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COMPOUND POISSON APPROXIMATION
FOR EXTREMES OF MOVING MINIMA IN ARRAYS

OF INDEPENDENT RANDOM VARIABLES

Abstract. We present conditions sufficient for the weak convergence to a
compound Poisson distribution of the distributions of the kth order statistics
for extremes of moving minima in arrays of independent random variables.

1. Introduction. Let {Xn,i : i = 1, . . . , n, n = 1, 2, . . .} be an array of
independent random variables with a common distribution function Fn for
fixed n. We define

(1) Vn,j = min
j≤i<j+mn

Xn,i, j = 1, . . . , n−mn + 1,

where mn is a sequence of positive integers. The array {Vn,j : j = 1, . . . , n−
mn + 1, n = 1, 2, . . .} is stationary and (mn − 1)-dependent in each row.
Denote by

(2) min(Vn,j : j = 1, . . . , n−mn + 1) = M (n−mn+1)
n,mn

≤ M (n−mn)
n,mn

≤ . . . ≤ M (1)
n,mn

= max(Vn,j : j = 1, . . . , n−mn + 1)

the order statistics of the sequence Vn,1, . . . , Vn,n−mn+1. In [2] E. R. Canfield
and W. P. McCormick have obtained a limit law for M

(1)
n,mn . They showed

that if

(3)
mn

lnn
→ d ≥ 0 as n →∞,

then

(4) P{M (1)
n,mn

≤ un} → e−θλ as n →∞,
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where θ = 1− exp(−1/d), while λ > 0 and the sequence {un : n = 1, 2, . . .}
of real numbers are related by

(5) nPmn{Xn,1 > un} = λ.

In this paper we extend (4) to the case of any kth order statistic. The
limit law will be represented in terms of a compound Poisson distribution.
Our result is also a generalization of [4] where Zubkov’s method (see [7])
was used to obtain weak convergence of the distributions of the kth order
statistics (2) to the Poisson law under the condition

mn/ lnn → 0 as n →∞.

The proofs of the main result of this paper are based on Stein’s method (see
[1]).

The problems considered have a connection with reliability theory. The
random variables M

(1)
n,mn can be interpreted as lifetimes of consecutive-m-

out-of-n systems. Such a system fails if and only if at least m consecutive
components out of n linearly ordered components fail. Some examples of
applications to telecommunication and oil pipelines modelling may be found
in [3] and [5].

2. Definitions and preliminary results. We say that a discrete
random variable W has a compound Poisson distribution if

(6) M(t) = E exp(−tW ) = exp
(
−

∞∑
n=1

cn(1− e−tn)
)

for all t > 0, where cn ≥ 0, n = 1, 2, . . . , are such that 0 <
∑∞

n=1 cn < ∞.
Note that the corresponding distribution function is

(7) G(x, {cn}) =
∑
s≤x

ps({cn}), x ∈ R,

where

(8) ps({cn})

=



exp
(
−

∞∑
n=1

cn

)
, s = 0,

exp
(
−

∞∑
n=1

cn

) ∑
k1+2k2+...+sks=s

kj≥0, j=1,...,s

ck1
1 ck2

2 . . . cks
s

k1!k2! . . . ks!
, s = 1, 2, . . .

The total variation distance between two probability measures F and G
is defined by

d(F,G) = sup
E
|F (E)−G(E)|,
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where the supremum is taken over all measurable subsets E of the real line.
Denote by L(X) the law of a random variable X and recall (see [6]) that if
d(L(Xn), L(X)) → 0 as n → ∞ then Xn

w→X (weak convergence; see [6]).
The following lemma will be used in the next section.

Lemma 1. Let {Xn,i : i = 1, . . . , n, n = 1, 2, . . .} be an array of indepen-
dent random variables with a common distribution function Fn for fixed n.
If the sequence {mn : n = 1, 2, . . .} of positive integers is such that

(9) lim
n→∞

mn/ lnn = d, d ≥ 0,

and

(10) lim
n→∞

n[1− Fn(un)]mn = λ

where {un} is a sequence of real numbers, then

(11) lim
n→∞

Fn(un) = 1− e−1/d.

P r o o f. From (10) we obtain

lim
n→∞

ln[n(1− Fn(un))mn ] = lnλ

Since

lim
n→∞

lnn + mn ln[1− Fn(un)]
mn

= lim
n→∞

lnλ

mn
= 0,

we conclude from (9) that

lim
n→∞

[1− Fn(un)] = e−1/d.

3. The main results. Let {Xn,i : i = 1, . . . , n, n = 1, 2, . . .} be an
array of independent random variables with a common distribution function
Fn for fixed n, and let {Vn,j : j = 1, . . . , n−mn +1, n = 1, 2, . . .} be defined
by (1). Consider an array {In,j : j = 1, . . . , n − mn + 1, n = 1, 2, . . .} of
zero-one random variables In,j = I{Vn,j>un}, where un is a sequence of real
numbers and IA denotes the indicator function of the set A. This last array
is stationary and (mn − 1)-dependent in each row and

P{In,j = 1} = P{In,1 = 1} = P{Vn,1 > un}(12)
= P{Xn,1 > un, Xn,2 > un, . . . , Xn,mn > un}
= [1− Fn(un)]mn .

Let us observe that (m−1)-dependence is a special case of local dependence
defined in [1] with

Aα = {β ∈ I : |α− β| < m},
Bα = {β ∈ I : |α− β| ≤ 2(m− 1)}, I = {1, . . . , n}.
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Set

Sn =
n−mn+1∑

i=1

In,i.

We define, as in [1],

Yn,α =
∑

|α−β|<mn

α6=β

In,β , α = 1, . . . , n−mn + 1,

and

λn,i =
1
i

n−mn+1∑
α=1

P{In,α = 1, Yn,α = i− 1}, i = 1, . . . , 2mn − 1.

Let M
(n−mn+1)
n,mn ≤ . . . ≤ M

(1)
n,mn be the order statistics of the sequence

Vn,1, . . . , Vn,n−mn+1 defined by (2).

Lemma 2. For k = 1, 2, . . . ,

(13) |P{M (k)
n,mn

≤ un} −G(k − 1, {λn,i})|

≤ 2(1 ∧ λ−1
n,1) exp

(
−

∞∑
i=1

λn,i

) n−mn+1∑
α=1

∑
β∈Bn,α

Pn,αPn,β ,

where

a ∧ b = min(a, b),
Pn,α = P{In,α = 1} = [1− Fn(un)]mn ,

Bn,α = {β ∈ {1, . . . , n−mn + 1} : |α− β| ≤ 2(mn − 1)}.

P r o o f. This follows from the equality P{M (k)
n,mn ≤ un} = P{Sn < k} =

P{Sn ≤ k − 1} and Theorem 8 of [1].

Lemma 3. If

(14) lim
n→∞

n[1− Fn(un)]mn = λ, λ > 0,

and

(15) lim
n→∞

mn/ lnn = d ≥ 0

then
lim

n→∞
λn,i = λi, i = 1, 2, . . . ,

where
λ1 = λ, λi = 0, i = 2, 3, . . . , for d = 0,

and
λi = λθ2e−(i−1)/d, i = 1, 2, . . . , for d > 0.
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P r o o f. We fix i, i = 1, . . . , 2mn − 1. For each n we divide the integers
1, . . . , n−mn + 1 in three parts:

Jn,1 = {1, . . . ,mn − 1},
Jn,2 = {mn, . . . , n− 2mn + 2},
Jn,3 = {n− 2mn + 3, . . . , n−mn + 1}.

Because the array {In,j} is stationary, we have

λn,i =
1
i

( mn−1∑
α=1

P{In,α = 1, Yn,α = i− 1}

+ (n− 3mn + 3)
i−1∑
j=0

P
{ mn−1∑

k=1

In,k = j, In,mn
= 1,

2mn−1∑
k=mn+1

In,k = i− 1− j
}

+
n−mn+1∑

α=n−2mn+3

P{In,α = 1, Yn,α = i− 1}
)
.

Define

Rn,j =
{mn−1∑

k=1

In,k = j, In,mn = 1,

2mn−1∑
k=mn+1

In,k = i− 1− j
}

,

j = 0, . . . , i− 1.

Observe that events of the form {. . . , Vn,i > un, Vn,i+1 ≤ un, Vn,i+2 >
un, . . .} are impossible because {Xn,i+mn ≤ un} and {Xn,i+mn > un} are
mutually exclusive. Thus

Rn,j = {Vn,1 ≤ un, . . . , Vn,mn−j−1 ≤ un,

Vn,mn−j > un, . . . , Vn,mn > un, . . . , Vn,mn+i−j−1 > un,

Vn,mn+i−j ≤ un, . . . , Vn,2mn−1 ≤ un}.

We fix j = 0, . . . , i − 1. By the definition of {In,j} and {Vn,j}, and the
assumptions on {Xn,i}, we have

P{Rn,j} =
mn−j−2∑

l=0

mn−i+j−1∑
p=0

P
{ mn−j−2∑

k=1

I{Xn,k>un} = l,

I{Xn,mn−j−1>un} = 0,
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2mn+i−j−2∑
k=mn−j

I{Xn,k>un} = mn + i− 1, I{Xn,2mn+i−j−1>un} = 0,

3mn−2∑
k=2mn+i−j

I{Xn,k>un} = p
}

= [1− Fn(un)]mn+i−1F 2
n(un).

Because P{Rn,j} does not depend on j, for each 0 ≤ j, k ≤ i− 1 we have

(16) P{Rn,j} = P{Rn,k}.

Next, set

Kn(i) = (n− 3mn + 3)
i−1∑
j=0

P{Rn,j}.

From (16) we obtain

Kn(i) = i(n− 3mn + 3)P{Rn,0}
= i(n− 3mn + 3)[1− Fn(un)]mn+i−1F 2

n(un).

Hence
1
i
Kn(i) = (n− 3mn + 3)[1− Fn(un)]mn(17)

× F 2
n(un)[1− Fn(un)]i−1.

Using Lemma 1 and (14) we have the following result: for d = 0,

lim
n→∞

1
i
Kn(i) =

{
0, i > 1,
λ, i = 1,

and

lim
n→∞

1
i
Kn(i) = λθ2e−(i−1)/d for d > 0.

Now let

L(1)
n (i) =

mn−1∑
α=1

P{In,α = 1, Yn,α = i− 1},

L(2)
n (i) =

n−mn+1∑
α=n−2mn+3

P{In,α = 1, Yn,α = i− 1}.

Our purpose is to show that

lim
n→∞

L(r)
n (i) = 0, r = 1, 2.



Compound Poisson approximation 25

Set

An,α(j) =
{α−1∑

k=1

In,k = j, In,α = 1,

α+mn−1∑
k=α+1

In,k = i− j − 1
}

,

α = 1, . . . ,mn − 1, 0 ≤ j ≤ i− 1.

Then

L(1)
n (i) =

∑
α<i

i−1∑
j=0

P{An,α(j)}+
∑

i≤α≤mn−1

i−1∑
j=0

P{An,α(j)}.

Note that
An,1(0) = {Vn,1 > un, . . . , Vn,i > un, Vn,i+1 ≤ un, . . . , Vn,mn

≤ un},

An,α(j) = {Vn,1 ≤ un, . . . , Vn,α−j−1 ≤ un,

Vn,α−j > un, . . . , Vn,α > un, . . . , Vn,α+i−1−j > un,

Vn,α+i−j ≤ un, . . . , Vn,α+mn−1 ≤ un}.
Now it is easy to see that An,α(j) ⊂ Cn,α(j) where

Cn,α(j) = {Vn,α−j > un, . . . , Vn,α > un, . . . , Vn,α+i−1−j > un,

Vn,α+i−j ≤ un, . . . , Vn,α+mn−1 ≤ un}.
From the stationarity of the array {Vn,j},

P{Cn,α(j)} = P{Dn,α(j)},
where

Dn,α(j) = {Vn,1 > un, . . . , Vn,j+1 > un, . . . , Vn,i > un,

Vn,i+1 ≤ un, . . . , Vn,mn+j ≤ un}.
It is obvious that Dn,α(j) ⊂ An,1(0) so

(18) P{An,α(j)} ≤ P{An,1(0)}
for j = 0, . . . , α − 1 if α < i, and for j = 0, . . . , i − 1 otherwise. From (18)
and the assumed properties of {Xn,j} and {Vn,j} we obtain

L(1)
n (i) ≤ (mn − 1)i[1− Fn(un)]mn+i−1Fn(un)(19)

×
mn−i−1∑

s=0

(
mn − i− 1

s

)
[1− Fn(un)]sFmn−i−1−s

n (un)

=
mn − 1

n
· i · n[1− Fn(un)]mnFn(un)[1− Fn(un)]i−1.

Note that in view of (15), mn = o(n), which together with the assumption
(14) and Lemma 1 implies that the right-hand side of (19) tends to zero as
n →∞. The same is true for L

(2)
n (i).
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Finally, for d = 0,

lim
n→∞

λn,i =
{

λ, i = 1,
0, i = 2, . . . , 2mn − 1,

and for d > 0,

lim
n→∞

λn,i = λθ2e−(i−1)/d, i = 1, . . . , 2mn − 1.

Lemma 4. We have

(20) lim
n→∞

∞∑
i=1

λn,i =
∞∑

i=1

λi = λθ.

P r o o f. The second equality of (20) follows simply, since
∞∑

i=1

λi = λθ2 1
1− e−1/d

= λθ.

Next, for fixed n, because of (17) and (19), we obtain

λn,i ≤ n[1− Fn(un)]mnFn(un)[1− Fn(un)]i−1.

Hence, from Lemma 1,

λn,i ≤ λ(1− e−1/d)e−(i−1)/d.

Set
ai = λθe−(i−1)/d

and note that
∞∑

i=1

ai = λθ
1

1− e−1/d
= λ < ∞.

Hence the series
∑∞

i=1 λn,i is uniformly convergent and thus in view of Lem-
ma 3 we have (20).

Lemma 5. If (14) and (15) hold , then

(21) lim
n→∞

n−mn+1∑
α=1

∑
β∈Bn,α

Pn,αPn,β = 0,

where Pn,α and Bn,α are as in Lemma 2.

P r o o f. Since Pn,α = [1− Fn(un)]mn , we have
n−mn+1∑

α=1

∑
β∈Bn,α

Pn,αPn,β ≤ 2(n−mn + 1)(mn − 1)[1− Fn(un)]2mn

= 2
n−mn + 1

n
· mn − 1

n
n2[1− Fn(un)]2mn .

The right side converges to zero as n →∞ by (14) and (15).
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The main result of this paper may now be readily proved.

Theorem 1. Let {mn} be a sequence of positive integers satisfying (15)
and {un} a sequence of real numbers satisfying (14). Then for k = 1, 2, . . . ,

(22) lim
n→∞

P{M (k)
n,mn

≤ un} = G(k − 1, {λi})

where the distribution function G is given by (7)–(8).

P r o o f. We have

(23) |P{M (k)
n,mn

≤ un} −G(k − 1, {λi})|

≤ |P{M (k)
n,mn

≤ un} −G(k − 1, {λn,i})|

+ |G(k − 1, {λn,i})−G(k − 1, {λi})|, k = 1, 2, . . .

From Lemma 2,

(24) |P{M (k)
n,mn

≤ un} −G(k − 1, {λn,i})|

≤ 2(1 ∧ λ−1
n,1) exp

(
−

∞∑
i=1

λn,i

) n−mn+1∑
α=1

∑
β∈Bn,α

Pn,αPn,β .

Note that limn→∞ λn,1 = λθ2 and since limn→∞
∑∞

i=1 λn,i = λθ we have

(25) lim
n→∞

exp
(
−

∞∑
i=1

λn,i

)
= exp(−λθ).

Thus from (21) the right side of (24) tends to zero as n →∞. For k = 1, 2, . . .
we also have

|G(k − 1, {λn,i})−G(k − 1, {λi})|

≤
∑
s<k

∣∣∣∣ exp
(
−

∞∑
i=1

λn,i

) ∑
k1+2k2+...+sks=s

kj≥0, j=1,...,s

λk1
n,1λ

k2
n,2 . . . λks

n,s

k1!k2! . . . ks!

− exp(−λθ)
∑

k1+2k2+...+sks=s
kj≥0, j=1,...,s

λk1
1 λk2

2 . . . λks
s

k1!k2! . . . ks!

∣∣∣∣.
Note that for fixed k we have a finite number of terms in the last two sums.
Hence by (25) and Lemma 3 the right side of the inequality (23) converges
to zero as n →∞.

As an immediate corollary of Theorem 1 we easily obtain the result of
Canfield and McCormick [2].
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Corollary 1. Let {mn} and {un} be sequences satisfying (15) and (14)
respectively. Then

lim
n→∞

P{M (1)
n,mn

≤ un} = e−λθ.

P r o o f. Using Theorem 1 for k = 1 we obtain

lim
n→∞

P{M (1)
n,mn

≤ un} = G(0, {λi})

where

G(0, {λi}) = p0({λi}) = exp
(
−

∞∑
i=1

λi

)
= exp(−λθ).
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