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1. Coxeter groups. In this note we give an application of the following result on

the symmetric group Sn:

Theorem 1. For fixed n ∈ N let us consider the permutation group Sn and denote by

πi ∈ Sn (i = 1, ..., n−1) the transposition between i and i+ 1. Furthermore, let operators

Ti ∈ B(H) (i = 1, ...n− 1) on some Hilbert space H be given, with the properties:

(i) T ∗i = Ti for all i = 1, ..., n− 1;

(ii) ‖Ti‖ ≤ 1 for all i = 1, ..., n− 1;

(iii) The Ti satisfy the braid relations:

TiTi+1Ti = Ti+1TiTi+1 for all i = 1, ..., n− 2,

TiTj = TjTi for all i, j = 1, ..., n− 1 with |i− j| ≥ 2.

Now let us define a function

ϕ : Sn −→ B(H)

by quasi-multiplicative extension of

ϕ(e) = 1, ϕ(πi) = Ti,

i.e. for a reduced word Sn 3 σ = πi(1) . . . πi(k) we put ϕ(σ) = Ti(1) . . . Ti(k). Then ϕ is a

completely positive map, i.e. for all l ∈ N, fi ∈ CSn, xi ∈ H (i = 1, . . . , l) we have〈 l∑
i,j=1

ϕ(f∗j fi)xi, xj

〉
≥ 0.
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By our previous result from [BSp1], Theorem 1 is equivalent to the following:

Theorem 2. Under the assumptions of Theorem 1 the operator

P (n) = P
(n)
T =

∑
σ∈Sn

ϕ(σ) =

= (1 + T1)(1 + T2 + T2T1) . . . (1 + Tn−1 + Tn−1Tn−2 + · · ·+ Tn−1 . . . T1)

satisfies

P (n) ≥
n∏
k=2

ck(q) > 0,

where

ck(q) = (1− q2)−1
k∏
l=1

(1− ql)(1 + ql)−1.

Moreover , by Gauss formula

ck(q) ≥ c(q) = (1− q)−1
∞∏
l=1

(1− ql)(1 + ql)−1 = (1− q)−1
+∞∑
l=−∞

(−1)lql
2

.

In the proof we need the following lemma:

Lemma 3. If Ti ∈ B(H) satisfy the braid relations of Theorem 1 , then for 1 ≤ r <

k < n− 1, we have

(Tn−1Tn−2 . . . Tk)(Tn−1Tn−2 . . . Tr) = Tn−1(Tn−1Tn−2 . . . Tr)(Tn−1 . . . Tk+1).

P r o o f. The proof of the Lemma follows by induction on k:

Let k = n− 2. Then by the braid relations we get

(Tn−1 Tn−2)(Tn−1Tn−2︸ ︷︷ ︸Tn−3 . . . Tr) =

= Tn−1 Tn−1Tn−2Tn−1︸ ︷︷ ︸Tn−3 . . . Tr =

= Tn−1(Tn−1Tn−2Tn−3 . . . Tr)Tn−1.

The next step looks as follows:

(Tn−1Tn−2Tn−3)(Tn−1Tn−2Tn−3 . . . Tr) =

= (Tn−1Tn−2)(Tn−1 Tn−3Tn−2Tn−3︸ ︷︷ ︸ . . . Tr) =

= (Tn−1 Tn−2)(Tn−1Tn−2︸ ︷︷ ︸Tn−3Tn−2Tn−4 . . . Tr) =

= Tn−1Tn−1Tn−2Tn−1Tn−3Tn−2(Tn−4 . . . Tr) =

= Tn−1Tn−1Tn−2Tn−3(Tn−1Tn−2)(Tn−4 . . . Tr) =

= Tn−1(Tn−1Tn−2Tn−3 . . . Tr)(Tn−1Tn−2).

Next we need the following important lemma:

Lemma 4. Let Ti ∈ B(H) and

Rk(T1, . . . , Tk−1) = Rk = 1 + Tk−1 + Tk−1Tk−2 + . . .+ Tk−1Tk−2 . . . T1,

where k = 2, 3, . . . , n. Then
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(a) Rk(1− Tk−1Tk−2 . . . T1) =

= (1− T 2
k−1Tk−2 . . . T1)(1 + Tk−1 + Tk−1Tk−2 + . . .+ Tk−1Tk−2 . . . T2) =

= (1− T 2
k−1Tk−2 . . . T1)Rk−1(T2, T3, . . . , Tk−1),

(b) Rn(1− Tn−1Tn−2 . . . T2T1)(1− Tn−1Tn−2 . . . T2) . . . (1− Tn−1) =

= (1− T 2
n−1Tn−2 . . . T2T1)(1− T 2

n−1Tn−2 . . . T2) . . . (1− T 2
n−1Tn−2)(1 + Tn−1).

P r o o f. Let us start with the case k = 3. Since R3 = 1 + T2 + T2T1, we have

R3(1− T2T1) = 1 + T2 − T 2
2 T1 − T2T1T2T1 =

= 1 + T2 − T 2
2 T1 − T 2

2 T1T2 =

= (1− T 2
2 T1)(1 + T2).

Now we consider the case k = 4. By natural calculations using Lemma 3 we get

R4(1− T3T2T1) = (1 + T3 + T3T2)− (T 2
3 T2T1)(1 + T3 + T3T2) =

= (1− T 2
3 T2T1)(1 + T3 + T3T2).

Therefore, using the case k = 3, we have

R4(1− T3T2T1)(1− T3T2) = (1− T 2
3 T2T1)(1− T 2

3 T2)(1 + T2).

Repeating this process we get the proof of the Lemma.

This implies the next lemma.

Lemma 5. If

P (n) =
∑
σ∈Sn

ϕT (σ) = P (n−1)(1 + Tn−1 + . . .+ Tn−1 . . . T1) =

= P (n−1)Rn = R2R3 . . . Rn,

and ‖Ti‖ ≤ q < 1, then

‖R−1n ‖ ≤ (1− q)−1
n−1∏
k=1

(1 + qk)

n∏
k=3

(1− qk)−1. (∗∗)

P r o o f. By Lemma 4 we have

Rn =

n−2∏
k=1

(1− T 2
n−1Tn−2 . . . Tk)(1 + Tn−1)

1∏
l=n−1

(1− Tn−1 . . . Tl)−1.

But, since ‖Ti‖ < q < 1, therefore

‖(1− Tn−1 . . . T(n−1)−k)−1‖ ≤ (1− qk)−1

and we infer the estimation of Lemma 5.

Now we can state Theorem 2 in a stronger version.

Theorem 6. If ‖Ti‖ ≤ q < 1 and the assumptions of Theorem 1 are satisfied , then

(i) P (n) ≥ ω(q)(P (n−1) ⊗ 1),
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where

ω(q)2 = (1− q2)−1
∞∏
k=1

(1− qk)(1 + qk)−1.

(ii) P (n) ≤ 1

1− q
(P (n−1) ⊗ 1).

P r o o f. The proof follows from the following considerations:

(a) We know from the results of [BSp1] that

P (n) ≥ 0.

Since, by Lemma 5, ‖R−1n ‖ ≤ 1
c for some c > 0, therefore

‖(R−1n )∗R−1n ‖ ≤
1

c2
,

and this implies

RnR
∗
n ≥ c2.

But, because

P (n) = (P (n−1) ⊗ 1)Rn,

and P (n) = P (n)∗, we obtain

[P (n)]2 = P (n−1)RnR
∗
nP

(n−1) ≥ c2[P (n−1)]2

and hence

P (n) ≥ c(P (n−1) ⊗ 1), where c = ω(q).

(b) The statement (ii) of Theorem 2 follows from the two facts:

P (n) = P (n−1)Rn

and

Rn = 1 + Tn−1 + Tn−1Tn−2 + . . .+ Tn−1 . . . T1.

Therefore ‖Rn‖ < 1
1−q and again as before we have

P (n) ≥ 1

1− q
(P (n−1) ⊗ 1).

So, the proof of Theorem 6 is complete.

This theorem is also valid for all finite and affine Coxeter groups (for more details

see [BSp4]). Theorem 1 comes from investigations in harmonic analysis on groups (see

[B1], [BSz]) and on perturbed cannonical commutation relations. In the paper with R.

Speicher ([BSp1]) we considered the following relations

cic
∗
j − qc∗jci = δij1

for a real q with |q| ≤ 1, and we needed essentially the fact that the function

ϕ : Sn −→ C, π 7−→ q|π|

is a positive definite function for all n, where |π| denotes the number of inversions of π.

For other proofs of that result see [BKS, BSp1, BSp2, BSp4, BSz, Spe, Z].
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R. Speicher in [Spe] considered more general commutations relations

did
∗
j − qijd∗jdi = δij1

for
−1 ≤ qij = qji ≤ 1,

and he founded the existence of a Fock representation by central limit arguments. Our

construction of the qij relations depends on some operator T which is a self-adjoint

contraction on a Hilbert space H and satisfies the braid or Yang-Baxter relations of the

following form:

T1T2T1 = T2T1T2,

where T1 = T ⊗ 1 and T2 = 1⊗ T on H⊗H⊗H are the natural amplifications of T to

H⊗H⊗H.

From Theorem 1 we get more general construction of deformed commutation relations

of the Wick form:

did
∗
j −

∑
r,s

tirjsd
∗
rds = δij1

(see also Jorgensen et al. [JSW] and [BSp4] for similar considerations).

2. Applications. Next we examine the deformed commutation relations from an

operator spaces’ point of view. If we assume that ‖T‖ = q ≤ 1 and if we take Gi = di+d
∗
i ,

then we prove that the operator space generated by the Gi is completely isomorphic to

the canonical operator Hilbert space R∩ C, which means∥∥∥ N∑
i=1

ai ⊗Gi
∥∥∥ ≈ max

(∥∥∥ N∑
i=1

aia
∗
i

∥∥∥1/2,∥∥∥ N∑
i=1

a∗i ai

∥∥∥1/2)
for all bounded operators a1, ..., aN on some Hilbert space. This generalizes the Theorem

of Haagerup and Pisier [HP], who obtained that result for free creation and annihilation

operators, (see also [VDN] and [Buch]). As another application of our construction we

have obtained a large class of non-injective von Neumann algebras, when considering

the von Neumann algebra V N(G1, ..., GN ) generated by G1, ..., GN . For more details see

[BSp4, BKS].

3. The ultracontractivity of the q-second quantization functor Γq. Let T :

H −→ K be a contraction beetween real Hilbert spaces. Then the linear map defined on

elementary tensors by

Fq(T )(f1 ⊗ . . .⊗ fn) = Tf1 ⊗ . . .⊗ Tfn
extends to a contraction from q-Fock spaces Fq(H) to Fq(K). Here Fq(H) is the completion

of the full Fock space
⊕∞

n=0H⊗n with respect to the new scalar product

〈f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gn〉q = δn,m
∑
σ∈Sn

qinv(σ)〈fσ(1), g1〉 . . . 〈fσ(n), gn〉.

The creation operators are defined as:

c∗(f0)(f1 ⊗ . . .⊗ fn) = f0 ⊗ f1 ⊗ . . .⊗ fn, fj ∈ H
and c(f) = [c∗(f)]

∗
.
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Let G(f) = c(f)+c∗(f) for f ∈ H. Let Γq(H) be the von Neumann algebra generated

by G(f), f ∈ H, and

τq(S) = 〈SΩ,Ω〉q, S ∈ Γq(H).

One can show that τq is a trace on Γq(H).

If dimH =∞, then we showed that Γq(H) is a factor.

If e1, e2, . . . , eN is an orthonormal basis of H, then we put Gi = G(ei), (i = 1, . . . , N ,

N =∞, 1, 2, . . .). In this setting the following theorem holds:

Theorem 7 ([BKS], Theorem 2.1.1). Let T be as above, then there exists a unique

map Γq(T ) : Γq(H) −→ Γq(K) such that Γq(T )(X)Ω = Fq(T )(XΩ) for every X ∈ Γq(H).

The map Γq(T ) is bounded , normal , unital , completely positive and trace preserving.

We note that Γq is a functor, namely if S : H −→ K and T : K −→ J are contractions,

then Γq(ST ) = Γq(S)Γq(T ).

If H is a real Hilbert space and Tt = e−tI for t ≥ 0, then the completely positive

maps P qt = Γq(Tt), t ≥ 0, on Γq(H), form a semigroup, called the q-Ornstein-Uhlenbeck

semigroup. The q-Ornstein-Uhlenbeck semigroup extends to a semigroup of contractions

of the non-commutative Lp spaces, which are symmetric on L2 . Its infinitesimal generator

on L2 is the number operator Nq, i.e. Pt = exp(−tNq), where Nq is the unbounded

self-adjoint operator defined as NqΩ = 0 and

Nqf1 ⊗ . . .⊗ fn = nf1 ⊗ . . .⊗ fn, f1, . . . , fn ∈ H.
Ph. Biane [Bia] proved Nelson’s hypercontractivity of the q-Ornstein-Uhlenbeck semi-

group Pt, extending the results of Nelson and Gross. In that paper Ph. Biane also showed

ultracontractivity for q = 0 using some results of the author (see [B2]). Now we prove

the ultracontractivity of that semigroup for all q ∈ [−1, 1].

Theorem 8. Let X be in the eigenspace of Nq, with eigenvalue n. Then

(i) ‖X‖L∞ ≤ C(q)(n+ 1)‖X‖2L;

(ii) For t ≥ 0, Pt maps L2 into L∞ = V Nq(G1 . . . GN ) and for t ≤ 1

‖P qt ‖L2→L∞ ≤ cqt−3/2.
(iii) (Poincaré-Sobolev inequality). If Qq(X) = 〈XNqXΩ,Ω〉 is a non-commutative

complete Dirichlet form (on an appropriate domain) on L2(Γq(H), τq), in the sense of

[DL] , then there exists a constant cq ≥ 0 such that for all X in the domain of Qq we have

‖X‖2L3 ≤ cq(|τq(X)|2 +Qq(X)).

For the details of the proof of this theorem see [B3] and [Bia].
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