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COMPOUND POISSON APPROXIMATION
FOR EXTREMES OF MOVING MINIMA IN ARRAYS
OF INDEPENDENT RANDOM VARIABLES

Abstract. We present conditions sufficient for the weak convergence to a
compound Poisson distribution of the distributions of the kth order statistics
for extremes of moving minima in arrays of independent random variables.

1. Introduction. Let {X,,;:i=1,...,n,n =1,2,...} be an array of
independent random variables with a common distribution function F;, for

fixed n. We define

1 Vi = i X =1,...,n— 1
(1) g = min X j=1l.on—matl
where m,, is a sequence of positive integers. The array {V,,; : j=1,...,n—

m, + 1, n =1,2,...} is stationary and (m,, — 1)-dependent in each row.
Denote by
(2) min(V,,;:j=1,....n—my +1)= M,g?,;;"""'l) < Mé’fn::”")

<... SM,(:)nn =max(V,;:7=1,...,n—my+1)
the order statistics of the sequence V;, 1,..., Vi n—m, +1. In [2] E. R. Canfield

and W. P. McCormick have obtained a limit law for Mél,)nn They showed
that if
My

(3) 1——>d20 as n — 0o,
nn
then
(4) P{M,(ngnn <up} — e asn — oo,
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where § = 1 — exp(—1/d), while A > 0 and the sequence {u,, : n =1,2,...}
of real numbers are related by
(5) nP" {Xp1>u,} =\

In this paper we extend (4) to the case of any kth order statistic. The
limit law will be represented in terms of a compound Poisson distribution.
Our result is also a generalization of [4] where Zubkov’s method (see [7])

was used to obtain weak convergence of the distributions of the kth order
statistics (2) to the Poisson law under the condition

my/Inn — 0 asn— oo.

The proofs of the main result of this paper are based on Stein’s method (see
1]).

The problems considered have a connection with reliability theory. The
random variables MS)M can be interpreted as lifetimes of consecutive-m-
out-of-n systems. Such a system fails if and only if at least m consecutive
components out of n linearly ordered components fail. Some examples of
applications to telecommunication and oil pipelines modelling may be found

in [3] and [5].

2. Definitions and preliminary results. We say that a discrete
random variable W has a compound Poisson distribution if

(6) M(t) = Eexp(—t —exp( ch (1—e tn)

for all ¢t > 0, where ¢,, > 0, n=1,2,..., are such that 0 < Y7 | ¢, < c0.
Note that the corresponding distribution function is

(7) {Cn} Zps {Cn} z € R,

s<z
where
8)  ps({en})
4 oo
exp<—20n>, s=0,
n=1
= o kl k2 k
citey? . cgs
eXP(‘ZC ) Pl R ST b2
— 1:K2:...KRg!
n=1 k1+2k2+...+$k528
k;>0,5=1,...,s

\

The total variation distance between two probability measures F' and G
is defined by

A(F,G) = swp | F(E) = G(B),
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where the supremum is taken over all measurable subsets E of the real line.
Denote by L(X) the law of a random variable X and recall (see [6]) that if
d(L(X,),L(X)) — 0 as n — oo then X,, = X (weak convergence; see [6]).
The following lemma will be used in the next section.

LEMMA 1. Let {X,,;:i=1,...,n, n=1,2,...} be an array of indepen-
dent random variables with a common distribution function F,, for fized n.
If the sequence {m, : n=1,2,...} of positive integers is such that

(9) lim m,/lnn=d, d>0,
and
(10) lim n[l — F,(u,)]™ = A

where {u,} is a sequence of real numbers, then

(11) lim F,(up) =1—e /4,
Proof. From (10) we obtain
lim In[n(l — F,(u,))™"] =1In A

Since
lim Inn+m, Il - F,(u,)] .. InA

n— 00 My, n—00 My,

we conclude from (9) that

lim [1 — Fp(up)] = e~ V%
n—oo
3. The main results. Let {X,; :i=1,...,n, n =1,2,...} be an

array of independent random variables with a common distribution function
F, for fixed n, and let {V,,; : j=1,...,n—m,+1, n=1,2,...} be defined
by (1). Consider an array {I,; :j =1,...,n—my, +1, n =1,2,...} of
zero-one random variables I, ; = Ity, ~u,}, Where u, is a sequence of real
numbers and [ 4 denotes the indicator function of the set A. This last array
is stationary and (m,, — 1)-dependent in each row and

(12) P{I,; =1} = P{l,1 =1} = P{V,1 > u,}
= P{Xn,l > unaXn,2 > Upy - - - aXn,mn > un}
=[1— Fy(up)]™".
Let us observe that (m —1)-dependence is a special case of local dependence
defined in [1] with
Aoy ={B€l:|a—- [l <m},
Ba={Bel:la—fl<2m—-1)}, I={L,...,n}.
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Set

n—mnyp+1
Su= > I
=1

We define, as in [1],

Yonoa= Z Ing, a=1,....,n—m,+1,
la—pB|<my
a#p
and
1 n—mqyn+1
Ani = = ; P{lpo=1, Ypoa=i—1}, i=1,...,2m, —1.

Let MT(:ZT”H) < ... < M,E:,)nn be the order statistics of the sequence
Vais- ooy Viun—m, +1 defined by (2).

LEMMA 2. Fork=1,2,...,
(13)  [P{M), <un}— Gk —1,{\.:})

n—my+1

§ 2(1 A A;,ll) exp(— i )\n7i> Z Z Pn,ocpn,ﬁ7
i=1

a=1 B€Bn,a
where
a A b =min(a,b),
Pno=P{l,o=1}=[1- F,(u,)]™,
Bno={0€{l,....n—my, + 1} : |a = 5] <2(m,, — 1)}.

Proof. This follows from the equality P{M,gk,)nn <wu,}=P{S, <k}=
P{S,, <k —1} and Theorem 8 of [1].

LEMMA 3. If
(14) lim n[l — F,(u,)]™ =X,  A>0,
and
(15) lim m,/Inn=d >0
then
lim An,i:)\iy i:1,2,...,
where
)\1:)\, )\ZZO, i:2,3,..., fOT’d:O,
and

N = AP D/d i —q 9 . ford>0.
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Proof. Wefixi, 1 =1,...,2m, — 1. For each n we divide the integers
1,...,n —m, + 1 in three parts:

Jn,lz{l,...,mn—l},
In2=A{mu,...,n—2m, + 2},
Jpnz=4{n—-2m, +3,...,n—m, +1}.

Because the array {I, ;} is stationary, we have

mp—1

1
Ang = ;( azz:l Pllna=1 Yyo=i-1}
i—1 my—1
(0= 3mn +3) > P{Y" Lk =i Tnn, =1,
§=0 k=1
2m, —1
S L =i-1-j}
k=m,+1

n—mqyn+1
+ Y Plla=1 Yya=i- 1}).

a=n—2m,—+3

Define
mn_l 2mn_1
k=1 k=mn+1

Observe that events of the form {...,V,,; > un, Viit1 < up, Viigo >
Up, ...} are impossible because {X,, itm, < un} and {X,, j4m, > up} are

mutually exclusive. Thus
Rn,j — {Vn,l < Upy -y Vn,mn—j—l < Up,,

Vn,mn—j > Upy .- y Vn,mn > Upy .o ’ Vn,mn—l-i—j—l > Unp,

Vn7mn+i7j < Upyenns Vn72mn71 < un}

We fix j = 0,...,i — 1. By the definition of {I,;} and {V, ;}, and the
assumptions on {X,, ;}, we have

My —J—2muy—i+75—1 My —j—2
P{R, ;} = Z Z P{ Z Iix o>uny = 1
=0 p=0 k=1
I{Xn;m,nfj71>un} - 07
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2m, +i—j—2

Z I{Xn,k>un} = mn + Z - 1’ I{Xn72mn+i—j—1>un} = 07
3mg, —2
Z I{Xn,k>u'n} = p}
k=2m,+i—j

=[1- Fn(un)]mn—‘_i_ng(un)-

Because P{R,, ;} does not depend on j, for each 0 < j, k <i— 1 we have

(16) P{R,;} = P{Rx}.
Next, set
i—1
Kn(i) = (n—3m, +3)>_ P{Rn;}.
j=0

From (16) we obtain

K, (i) =i(n —3m, +3)P{R,0}
=i(n —3m, +3)[1 — F,(u,)]" T F2(uy,).

Hence
(17) YKo () = (0= 3mn + 3)[1 — By ()™
X Fﬁ(un)[l - Fn(un)]iil-

~

Using Lemma 1 and (14) we have the following result: for d = 0,

n—oo § A, 1 =1,
and
1 )
lim —K, (i) = \%e~~V/?  for d > 0.
n—oo 9
Now let
my,—1
L@y = ) P{lya=1, Yy0=i-1},
a=1
n—my+1
L&LQ)(Z) = Z P{In,a - 1, Yn,a =17 — 1}

a=n—2m,+3

Our purpose is to show that

lim LGy =0, r=1,2.

n—oo
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Set
a—1 at+m,—1
Ana @) ={Y Tk =3 Ina =1, > Lu=i—j—1},
k=1 k=a+1
a=1,....m,—1, 0<j5<i—1.
Then
i—1 i—1
L@ =Y > PlAnat+ Y, D P{Ana()}
a<i j=0 i<alm,—1j=0
Note that

An,l(o) = {Vn,l > Upyeeny Vn,i > (e Vn,i+1 S Unpy ooy Vn,mn S un}a
An,a(j) = {Vn,l S Upyy - - -,Vn,a—j—l S Unp,,

Vn,a—j > Upy vy Vn,a > Upyev ey Vn,a—l—i—l—j > Up,

Visatioj < Uny-ooy Viadmn—1 < Upt.
Now it is easy to see that A, (j) C Cy, o (j) where
Cna(§) = {Viasj > tny s Voo > Uns .o, Vi aric1—j > Un,
Viatioj < Uns-o s Viadtmn—1 < Un}.
From the stationarity of the array {V;, ;},
P{Cn.a(j)} = P{Dn.a(j)},
where
Dypo(G) ={Vai1 > tn,. .., Vi jt1 > Un, ooy Vi > U,
Vi1 < Unyeooy, Vipmn 45 < Un t
It is obvious that D,, (j) C A,,1(0) so
(18) P{Ana(j)} < P{An1(0)}
forj=0,...,a—1if a < i, and for j =0,...,7 — 1 otherwise. From (18)
and the assumed properties of {X,, ;} and {V,, ;} we obtain
(19) L’Sbl)(i) < (mp —1)i[l - Fn(un)]mnﬂ_an(un)

my—1—1 .
\ my —i—1 o
D < . )[1—Fn<un>1SF,:“n T )
s=0
my, — 1

= Tl = B ()] P ()L = B ()]

Note that in view of (15), m,, = o(n), which together with the assumption
(14) and Lemma 1 implies that the right-hand side of (19) tends to zero as

n — oo. The same is true for L) ().
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Finally, for d = 0,

. N, i=1,
. An,; = {0, i=2,..., 2m, — 1,
and for d > 0,
lim A,; = A2e”CG~D/d =1 . 2m, — 1.

LEMMA 4. We have
(20) lim > Api= > A =M.
=1 =1

Proof. The second equality of (20) follows simply, since

3 i :)\HQL = M.
2 i

o—1/d
i=1
Next, for fixed n, because of (17) and (19), we obtain
A <0l — Fp(un)]™ Fn(un)[1 — Fy(un)] L
Hence, from Lemma 1,
Ani <A1 — eil/d)ef(ifl)/d.
Set
a; = N~ (i=1)/d

and note that

- 1

Hence the series Y ;o A, ; is uniformly convergent and thus in view of Lem-
ma 3 we have (20).
LEMMA 5. If (14) and (15) hold, then

n—mqyp+1

(21) nh—>nc>lo Z Z Pn,oaPn,ﬁ = 07

a=1 ﬁeBn,a
where P, o and By, o are as in Lemma 2.

Proof. Since P, o = [1 — F,,(u,)]™", we have

n—mqy—+1
> D PuaPas <2(n—my + 1)(my — D)[1 = Fy(un)]*™
a=l  B€Bn,a

n—m,+1 m,—1

=2 n2[1 — Fy(un)]?™.

n n
The right side converges to zero as n — oo by (14) and (15).
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The main result of this paper may now be readily proved.

THEOREM 1. Let {m,} be a sequence of positive integers satisfying (15)
and {u,} a sequence of real numbers satisfying (14). Then for k =1,2,...,

(22) lim P{M\"), <un}=G(k—1,{\})

n—oo

where the distribution function G is given by (7)—(8).
Proof. We have
(23)  |P{M), <un} —Glk—1,{\})]

My

< [P{MP) <up}— Gk —1,{\})]

+|G(k—1,{ \;:}) —GE—=1,{\}], k=12,...
From Lemma 2,
(24) \P{Mgf%@n < un} - G(k -1, {An,z})’

n—my+1

<2(1AA ) exp ( - i /\n,i) > > PuaPug
i=1

a=1 BeBn,a

Note that lim,,_,cc Ap,1 = A0? and since lim, o0 Y i An,i = A0 we have

n—o0o

(25) lim exp ( - f: /\n,i) = exp(—N\0).

Thus from (21) the right side of (24) tends to zero asn — oco. Fork =1,2, ...
we also have

Gk =1, {Ani}) = Gk =1, {\i})]

<>

k1 k2 ks
)\n 1)\11,,2 A

exp (- 2“) 2 PATSI N

s<k k142ko+...+sks=s
k;>0,7=1,...,s
)\k1 )\kQ )\ks
1 2 " 7's
— exp(—A\0) 3 M Ay A
kilka! ... k!

k1+2k2+...+8k528
k;j>0,5=1,....s
Note that for fixed k we have a finite number of terms in the last two sums.
Hence by (25) and Lemma 3 the right side of the inequality (23) converges
to zero as n — oo.

As an immediate corollary of Theorem 1 we easily obtain the result of
Canfield and McCormick [2].
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COROLLARY 1. Let {m,,} and {u,} be sequences satisfying (15) and (14)
respectively. Then

lim P{M{!) <wu,}=e?.

n—oo T, Men

Proof. Using Theorem 1 for k = 1 we obtain
lim P{M() <wu,}=G(0,{\})

where
G(0,{}) = po({A:h) = exp (= DDA ) = exp(=20).
i=1
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