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Abstract. The paper establishes the basic algebraic theory for the Gevrey rings. We prove
the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division
theorem for them. We introduce a family of norms and we look at them as a family of analytic
functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic
properties of this rings.

Introduction. The Gevrey series appeared as formal solutions of partial differen-
tial equations of second order ([G]). In 1903 Maillet ([Mi]) proved that the formal so-
lutions of ordinary differential equations with polynomial coefficients are of this type.
Afterwards, Malgrange ([Ml]) and J. Cano ([Ca]) generalized this result to ordinary
differential equations with analytic and Gevrey coefficients respectively. But for partial
differential equations the analogous result is not yet achieved for any partial differential
equation with polynomial coefficients; nevertheless there are some important results: see
Ouchi (]O)).

The semianalytic geometry with Gevrey conditions to the border is studied in the
article of Tougeron [T]. He generalized the basic theorems of the semianalytic geometry
to this case.

As far as we know, a study of the algebraic properties of this series has not yet been
done. This work shows the basic algebraic properties of these rings. In particular, they are
noetherian and henselian. The basic tools we use here are the pseudo-Banach structure
they have, and the formal Borel transform. This transform changes the Gevrey series by
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a germ of analytic function at 0. We introduce a family of norms that are the restrictions
of the absolute Borel transform to the semialgebraic (0,00)" N{x1 = ... = x,}. We prove
the Artin approximation property for them, but we do not touch the approximation “to
the smallest term” (see [Z4]) since it is more analytic in nature.

We give a Gevrey version of the Weierstrass-Hironaka division theorem: the division
by a finite family f1,..., f, of Gevrey’s series. In general, when the data are of Gevrey’s
order s, the quotient and the remainder are not of the same order, as we can see in the
following counter-example.

Let g = >0,y nimlz™y™ and f = —y* — "7 a™. Then g = qf + r, where ¢ =
Za’ﬁeN Gapr®yP is the solution of the infinite system

qop = (B +2)!
a—1

Gop = (B+2)!+ > Gopya, a>1.
o=0

The Gevrey order of ¢ is at least (2,1), but f and g are Gevrey’s series of order (1,1).
Nevertheless there are some special cases where you can divide without increasing the
Gevrey order (see Remark 4.3). The Gevrey order of the quotients and the remainder we
give here improve the result obtained by the author in her Ph.D. Thesis ([Z3], 1994).

The Weierstrass division theorem has also been studied by Chaumat and Chollet
([CC1]). They only considered the case of the division by one Gevrey’s series. They gave
the preparation theorem in ultradifferentiable classes in [CC2].

1. Preliminaries. Denote by K the field of real numbers, R, or the field of complex
numbers, C. Let n be a positive integer greater than one. We will use the following
multiindex notation.

Let o« = (1, ...,ap) € N? then

o] = a1+ ...+ ap.

We put z¢ = 27! -+ - 2% with = (z1,...,2,) € K", and if s = (s1,...,8,) € [0,00)",

al® = ap!%t -l

If £ € [0,00) we put £ = ({,...,£). Now, for @« = (ay,...,,) and 8 = (f1,...,0n) in
[0,00)", we put < 3 (resp. a < f3) if and only if 3; —«; is a non-negative (resp. positive)
real number for each j =1,...,n.

Let X = (X4,...,X,) be a vector of independent variables over K, and f =) fo, X*
a formal power series over K, that is, an element of the ring K[[X]]. We denote by ordy(f)
the integer

ordo(f) = min{|a| : fo # 0}.

The ring of convergent power series over K (in the variables X)) is denoted by K{X}.
Moreover, whenever we have a polynomial in a new variable Z with coefficients in a power
series ring (e.g. F' € K[[X]][Z]), we emphasize this fact using the “” sign (e.g. F(X; Z2)).
For a square matrix A, k(A4; z) is its characteristic polynomial in the variable z. The ring
of p x ¢ matrices with entries in a given ring R is denoted by M, ,(R). If P(z) and Q(z)
are two polynomials with coefficients in R, then Res, (P, Q) is the resultant of P and Q.
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The set K[[X]]s is the subring of K[[X]] defined as follows:

F=) fuX* €KX = f= ) “HX"eK{X}.

s
a€Nn aENn

This ring is called the Gevrey formal power series ring of order s. An element of this ring
is a Gevrey formal power series of order s. A formal power series f € K[[X]] is called of
Gevrey type if there exists an s € [0,00)" such that f € K[[X]];. Then the vector s is
called its Gevrey order. Observe that whenever s < ¢ we have

K[[X]]s € K[[X]]¢.

Hence, you have a filtration indexed by the semigroup & = [0,00)™. Therefore, we see
that the convergent power series are in (| KJ[[X]]s, but these rings are not equal.

seS\{0}
For instance, when n = 1, the series > m!1/m(nm) xm s not convergent, but belongs to
N K[[X]]s. Let
s>0

K[ XMs,+ = N K[ X]]-

r>8
If Wi, ..., W, are independent variables over K (distinct from the X;), and ¢ € [0, 00)?,
we put
KW [ X]s,+ = N KW, X]lt.

r>s
for s in [0, 00)™.
Let s = (s1,...,8n) € [0,00)™ and p € (0, 00). Define

o= S el o= 3 e e k[])

aeNr a€Nn

17

where p® = pl®l, and
Eés) = {f e K[[X]] : || f||s,p is finite}.

It is easy to see that ||-||5,, is a norm. The K-algebras E,()S) are Banach algebras. Moreover,
if p’ > p then El(j) C E,gs). Hence the inductive limit
G®) = lim E(¥
p—d0 P
is a complete topological vector space with the inductive limit topology. Then we have
morphisms (of topological vector spaces) i, : E,gs) — G®) for each p > 0. The algebra

G®) is a pseudo-Banach algebra whose bound structure is given by the unit balls of the
algebras E,(f) (see [ADM]). Hence, we obtain()

PROPOSITION 1.1. The space G is isomorphic to K[[X]]s as K-algebras, but not as
topological vector spaces.

(1) Because K[[X]]s is not complete for the (X1,..., Xn)-adic topology.
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2. The formal Borel transform in Gevrey’s series rings. Fix n € N, n > 1,

and s = (s1,...,8,) € [0,00)™. Given a Gevrey series
FX) =Y faX® € GW, with f(0) =0,
aeN"™

we define its formal Borel transform of level s by the formula

Bsg=Y Jee

acNn

For the unit 1 of G*) we put Bl = &, where 9§ is the Dirac distribution. Then we have
defined a map (of vector spaces over K) B, : G) — K{X} that is surjective. We put

Bire =Y Felen

aeNn

and call it the absolute Borel transform of level s.

PROPERTY 2.1 (the evaluation property). Let Y = (Y1,...,Y,), X = (X1,...,Xm)

be variables over K, and s = (s1,...,8,) € [0,00)", 75 = (Tj1,--.,Tjm) € [0,00)™ for
j=1,...,n. Let sx = max{s1,...,S,}. If F(Y) is in the ring K[[Y]]s and f;(X) in
K[[X]]+,, then, whenever f1(0) = ... = f,(0) = 0, the composition F o (fi,..., fn) is in
K[ X]], forr = (r1,...,mm) with r; = max{7;, ..., Tnj, S*}.

Proof. Let § > 0 be such that the series |I§Tj\fj are convergent in (—4,8) x .. x
(—6,8). Take e > 0 such that |B|F is convergent in (—¢, ) X .. x (—¢, €). The analytic
functions

©j:(0,0) > x v+ |By,|fi(x,....2) = ||fjllr;c €R
can be factorized as ¢;(z) = xf;(x) in (0,0), where the 3; are positive increasing real
analytic functions.

Choose ¢’ < § and put K; = 3;(0’), 1 < j < n. Taking §; < ¢’ such that 6, K; < e for
j=1,...,n, we obtain the inequalities

(i) pi(r) <e in (0,61).
Hence (|ES|F) (p1(x), ..., on(z)) is finite for x € (0, d7).
Let r € [0,00)™ be as in the statement. Assume the inequality

(i) B (Fo(fi,....fn)) <|BsF| o (1Brlfry---s|Br,|fn)
in the interval Q = (0,8;) x .. x (0,8;). Then, if 2z € QN {x; = ... = z,}, we get
IF o (fi-e s fa)llne < (1Bl F) (01(2), ..., on(x)).

This inequality and (i) imply that Fo(fy,..., f,) € G, as was claimed in the statement.
In order to prove (ii), we proceed as follows. Put

FY)= Y FY' and f;(X)= ) a;uX® 1<j<n
1€Nn acNm
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Fort=0,1,...,and j =1,2,...,n, we have the formal power series expansion
t t t
(f;) = Z C%Kﬂ where cgﬁ) = Z joy "+ jay -
ﬁeN'nL (()tl,.~-,0¢t)€(N"n)t
ar+..+a=4

Hence, the formal power series

S ey (X dedn)x

1=(%1,...,0n ) EN" BEN™ (B1,....Bn ) E(N™)"

Bi+..+Pn=p
is the formal power series expansion of F o (f1,..., f,). Let sx = max{sy,...,s,} and
r=(r1,...,"m) € [0,00)™ be such that r; = max{m;,...,Tn;, s*}, 1 <j < m. Set
) _ lajoal | laja.|
dg= D o e
(aur,.e..,ap) E(N™)?
ar+...+ay=p4

then for j =1,...,n and t € N we have

(1B, 15) = > dix”.

BEN™
It is easy to prove the inequalities
() (t) (t)
6l  dip  Lip

In consequence,

BlFo () @< X IL S S )y

ieNm T BeN™ Bi+..4+8,=8
= |BS|F © (|B‘r1 ‘flv cees |BT7L

forx e O. m

Remark 2.2. Let A1,..., A, € K\ 0. Then f(Y7,...,Y,) and f(A\Yq,..., A Y5)
have the same Gevrey order.

3. The Hensel lemma for the Gevrey rings

LEMMA 3.1 (the Hensel lemma for the Gevrey rings). Let f(X;z) € G®)[2] be a monic
polynomial in the variable z such that f(0;z) = a(z)b(z) with ged(a(z),b(z)) = 1. Then
there exist P(X;2) and Q(X; z) in G®)[z] such that f = PQ and

P(0;z) = a(z), deg, P =deg a=np,
Q(0;2) =b(2), deg,Q =deg,b=q.

It is well known (see [N], page 104) that there exist P and @ with coefficients in
K[[X]] such that f = PQ and

P(0;z) = a(z), deg, P =deg.a=p,
Q(0;2) =b(z), deg,Q =deg,b=gq.
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The only difficulty is to prove that the divergent coefficients of P and @ are in fact of
Gevrey’s order s. For that we recall the proof of the Hensel lemma for matrices introduced
by P. M. Cohn (see [Col, or [Z2]).

Put
f(X:;2)=ag(X)+a1(X)z+... +ag_1 (X))t + 24

We can assume that a(z) = 2P (because you can argue to induction on d). The companion
matrix of f can be written as

M= (Al A2> c Md,d(G(S))

As Ay
where
0 0 0 0 0 0 1
1 0 0 0 0 0 0
A = . €M, (GY), Az=|. A
0 10 0 0 0
0 ... 0 —ag 0 ... 0 —ap
A= oy Aa=| | €Mge(GW).
0 ... 0 —ap_—1 0 ... 0 —ag-—1

We will construct a matrix X such that

I -Xx I X\ _ (A —XA4 0
) (0 I)M(O 1)‘( A3 A3X+A4)'

For that, define a sequence of matrices X, € M, ,(K[[X]]):

0) {00
1
XTA4 — AlXT = A2 — erlAngfl, r= 1.

Now, consider the resultant u = Res,(k(A1, 2), (A4, 2)), then choose two polynomials:
L(z) of degree < ¢ — 1 and N(z) of degree < p — 1, such that u = L(2)k(A1,2) +
N(z)r(Ay4, z) ([BR], page 28). The polynomial

1
H(Z) = aL(Z)/ﬁZ(Al, Z) = apzp + ...+ ad_12d71

assumes the value 0 at A; and 1 at A4. Hence, the matrix

d—1
X, = a,C + Z o Z AiCA,
j=ptl  iti=j
where C' = Ay — X, _1A3X,_1, is the solution of (i). Let m be the maximal ideal of K[[X]].
The limit X of the sequence { X, } —for the m-adic topology in K[[X]]— verifies (*). Then

(—1)2f is the product of the characteristic polynomials of A; — X A3 and A3X + A,.

In order to prove that the coefficients of X are in some Egs)

result.

we will use the following



FORMAL SOLUTIONS OF POLYNOMIAL DIFFERENTIAL EQUATIONS 283

LEMMA 3.2. Let X, y, z be independent variables over the field K, and p,q € N be such
that pg # 0. Denote by F the fraction field of the polynomial ring Ky|]. Set R = F[[X]].
Consider the monic polynomials

P(z)=co+ecrz+...+ce127 1t + 27 € K[[X]][2],
~ o Co C
with co # 0. Let L, N € K[[X]][z] (resp. ZJST € R[2]) be such that Res. (2P, P(z)) =
L(2)2? + N(2)P(z) (resp. Res. (2P, P(z)) = L(2)2" + N(2)P(z)) and deg, L < q — 1,
deg, N <p—1 (resp. deg, L < q—1,deg, N <p—1). Set

ilz—l—...—i—ch_lzq_l—&—zqeR[z]

L(z) =vp+viz+...+ vy, 12971 € K[[X]][2],
Z(z) =0 +z+...+7,129" € R[2].
Then v; = v;y? TP=P1 for j =0,1,...,q — L.

Proof. Consider the extension of the identity over R to the polynomial ring R][z]
given by 7(z) = yz. Then
Res, (27, P) = m(L)yPz" + (N)y?P(z).
Since(2) Res, (2P, P) = yP? Res, (27, P), we have
Res, (27, P) = y??L(2)2" + y**N(z) P(=).

Consequently, L = yP~P47r(L), and that implies the statement. m

Now consider p € (0, 1) such that the resultant u is a unit in E,gs) and the coefficients
of L and N are in Ef()s). Fix ag,...,a4_1 in Ef()s) such that i,(a;) = a; (if it is impossible,
take a smaller radius p at the beginning).

Take the real analytic functions

p;(x) =|Bslaj(z,...,z), 0<j<
&(x) = |Bs|aw(x,...,x), p<l<d—1.
Let p’ € (0,p). For each j € {0,...,p — 1} the function ¢; can be factorized as p;(z) =
xfB(x) in [—p', p'], where B; is a positive increasing real analytic function. Let
T =max{{(p") 1 1 <L<tPU{p;(p) ip<j<d—1} >0
Let y be a new variable over K. Consider the monic polynomial
1
9y(X; 2) = Ff@; yz) € R[],
where R is as in Lemma 3.2. The algorithm (i) can be performed for g,. We have now
0 ... 0 —ag/y? 0 ... 0 —a,/yt?r
Ap=| : Co A= : :
0 ... 0 —a, q/yt P! 0 ... 0 —ag1/y

(%) See [BR], page 29.
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and A;, Aj as before. Then there exist two new polynomials Zy and N € R[z] such
that @ = Res;(k(A1, 2), k(A}, 2)) = L(2)k(A1, 2) + N(2)k(A}, 2) and deg, Ly < g — 1,
deg, N <p—1. Set

~ 1~ _ _ B

Hy(z) = ELy(Z)FL(Al, 2) = ap(X,y)2P + ...+ g1 (X, y)24 L

Lemma 3.2 for P(z) = k(Ay4, z) and P(2) = x(A), z) implies the equalities

~ V;_ Py VS . .
a;(X,y) = jﬂp =y Ju” =ya;j(X), p<j<d-—1,

since u = yP%u. The sequence of matrices )NCT (y) given inductively by the iteration

Xo(y) =0
X (A, — A1 X, (y) = Ay — X, (9)As X1 (y), r>1,

is the sequence

d—1
Xo(y) =X, 9)C+ > a(X,y) Y AC(4)),
j=p+1 i+l=j

where C = A} — X,_1(y)AsX,_1(y). Now consider Z,(y) = X,(y) — X,_1(y). Then we
have the equalities
Zr(y)Ay — A1 Z,(y) = D

and

d—1
Z,(y) = ap(X,y)D+ Y a;(X,y) Y AD(AY),
j=pt1 i+i=j
where D = —X,_1(y)A3Zr_1(y) — Z,(y) AsX,_1(y). Set
d—1 J
wt)=1+ > > (r/t)  forte (0,00).

j=p+11=0

Let A € (1,00) be such that W = 7A%"lw()\) > e. Now, put y = X in the previous
construction, that is, consider:

Q(XJ)ZQA(X’Z% aj:aj(zaA)a j:pw"ad*la
H(z) = H\(2), X, =X,(\), Zr=Z(\).
Let us take the polynomial with analytic coefficients
d—1 J
D(t,2) = l@pllse + Y Nallse Y 2" forte(0,0).
j=p+1 =0
Let W > W be such that 4W3 < exp(W). Take p” € (0, ') and put
¢ =max{Bo(p" )N\, ..., Bp_1(p)N"PTIL

Now choose € € (0, p") such that eWexp(W) < 1 and § € (0,p") with d¢ < e. Then
[|A5||s,s < dc < e.
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The iteration
ug = 0
Up = I(up—1), r=1,

for I(t) = W (e + 2?), gives us a sequence of non-negative real numbers {u, } such that
||)?r|‘s,6 <ur <o
where &, satisfies I(&p) = & and 1/(2W2) > &y. Therefore

~ 1 ~
||Zr||s,5 < WHzrflns,J .

So, in particular
lim ||Z||ss =0.
T—>00

The sequence {X}} has the limit Y2, Z, in the ring of p X ¢ matrices with entries
in Eés), therefore, also in Mpyq(G(s)). In consequence g can be factorized as ¢(X;z) =
G1(X;2)Ga(X; 2) where G; € G®)[z] and j = 1,2. Then

P(X;2) = WG1(X;2/\) and Q(X;z) = NG (X;z/)N)

are in G(*)[z], as we have stated in Lemma 3.1. =

4. The division theorems. Let Z = (Zy,...,Z;) and W = (W1q,...,Wy) be two
vectors of variables over K. Given a formal power series

FW,Z) =" faW)zh = Y fapWP24,
A€Ne (A,B)€NexNd
we define the sets of exponents
Exp(f) = {(4,B) e N° x N*: fup # 0},
Expy(f) ={A e N": fa(W) #0}.
In order to prove the Weierstrass-Hironaka theorem we will use the following lemma.
LEMMA 4.1. Let a > 0, h > 0 and ¢ > 1. The function
(z+0)"
hz
has an absolute mazimum my, such that vgq n(mp) = 1. Moreover, when h > h' we have

G [0,00) D x—> eR

Qe,an
©,a,n (Mn) < 7}; )

where Qg.q.n 15 a constant depending only on £, a and h'.

Let t = (t1,...,tq) € [0,00)% and s = (s1,...,5.) € [0,00)¢. We put (¢,5) =
(t1, .y tdy 815y 8e) € [0,00) T4 If = (py, ..., pe) € [0,00)¢, then {u, s) = 25:1 WS,

THEOREM 4.2 (the Weierstrass-Hironaka division theorem for Gevrey’s rings). Let
r € N\ 0 and Ag = (0,...,0), Ay,..., A, € N°. Consider some non-units fi,..., fr €
K[[W, Z](4,s) such that for any k € {1,...,r} we have

(a) The pair (Ax,0) is an element of Exp(f).

(b) If (U,0) € Exp(f) then |U| > |Ax|.
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Take a finite partition {P1,...,Pr} of N° such that Pr C Ax + N¢ and Ay € Py or
Pie=0 fork=1,...,r. If A;, is the q-th component of A;, we define

fg = max{Aq : 1 <r}
where g € {1,...,c}, and = (1, ..., pe) € N Let t/ = (t1 + {, 8), ..., ta + {p, 8)) and
s' = (|s|,...,|s]) € [0,00)°. Then for each g € K[[W, Z]|s) there exist ho, hy,... h, in

K[[W, Z]| x5y such that

() :h1f1+...+hrfr+h0;
(2) Expz(thAk) CPr 0<k<r
(3) ordo(hy) = ordg(g) —ordo(fx), 1 <k <r.
Moreover, the h;’s are the unique formal power series satisfying (1), (2) and (3).

Proof. Write

fe= Y. frowvWVZY where fruy €K,
(U,V)ENe xN¢
9= >, gnwW"z

(U,V)eNexNd

We can suppose that fr 4,0 = 1 and g, fi are in E/ for some p < 1 and all
ke{l,...,r} (by Remark 2. 2) Therefore, there exists 6 > 0 such that

lguv| U+ | fruv] U4V

i S0 and - preyie S0
for k = 1,...,r and (U,V) € N¢ x N%. Tt is well known (see [AHV]) that there exist
r 4+ 1 elements hg, hq, ..., h, in the formal power series ring K[[W, Z]] satisfying (1), (2)
and (3). We can construct them as follows. Put

Po=fui—2%= > FoapW?z"
(A,B)eNe xNd
Then we expand g as the finite sum:
g= Z nOz4% 4+ hl = Z fihl? + 1" = 3" P
k=1 k=1
where Exp, (h(O)Z Ak) C Py. Analogously, we write
_ ZP h(o) Zh(l)ZAk + h( Zf h(l) + h(l) ZP h(l)
k=1 k=1 k=1
where Exp, (h,(:)Z Ar) C Py.. Consequently,
9= e+ m) + (8 + ) = 37 P
i=1 -

This algorithm gives us the required formal power series

he=Y_hY, 0<k<r,
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and the order conditions
% ordo(h =) > | Ai| + j
(see [AHV] for the details). Now, each h,(cj ) can be expanded as
h;cj) = Z H,EQBWBZA for some H,gQB e K.
(A,B)€Ne xNd
Moreover, we have the inductive formula.
For j=0and k=0,...,r,
(O) 9A+Ak7B lfA+Ak Epk
Hyap = ;
0 otherwise.

For j >0and k=0,...,r,

T
-3 Y FuwHG A+ A ePy

) _ —
Hyap = =1 U +Up=A+ A,
Vi+Vo=D

0 otherwise.
If N=max{A4;;:0<¢<r1<q< c}, then we choose

(1) a real number K satisfying K > 2ré [[;_, A;!1*/(1 — p)° and greater than each of
the numbers 2, 2max{|ga, ol : k=1,...,7} and

o H Piq (miq)’
{(1,q):54 Aiq#0}
where ;4 is the function from Lemma 4.1 for a = s44;4, £ = A;q and h = N, and my, is
its maximum;
(2) a real number T greater than max{N, (r6/2)'/¢, (2réQ’/(1 — p)c)l/a}7 where o =
min{(4y,s),...,(4,,s)} >0 and

Q/ :max{ H QAiq,quiq,N = 1,...,r}

{q:8qAiqg#0}
where Q4,,,s,4,,,~N 15 the constant from Lemma 4.1 for a = s, 44, £ = Ajg and b’ = N;
(3) a real number R > 1 4 L2200

(1-p)® -
We will prove the following inequalities by induction:

(+) [H | < KTYCIRPIDITT (IC] + pgl DY)

g=1
fori=0,...,r, 7 € Nand (C,D) € N® x N?. Observe that this implies the theorem(?).
In fact, for t' = (t1 + (it,8),...,tc + (i, 8)) and s’ = (|s,...,[s]) € [0,00)%, the se-

.5 j . : d
ries |B(t175/)|h2(,]) defines a real analytic function on (—e,€) % x (—¢,€), whenever

(3) Because the number (|C| + pu1|D|)!*! - (|C| + pe|D])!%¢ is smaller than or equal to
dHsm) ons” pris:m) sl C] pp(s,m D]
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e <min{l1/7° 1/R}. Then the real analytic functions of one variable
&ij(@) = B o |h (z, ... x) for |z] <e,

can be factorized as &;;(z) = 27 3;;(x), by the order conditions (v;;). The functions j3;; are
positive and strictly increasing in (0, €). Moreover, the inequalities (*) imply that there
exists a constant(*) E > 0 such that 8;;(z) < Ex ™7 in (0,¢). Hence for i = 0,...,7 and
7 € N we get
(4 : AN
1B )0 = &i5(@) < @B5(0) < E(2)", when @ € (0,¢).

€

Consequently h; = Z;io hgj) € G®'#") | as we have quoted in the theorem.
In order to prove the inequalities (x), we distinguish two cases. If j = 0 and |D| # 0,

we have the bounds
C

|HZp| <DV TT(Cy + Aig)t*s < KTCIRIPIDI TT(1C] + p1g| DI

q=1 q=1
Moreover, it is easy to see that
c
0 0
|Hgo| < KT IC1*e and  |H{| < K.
qg=1

In order to achieve the desired inequality for |H z(g)()| we observe that

e <o T0 1 )( T S ) (10 e

1<g<c 1<gsc 1<gsc
Sinq;éO Sinq;éO Aiqzo
< orel@! ( 11 %‘q(miq)> O < Ko7l
1<g<c
Sinq;éO

If j >0, set

r
_ (-1)
S1 = Z Z [Fruv|- ‘Hk,C+Ak7U,D7V|’
k=1 ogU<LC+Ay
0<V <D, V#£0

So=3" > |Fwol- [HIGV 4 vl

k=1 oQUKC+ Ay
[U|>| Akl

Hence, if we have bounds for S; and Ss, so we have for |H Z%)D|. By the induction hypoth-
esis

S, < SKDUTeICIRID ﬁ(|c| + pig| D))o Zr:Tc\Akl Z (E)lU‘ M

T R
q=1 k=1 0KULCH Ay,
0<V <D, V#0

(*) Observe that it is independent of i and j.
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Therefore, as p < 1 and T > p, we get the inequality

sro e+l <

S < KTICIRIP . DI TTAC] + pg| D)1
(T=p) RA=p) "

Consequently, S; < KT<ICIRIPI DIt H;:1(|C’\+uq|D|)!SQ/2. The expression S is bounded
by

§K D!t RIPIelCl i S oAl ﬁ (Cq + Apq — qu);qv(w + 11q| D)
k=1 0<W<C+ A =1 g
wi<ic|

When s4A, > 0, Lemma 4.1 implies the inequality

(Cq + Apg = W) (W] + pg| DD _ Qg Args,,
T|C'7W| = quAkq

IO = W (W] 4 g D).
Hence, So < KTCICIRIPI DIt [T;=1(IC] + p1q|D])!*e /2, and we get our statement (x). m

Remark 4.3. There are some special cases where we can divide without changing
the Gevrey ring. For instance:

(1) Case s =0 € K¢. Observe that this improves the result obtained by applying the
henselian Weierstrass division theorem to this case (see [H], page 72), since the ring B =
K[[W]]; is henselian and the henselianization of the local ring B[Z]w,z) is K[[W, Z]],0)-

(2) Case when g and the f; are in (K[[W]]+)[[Z]]o,+-

The division and preparation theorems for the Gevrey rings can be obtained as corol-
laries(®).

THEOREM 4.4 (the division theorem for Gevrey’s rings). Let s = (s1,...,S,) € [0,00)"
and d € N, d # 0. Let a formal power series

F=) Fi(X1,..., X0 1)X), € K[[X1,..., Xl
j=0

satisfy F;(0,...,0) =0 for 0 < j < d—1, and F4(0,...,0) # 0. Let s = (s1 +dsp,...
ey 8n—1 + dsy) and s = (8',8y,). Then for each g € K[[X1,...,X,]]s there exist ¢ €
K[[X1,..., X,]]s and r € K[[ X4, ..., Xn,l}]g[Xn] such that

g=qf+r and degy r<d-1

Recall that a formal power series f(X1,...,X,) € K[[X1,...,X,]] is X,-regular of
order d if the order of f(0,...,0,X,) € K[[X,]] is d for the valuation given by the
maximal ideal of K[[X,]]. Moreover, we say that f is X,-regular, if it is X,-regular of
order ordg f.

(°) See [Z2] for a simpler proof.
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THEOREM 4.5 (the preparation theorem for Gevrey’s rings). Let f € K[[X1,..., Xy]]s
for some s = (s1,...,8,) € [0,00)", and d = ordo(f). If f is Xp-regular, then there exist
a unit u € K[[X1,...,Xpn]ls and a1,...,a4—1 in K[[X1,..., Xn_1]]5 such that

d
f=u- (X,‘f—i—Zan%)

j=0
where §' = (s1 4+ dsp, ..., 5n_1 + dsy) and s’ = (5', s,).
Now, fix independent variables Xy, ..., X, over K, and consider the ring
G=U G,
50

We call it the Gevrey ring (of dimensionn). In fact, G is a local regular ring of dimension n
and it is also a henselian unique factorization domain. The normalization theorem can be
proved for G analogously to the case of the convergent power series rings ([N]). Moreover
it is an excellent ring (see [Mt], page 291). So, it has the approximation property, by [R],
that is:

THEOREM 4.6. Given a finite family of polynomials P;i(Y1,...,Yy) in G[Y1,..., Y],
fori=1,...,r, and a formal solution (Yi,...,Ym) in K[[X1,..., X,]]™ of the system
(*) P(Yi,...,.Y) =0, i=1,...,r

there exists a solution (y1,...,ym) of (x) in G™.

Similarly to the convergent power series rings, we have in G a theorem of implicit
series and a theorem of inverse series. More precisely, we have the following results:

THEOREM 4.7 (the implicit series theorem). Let n, m be two positive integers, and
X1, Xn, Z1,..., Zm independent variables over K. Given s = (81,...,8ntm) 0
[0,00)" "™ we put r = max{s; : 1 <i<n+m}. Let

fj(Xla"'7Xn7Z17"'7Zm) eK[[Xla-~-7XnaZh~-~7Zm]]s forj =1,...,n,
: ofi . .
with det ( (0)) # 0 and f;(0) = 0. Then there exist &1, ..., & mK[[Z1, ..., Zn]|onr
0X; ij -
such that

fiéso s bn 2, Zy) =0 forj=1,...,n.

Proof. For n = 1 the statement is an easy consequence of the division theorem

(Thm. 4.4). We can suppose that %(O) # 0, and then we have the equalities

fn =Uu- (Xn 7€(X17"'7Xn—lag))a
fjZijn"‘rj(Xl;u-aXn—laZ) forj:l,...,n—l,
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with &, r; in K[[X7, ..., X,_1]]2r. Moreover, we get
Ofn

Of; Ofn )
8;&(0):%( )6;;(0) forj=1,...,n—1,
af; Ofn or;

ox, V=655 O+ 55-(0)  forj=1....n—1.

or;
The matrix ( J (0)) is invertible. Hence, by induction, there exist &;,...,&,—1 in

8Xk 7.k
K[[Z]]2n-1, such that r;(£1,. .., &n—1,Z) = 0. Now put &, = §(&1,...,8n-1,Z). This is an
element of K[[Z]]on-1,, by the evaluation property. So, &1, ... ,&, are the required series. m

LEMMA 4.8. Let X1,...,Xn, Z1,...,2Z, be independent variables over K, and G the
Gevrey ring of dimension n in the variables X;. Let f1,..., fn € K[[X1,..., Xull(s1,....50)
be such that the determinant det (83)};] (0)) # 0. Put r = max{s1,...,sn}. Then there
exist &1, ..., & i K[[Z]]any such that fj(&1,....6,) =Z; forj=1,...,n.

Proof. Take g; = f; — Z; and apply the implicit series theorem. m

We have the following corollary to the previous lemma:

THEOREM 4.9 (the inverse series theorem). Let fi,..., fn € K[[X1,..., Xull(s1,....50)
be such that det(aa)];; (0)) # 0. Put r = max{s1,...,8n}. Then there exist &1,...,&, in
K[[Z]]2nr such that f;(&1,...,86n) = Xj forj=1,...,n.
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