, ..., a_N$ on some Hilbert space. This generalizes the Theorem of Haagerup and Pisier [HP], who obtained that result for free creation and annihilation operators, (see also [VDN] and [Buch]). As another application of our construction we have obtained a large class of *non-injective* von Neumann algebras, when considering the von Neumann algebra $VN(G_1, ..., G_N)$ generated by $G_1, ..., G_N$. For more details see [BSp4, BKS].

3. The ultracontractivity of the q-second quantization functor Γ_q . Let $T : \mathcal{H} \longrightarrow \mathcal{K}$ be a contraction between real Hilbert spaces. Then the linear map defined on elementary tensors by

$$F_q(T)(f_1 \otimes \ldots \otimes f_n) = Tf_1 \otimes \ldots \otimes Tf_n$$

extends to a contraction from q-Fock spaces $F_q(\mathcal{H})$ to $F_q(\mathcal{K})$. Here $F_q(\mathcal{H})$ is the completion of the full Fock space $\bigoplus_{n=0}^{\infty} \mathcal{H}^{\otimes n}$ with respect to the new scalar product

$$\langle f_1 \otimes \ldots \otimes f_n, g_1 \otimes \ldots \otimes g_n \rangle_q = \delta_{n,m} \sum_{\sigma \in S_n} q^{inv(\sigma)} \langle f_{\sigma(1)}, g_1 \rangle \ldots \langle f_{\sigma(n)}, g_n \rangle$$

The creation operators are defined as:

$$c^*(f_0)(f_1 \otimes \ldots \otimes f_n) = f_0 \otimes f_1 \otimes \ldots \otimes f_n, \quad f_j \in \mathcal{H}$$

and $c(f) = [c^*(f)]^*$.

Let $G(f) = c(f) + c^*(f)$ for $f \in \mathcal{H}$. Let $\Gamma_q(\mathcal{H})$ be the von Neumann algebra generated by $G(f), f \in \mathcal{H}$, and

$$\tau_q(S) = \langle S\Omega, \Omega \rangle_q, \quad S \in \Gamma_q(\mathcal{H}).$$

One can show that τ_q is a trace on $\Gamma_q(\mathcal{H})$.

If dim $\mathcal{H} = \infty$, then we showed that $\Gamma_q(\mathcal{H})$ is a factor.

If e_1, e_2, \ldots, e_N is an orthonormal basis of \mathcal{H} , then we put $G_i = G(e_i)$, $(i = 1, \ldots, N, N = \infty, 1, 2, \ldots)$. In this setting the following theorem holds:

THEOREM 7 ([BKS], Theorem 2.1.1). Let T be as above, then there exists a unique map $\Gamma_q(T) : \Gamma_q(\mathcal{H}) \longrightarrow \Gamma_q(\mathcal{K})$ such that $\Gamma_q(T)(X)\Omega = F_q(T)(X\Omega)$ for every $X \in \Gamma_q(\mathcal{H})$. The map $\Gamma_q(T)$ is bounded, normal, unital, completely positive and trace preserving.

We note that Γ_q is a functor, namely if $S : \mathcal{H} \longrightarrow \mathcal{K}$ and $T : \mathcal{K} \longrightarrow \mathcal{J}$ are contractions, then $\Gamma_q(ST) = \Gamma_q(S)\Gamma_q(T)$.

If \mathcal{H} is a real Hilbert space and $T_t = e^{-t}I$ for $t \geq 0$, then the completely positive maps $P_t^q = \Gamma_q(T_t), t \geq 0$, on $\Gamma_q(\mathcal{H})$, form a semigroup, called the *q*-Ornstein-Uhlenbeck semigroup. The *q*-Ornstein-Uhlenbeck semigroup extends to a semigroup of contractions of the non-commutative L^p spaces, which are symmetric on L^2 . Its infinitesimal generator on L^2 is the number operator N^q , i.e. $P_t = exp(-tN^q)$, where N^q is the unbounded self-adjoint operator defined as $N^q \Omega = 0$ and

$$N^q f_1 \otimes \ldots \otimes f_n = n f_1 \otimes \ldots \otimes f_n, \quad f_1, \ldots, f_n \in \mathcal{H}.$$

Ph. Biane [Bia] proved Nelson's hypercontractivity of the q-Ornstein-Uhlenbeck semigroup P_t , extending the results of Nelson and Gross. In that paper Ph. Biane also showed ultracontractivity for q = 0 using some results of the author (see [B2]). Now we prove the ultracontractivity of that semigroup for all $q \in [-1, 1]$.

THEOREM 8. Let X be in the eigenspace of N^q , with eigenvalue n. Then

- (i) $||X||_{L^{\infty}} \leq C(q)(n+1)||X||_{L^{2}}^{2}$;
- (ii) For $t \ge 0$, P_t maps L^2 into $L^{\infty} = VN_q(G_1 \dots G_N)$ and for $t \le 1$

 $\|P_t^q\|_{L^2 \to L^\infty} \le c_q t^{-3/2}.$

(iii) (Poincaré-Sobolev inequality). If $Q_q(X) = \langle XN^q X\Omega, \Omega \rangle$ is a non-commutative complete Dirichlet form (on an appropriate domain) on $L^2(\Gamma_q(\mathcal{H}), \tau_q)$, in the sense of [DL], then there exists a constant $c_q \geq 0$ such that for all X in the domain of Q_q we have

$$||X||_{L^3}^2 \le c_q(|\tau_q(X)|^2 + Q_q(X)).$$

For the details of the proof of this theorem see [B3] and [Bia].

References

- [B] D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, Lectures on Probability Theory, Lecture Notes in Mathematics, vol.1581, Springer, Berlin Heidelberg New York, (1994), 1-114.
- [Bia] Ph. Biane, Free Hypercontractivity, Prepublication N 350, Paris VI, (1996), 1–19.

- [B1] M. Bożejko, Positive definite kernels, length functions on groups and a noncommutative von Neumann inequality, Studia Math. 95 (1989), 107–118.
- [B2] M. Bożejko, A q-deformed probability, Nelson's inequality and central limit theorems, Non-linear fields, classical, random, semiclassical (P. Garbaczewski and Z. Popowicz, eds.), World Scientific, Singapore, (1991), 312–335.
- [B3] M. Bożejko, Ultracontractivity and strong Sobolev inequality for q-Ornstein-Uhlenbeck semigroup (to appear).
- [BSp1] M. Bożejko and R. Speicher, An Example of a Generalized Brownian Motion, Comm. Math. Phys. 137 (1991), 519–531.
- [BSp2] M. Bożejko and R. Speicher, An Example of a generalized Brownian motion II. In : Quantum Probability and Related Topics VII (ed. L. Accardi), Singapore: World Scientific (1992), 219–236.
- [BSp3] M. Bożejko and R. Speicher, Interpolation between bosonic and fermionic relations given by generalized Brownian motions, Math. Zeit. 222 (1996), 135–160.
- [BSp4] M. Bożejko and R. Speicher, Completely positive maps on Coxeter Groups, deformed commutation relations, and operator spaces, Math. Annalen 300 (1994), 97–120.
- [BKS] M. Bożejko, B. Kümmerer and R. Speicher, q-Gaussian Processes: Non-commutative and Classical Aspects, Comm. Math. Phys. 185 (1997),129–154.
- [BSz] M. Bożejko and R. Szwarc, Algebraic length and Poincare series on reflection groups with applications to representations theory, University of Wrocław, preprint (1996), 1-25.
- [Buch] A. Buchholz, Norm of convolution by operator-valued functions on free groups, Proc. Amer. Math. Soc., (1997).
 - [CL] E. A. Carlen and E. H. Lieb, Optimal hypercontractivity for Fermi fields and related non-commutative integration inequalities, Comm. Math. Phys. 155 (1993), 27–46.
- [CSV] T. Coulhon, L. Saloff-Coste, and N. Th. Varopoulos, Analysis and Geometry on Groups, Cambgidge Tracts in Mathematics, vol.100, Cambridge University Press, 1992.
- [DL] E. B. Davies and J. M. Lindsay, Non-commutative symmetric Markov semigroups, Math. Zeit. 210 (1992), 379-411.
- [G] L. Gross, Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form, Duke Math. J. 42 (1975), 383–396.
- [H] U. Haagerup, An example of a non nuclear C*- algebra which has the metric approximation property, Invent. Math. 50 (1979), 279–293.
- [HP] U. Haagerup and G. Pisier, Bounded linear operators between C*-algebras, Duke Math. J. 71 (1993), 889–925.
- [JSW] P. E. T. Joergensen, L. M. Schmitt and R. F. Werner, *Positive representations of general commutation relations allowing Wick ordering*, J. Func. Anal., 134 (1995),3–99.
 - [N] E. Nelson, The free Markoff field, J. Func. Anal. 12 (1973), 211–227.
 - [P] G. Pisier, The Operator Hilbert Space OH, Complex Interpolation and Tensor Norms, Mem. Amer. Math.Soc. 1996.
- [Spe] R. Speicher, A non commutative central limit theorem, Math. Zeit. 209 (1992), 55-66.
- [VDN] D. V. Voiculescu, K. Dykema and A. Nica, Free random variables, CRM Monograph Series No.1, Amer. Math. Soc., Providence, RI, 1992.
 - [Z] D. Zagier, Realizability of a model in infinity statistics, Comm. Math. Phys. 147 (1992), 199-210.