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SUFFICIENCY IN BAYESIAN MODELS

Abstract. We consider some fundamental concepts of mathematical sta-
tistics in the Bayesian setting. Sufficiency, prediction sufficiency and free-
dom can be treated as special cases of conditional independence. We give
purely probabilistic proofs of the Basu theorem and related facts.

0. Introduction and notation. J. R. Barra wrote: sufficiency and

freedom [. . .] are fundamental concepts of statistics that have no counterparts

in probability theory (Barra, 1971, introduction to Chapter 2). The aim of
our paper is to argue this point. Under some assumptions, the fundamental
concepts of statistics can be (almost) reduced to conditional independence—
a purely probabilistic notion.

We will use the Bayesian framework. A statistical space (Ξ, Ã, {Pθ :

θ ∈ Θ}) consists of a measurable sample space (Ξ, Ã) equipped with a

family of probability measures. Assume (Θ, F̃ ,Π) is a probability space

and the mapping (θ, Ã) 7→ Pθ(Ã) is a transition probability (θ 7→ Pθ(Ã) is

F̃-measurable for every Ã ∈ Ã). Our basic model will be the probability

space (Ω, E ,P), where Ω = Θ × Ξ, E = F̃ ⊗ Ã and P is the probability
measure defined by

P(F̃ × Ã) =
\̃
F

Pθ(Ã)Π(dθ)

for F̃ ∈ F̃ and Ã ∈ Ã (see Parthasarathy, 1980, Proposition 35.11). For
every E-measurable and P-integrable random variable W ,

EW =
\
Ω

W (ω) P(dω) =
\
Θ

\
Ξ

W (θ, ξ) Pθ(dξ)Π(dθ).
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We write a generic ω ∈ Ω as ω = (θ, ξ), where θ ∈ Θ, ξ ∈ Ξ. Let

A = {Θ × Ã : Ã ∈ Ã} and F = {F̃ × Ξ : F̃ ∈ F̃}. These two σ-fields

will have the same meaning throughout the paper. If A ∈ A then Ã ∈ Ã
will always denote its projection on Ξ, similarly for F ∈ F and F̃ ∈ F̃ .
Note that F̃ × Ã = FA (we prefer to write FA instead of F ∩ A). By X

we will denote the random element given by X(θ, ξ) = ξ. A statistic is, by
definition, a measurable function from Ξ to some measurable space.

If H is a sub-σ-field of E and there exists a regular version of conditional
probability P(E |H), it will be denoted by PH(E) or, if necessary, PH

ω (E).
Put another way, for every ω ∈ Ω the mapping E 7→ PH

ω (E) is a probability
measure; for every E ∈ E the function ω 7→ PH

ω (E) is H-measurable andT
H
PH(E) dP = P(HE) for H ∈ H. Note that a regular version of P(A | F)

is Pθ(Ã). The regular conditional probabilities exist if (Ω, E) is nice (there
is a one-to-one map m : (Ω, E) → (R,R) such that m and m−1 are measur-
able; (R,R) is the real line with the Borel σ-field; see Parthasarathy, 1980,
Proposition 46.5). Every Polish space (complete separable metric space with

its Borel σ-field) is nice. If (Ξ, Ã) and (Θ, F̃) are nice, so is (Ω, E). If H
and K are σ-fields, let H ∨K = σ(H ∪K).

1. Conditional independence. Let (Ω, E ,P) be a probability space.
Consider σ-fields Ei ⊂ E (i = 1, 2, 3, 4).

(1) Definition. E1 and E2 are conditionally independent given E3 (de-
noted by E1 ⊥ E2 | E3) if for every E1 ∈ E1 and E2 ∈ E2 we have

P(E1E2 | E3) = P(E1 | E3)P(E2 | E3) a.s.

The following lemma appears in Chow and Teicher (1988) as Theorem 1
in Section 7.3 but we give its proof for convenience.

(2) Lemma. E1 ⊥ E2 | E3 iff for every E1 ∈ E1 we have P(E1 | E2 ∨ E3) =
P(E1 | E3) a.s.

P r o o f. We have E1 ⊥ E2 | E3 iff for every Ei ∈ Ei,

(3)
\
E3

P(E1 | E3)P(E2 | E3) dP = P(E1E2E3).

On the other hand, P(E1 | E2 ∨ E3) = P(E1 | E3) a.s. iff for every Ei ∈ Ei,

(4)
\

E2E3

P(E1 | E3) dP = P(E1E2E3).

This is because {E2E3 : E2 ∈ E2, E3 ∈ E3} is a π-system that generates
E2 ∨ E3. But
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E2E3

P(E1 | E3) dP = E1E2E3
P(E1 | E3) = EE[1E2

1E3
P(E1 | E3) | E3]

= E1E3
P(E1 | E3)P(E2 | E3) =

\
E3

P(E1 | E3)P(E2 | E3) dP,

so (3) and (4) are equivalent.

(5) Lemma. E1 ⊥ E2 ∨ E3 | E4 iff E1 ⊥ E3 | E4 and E1 ⊥ E2 | E3 ∨ E4.

P r o o f. For E1 ∈ E1, we have P(E1 | E4) = P(E1 | E2 ∨ E3 ∨ E4) a.s. iff

P(E1 | E4) = P(E1 | E3 ∨ E4) = P(E1 | E2 ∨ E3 ∨ E4) a.s.

(6) Corollary. E1 ⊥ E2 ∨ E3 iff E1 ⊥ E3 and E1 ⊥ E2 | E3.

Of course, ⊥ denotes unconditional independence. It is enough to put
E4 = {Ω, ∅} in (5).

(7) Lemma. If E1 ⊥ E2 | E3 then E1 ⊥ E2 ∨ E3 | E3.

P r o o f. P(E1E2E3 | E3) = 1E3
P(E1E2 | E3) = 1E3

P(E1 | E3)P(E2 | E3) =
P(E1 | E3)P(E2E3 | E3) a.s. for Ei ∈ Ei.

2. Sufficiency. Let S be a statistic. Sufficiency of S is equivalent to
sufficiency of B̃ = σ(S) ⊂ Ã. In the sequel, we will consider an arbitrary

σ-field B̃ ⊂ Ã and its counterpart B = {Θ × B̃ : B̃ ∈ B̃} ⊂ A.

(1) Definition. B is almost surely (a.s.) sufficient if for every A ∈ A,

P(A | B ∨ F) = P(A | B) a.s. [P].

(2) Definition. B is Bayes sufficient if for every F ∈ F ,

P(F | B) = P(F | A) a.s. [P].

The intuitive sense of Definition (1) is the same as that of the usual
definition of sufficiency: given B (that is, a statistic S), the conditional dis-
tribution of a sample does not depend on F (on parameter). A more precise
statement is given in Theorem (4) below. Definition (2) says that the a pos-

teriori distribution of the parameter depends on the sample only through S.

(3) Theorem. The following three statements are equivalent :

(CI) F ⊥ A |B;
(AS) B is a.s. sufficient ;
(BS) B is Bayes sufficient.

P r o o f. Equivalence of (CI) and (AS) is nothing but Lemma (1.2). By
symmetry, (CI) is equivalent to P(F | B∨A) = P(F | B) a.s. for every F ∈ F ,
but this is just (BS), because B ∨ A = A.

Let us now clarify the relation between the usual sufficiency and a.s.
sufficiency (in the sense defined in (1)).
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(4) Theorem. Consider the following condition:

(ÃS) there exists a set Θ1 ∈ F̃ such that Π(Θ1) = 1 and B̃ is sufficient

in the statistical space (Ξ, Ã, {Pθ : θ ∈ Θ1}) (in the usual sense).

Condition (ÃS) implies (AS). If we assume that (Θ, F̃) and (Ξ, Ã) are nice

and B̃ is countably generated , then (AS) implies (ÃS).

P r o o f. Assume (AS) holds, and (Θ, F̃) and (Ξ, Ã) are nice. For A ∈
A, let PB(A) be a regular version of P(A | B). Since ω 7→ PB

ω(A) is A-

measurable, PB
ω(A) depends on ω = (θ, ξ) only through ξ. Let Qξ(Ã) =

PB
ω(A). By a.s. sufficiency, for every F ∈ F and B ∈ B,\

FB

PB
ω(A) P(dω) = P(FAB).

We can rewrite this equation as

(5)
\̃
F

\̃
B

Qξ(Ã) Pθ(dξ)Π(dθ) =
\̃
F

Pθ(ÃB̃)Π(dθ).

Consequently,

(6)
\̃
B

Qξ(Ã) Pθ(dξ) = Pθ(ÃB̃)

almost surely [Π]. The exceptional set of θ’s on which (6) fails to hold

may depend on Ã and B̃. However, we can use the fact that Ã and B̃ are
countably generated. Let Ã0 and B̃0 be countable π-systems of generators.
We can assume Ξ ∈ B̃0. There is a set Θ1 such that Π(Θ1) = 1 and for

θ ∈ Θ1, (6) holds for all Ã ∈ Ã0 and B̃ ∈ B̃0. We claim that this implies

(6) for all Ã ∈ Ã and B̃ ∈ B̃. Indeed, it is easy to check that for each

Ã ∈ Ã0, {B̃ : (6) holds} is a λ-system and for each B̃ ∈ B̃, {Ã : (6) holds}

is a λ-system. Since ξ 7→ Qξ(Ã) is obviously B̃-measurable, it is therefore a

version of Pθ(Ã | B̃) if θ ∈ Θ1.

Conversely, assume (ÃS) is true. Let Q(Ã) be a version of Pθ(Ã | B̃)

which is the same for all θ ∈ Θ1. Now, (6) for all B̃ ∈ B̃ implies (5) for

all B̃ ∈ B̃ and F̃ ∈ F̃ . It follows immediately that (θ, ξ) 7→ Qξ(Ã) is a
B-measurable version of P(A | B ∨ F).

3. The Basu triangle. Consider σ-fields B, C ⊂ A. By “the Basu
triangle” we mean relations between the following three conditions:

(FR) F ⊥ C;
(IN) B ⊥ C |F ;

(AS) B is a.s. sufficient.
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Condition (FR) could be called a.s. freedom. Informally, it says that
probabilities of events in C do not depend on parameter. Condition (IN)
is closely related to usual, non-Bayesian independence. More precise state-
ments will be given later, in Propositions (6) and (7).

The following fact follows from Corollary (1.6).

(1) Proposition. (FR) and (IN) hold iff C ⊥ B ∨ F .

(2) Theorem. If A = B ∨ C then (FR) and (IN) imply (AS).

P r o o f. If C ⊥ B ∨ F then C ⊥ F |B, by Corollary (1.6). Now, B ∨ C ⊥
F |B follows from Lemma (1.7). If A = B ∨ C then we get (AS).

(3) Theorem. Assume that for all B ∈ B and F ∈ F , P(B\F ) =
P(F\B) = 0 implies P(F ) = 0 or P(F ) = 1. Then (IN) and (AS) imply

(FR).

P r o o f. Let C ∈ C. By (IN), we have P(C | B) = P(C | B ∨ F) a.s. By
(AS), we have P(C | F) = P(C | B ∨ F) a.s. The random variables P(C | B)
and P(C | F) are thus a.s. equal, B- and F-measurable, respectively. Under
our assumption they must be a.s. constant, so P(C | F) = P(C) a.s.

To deduce (IN) from (FR) and (AS), we need (a sort of) completeness.

(4) Definition. B is a.s. boundedly complete if for every bounded B-
mea-
surable random variable T , E(T | F) = 0 a.s. [P] implies T = 0 a.s. [P].

(5) Theorem (Basu, 1953). If B is a.s. boundedly complete then (FR)
and (AS) imply (IN).

P r o o f. Let C ∈ C. We have P(C) = P(C | F) a.s. by (FR) and P(C | B)
= P(C | B ∨ F) a.s. by (AS). Now,

E[P(C)− P(C | B) | F
]
= P(C)− E[P(C | B ∨ F) | F ]

= P(C)− P(C | F) = 0 a.s.

From the a.s. bounded completeness we infer that P(C) = P(C | B), so
P(C | F) = P(C | B ∨ F).

The proofs of the following two propositions are straightforward and
omitted. Note that the “if” parts need no assumptions on C and B.

(6) Proposition. Assume C is countably generated. Then (FR) holds

iff there exists a set Θ1 ∈ F̃ such that Π(Θ1) = 1 and C is free in the

statistical space (Ξ, Ã, {Pθ : θ ∈ Θ1}) (in the usual sense).

(7) Proposition. Assume B and C are countably generated. Then (IN)

holds iff there exists a set Θ1 ∈ F̃ such that Π(Θ1) = 1 and C̃ is independent

of B̃ with respect to Pθ for every θ ∈ Θ1.
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(8) Proposition. Consider the following two conditions:

(CP) B is a.s. boundedly complete;

(C̃P) For every set Θ1 ∈ F̃ such that Π(Θ1) = 1, B̃ is boundedly complete

(in the usual sense) in the statistical space (Ξ, Ã, {Pθ : θ ∈ Θ1}).

Condition (C̃P) implies (CP). Assume additionally that for every Ã ∈ Ã,

Pθ(Ã) = 0 for almost all θ [w.r.t. Π] implies Pθ(Ã) = 0 for all θ. Then

(CP) implies (C̃P).

P r o o f. Assume (C̃P) holds. Consider a B-measurable T such that

E(T | F) = 0 a.s. We can write T̃ (ξ) = T (θ, ξ). Since (θ, ξ) 7→ EθT̃ is a

version of E(T | F), we have EθT̃ = 0 a.s [Π]. Let Θ1 = {θ : EθT̃ = 0}.

By completeness of B̃ in (Ξ, Ã, {Pθ : θ ∈ Θ1}), we get T̃ = 0 a.s. [Pθ] for
θ ∈ Θ1 and thus T = 0 a.s. [P].

Now suppose (CP) holds and fix Θ1 ∈ F̃ such that Π(Θ1) = 1. If T̃ is

B-measurable and EθT̃ = 0 for all θ ∈ Θ1 then E(T | F) = 0 a.s. [P] where

T (θ, ξ) = T̃ (ξ). The a.s. completeness gives T = 0 a.s. [P]. This means

that T̃ = 0 a.s. [Pθ] for almost every θ [w.r.t. Π]. Under our additional

assumption, we obtain T̃ = 0 a.s. [Pθ] for every θ.

4. Prediction sufficiency. Imagine the random sample is of the form
X = (Z, Y ), where Z is an observable component and Y is a hidden random
variable. Suppose we are interested in predicting Y , given Z. Let G = σ(Z)
and U = σ(Y ). A statistic S is now a function of the observable component

only. Put another way, if B̃ = σ(S) then B̃ ⊂ G̃ ⊂ Ã (we use the tildas to in-
dicate that we mean σ-fields in Ξ, not in Ω). Prediction sufficiency (of S or,

equivalently, of B̃) is a concept useful in decision-theoretical considerations;
see for example Torgensen (1977) and Takeuchi and Takahira (1975). Since
this concept is not as generally known as ordinary sufficiency, we recall the
classical definition at the end of this section.

In fact, we can start with arbitrary three σ-fields G̃, Ũ and B̃ such that
Ã = G̃ ∨ Ũ and B̃ ⊂ G̃. Let us keep in mind their interpretation: G̃ and
Ũ consist of observable and unobservable random events, respectively; look
at B as generated by a statistic. Write G = {G = Θ × G̃ : G̃ ∈ G̃},

U = {U = Θ × Ũ : Ũ ∈ Ũ} and B = {B = Θ × B̃ : B̃ ∈ B̃}, as usual.

(1) Definition. B is a.s. prediction sufficient if the following two con-
ditions are satisfied:

(PS) F ⊥ G |B;

(PCI) U ⊥ G |B ∨ F .
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Condition (PS) is analogous to (CI) in Theorem (2.3), with A replaced
by G. We could call (PS) partial a.s. sufficiency . Condition (PCI) says,
roughly, that the hidden variable is independent of the observable, given
statistic and parameter.

(2) Definition. B is Bayes prediction sufficient if for every F ∈ F and
U ∈ U ,

P(FU | B) = P(FU | G) a.s. [P]

(3) Theorem. Each of the following two statements is equivalent to a.s.

prediction sufficiency of B:

(PAS) F ∨ U ⊥ G |B;
(PBS) B is Bayes prediction sufficient.

P r o o f. To see that (PAS) is equivalent to (PS) and (PCI), use Lemma
(1.5). In view of Lemma (1.2), (PAS) is equivalent to P(FU | B) = P(FU |
B ∨ G) a.s. Since B ⊂ G, this reduces to (PBS).

Let us now explain how our Definition (1) is related to the corresponding

classical definition. Recall that B̃ is called prediction sufficient if it fulfils
the following two conditions:

(P̃S) B̃ is sufficient (for G̃, in the usual sense);

(P̃CI) Ũ ⊥ G̃ | B̃ with respect to Pθ, for all θ.

(4) Theorem. Consider the following condition:

(P̃AS) there exists a set Θ1 ∈ F̃ such that Π(Θ1) = 1 and B̃ is prediction

sufficient in the statistical space (Ξ, Ã, {Pθ : θ ∈ Θ1}) (in the

sense recalled above).

Condition (P̃AS) implies (PAS). If we assume (Θ, F̃) and (Ξ, Ã) are nice,

and B̃, G̃ and Ũ are countably generated , then (PAS) implies (P̃AS).

P r o o f. The argument is quite similar to that in the proof of Theorem
(2.4) and we will only sketch it. If (PAS) holds, for G ∈ G take a regular

version of conditional probability PB(G) and construct Qξ(G̃) = PB
ω(G). It

is enough to show that Qξ(G̃) is a B̃-measurable version of Pθ(G̃ | B̃ ∨ Ũ) for

all G̃, if θ is in an appropriately chosen Θ1. Then (P̃S) and (P̃CI) hold in
the restricted statistical space. We omit the details.
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