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Abstract. Recently, there has been a growing interest in optimization
problems associated with the arbitrage pricing of derivative securities in
imperfect markets (in particular, in models with transaction costs). In this
paper, we examine the valuation and hedging of European claims in the
multiplicative binomial model proposed by Cox, Ross and Rubinstein [5] (the
CRR model), in the presence of proportional transaction costs. We focus on
the optimality of replication; in particular, we provide sufficient conditions
for the optimality of the replicating strategy in the case of long and short
positions in European options. This work can be seen as a continuation of
studies by Bensaid et al. [2] and Edirisinghe et al. [13]. We put, however,
more emphasis on the martingale approach to the claims valuation in the
presence of transaction costs, focusing on call and put options. The problem
of optimality of replication in the CRR model under proportional transaction
costs was recently solved in all generality by Stettner [30].

1. Introduction. The CRR model is a discrete-time model of financial
market, with two primary securities, a risky stock and a riskless bond, and
with a finite set of dates {0, 1, . . . , T}. A riskless bond is assumed to yield
a constant return r ≥ 0 over each time period [t, t + 1]. This means that its
price process, B, equals (by convention B0 = 1)

(1) Bt = (1 + r)t, ∀t = 0, . . . , T.

The stock price, S, is assumed to satisfy

(2) ξt+1 = St+1/St ∈ {u, d}, ∀t = 0, . . . , T − 1,

with S0 ∈ R+, where u and d are real numbers. We assume throughout that
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0 < d < 1 + r < u. In order to construct a probabilistic model of the stock
price, we assume that ξt, t = 1, . . . , T, are mutually independent random
variables, given on a common probability space (Ω,F ,P), with identical
probability law: P(ξt = u) = p = 1 − P(ξt = d) for t = 1, . . . , T, where
p ∈ (0, 1). It follows from (2) that

(3) St = S0

t∏
j=1

ξj , ∀t = 0, . . . , T.

The process given by (3) is frequently referred to as the multiplicative (or
geometric) random walk. Note that the assumption of independence of
the random variables ξt, t = 1, . . . , T, is not essential; we can make this
assumption, without loss of generality, for the sake of convenience. Also the
specific value of the probability p plays no role whatsoever in what follows. It
should be stressed that we do not examine here the no-arbitrage condition in
the presence of transaction costs. It is intuitively clear, however, that under
the standard assumption (i.e., when 0 < d < 1+r < u) the CRR model with
transaction costs is still arbitrage-free, meaning that self-financing strategies
cannot result in riskless profits. Typically, papers devoted to the CRR model
with transaction costs deal either with the exact replication of contingent
claims, or with the perfect hedging (1) of contingent claims (other proposed
approaches are: the mean-variance hedging, the risk-minimizing hedging,
and the expected utility maximization approach; in contrast to the perfect
hedging, these methodologies are not preference-free, however). In the latter
case, it is not required that a portfolio matches exactly the value of the
claim at the terminal date and in each state. One assumes instead that the
terminal wealth is sufficient to cover the liabilities, with possibly a surplus of
funds in some states. It is important to acknowledge that if the transaction
costs are large enough, the perfect hedging of a contingent claim is more
efficient a strategy than the replication of a claim. Hedging of contingent
claims in the CRR binomial model (or in its multinomial generalization)
with proportional transaction costs was examined by, among others, Boyle
and Vorst [3], Bensaid et al. [2], Edirisinghe et al. [13], Mercurio and
Vorst [24]. The aim of the present paper is twofold: first, we intend to
examine the class of those European contingent claims for which the exact
replication is the cheapest way of hedging the risk exposure (this question
is addressed and solved in Stettner [30]). Second, we analyse a probabilistic
approach to the valuation of options under proportional transaction costs

(1) In existing literature, a strategy which is termed here a perfect hedging is frequently
referred to as a super-hedging or a super-replication. The term perfect hedging is sometimes
informally identified with replication. It is thus essential to stress that we adopt here a
different terminological convention.
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based on the notion of a quasi-martingale measure. It should be stressed that
several papers deal, using various methodologies, with hedging and valuation
under transaction costs in a continuous-time Black–Scholes framework; to
mention a few: Leland [22], Hodges and Neuberger [18], Davis et al. [11],
Davis and Clark [8], Cvitanić and Karatzas [6]. However, the practical
conclusions deriving from these works are sometimes rather disappointing.
In particular, it was recently shown by Soner et al. [29] (confirming the
conjecture of Davis and Clark [8]) that in the Black–Scholes framework
with proportional transaction costs, the unique perfect hedging strategy for
the writer of a European call option is the trivial one: “buy one share of
the stock at time 0 and hold it until the option’s expiry”. Therefore, we feel
there is still a motivation to investigate discrete-time financial models in the
presence of transaction costs. For related portfolio optimization problems
under transaction costs, see [7]–[9], [23], [27]–[28], [32]–[33].

1.1. Self-financing trading strategies. In the existing literature, it is
common to assume that proportional transaction costs are incurred when
shares of a risky asset are traded. On the other hand, it is usually postulated
that the trading in riskless bonds is exempted from transaction costs. We
find it convenient to assume that the total cost of buying one share at time
t is (1 + λt)St and the amount received for the sale of one share at time
t equals (1 − µt)St, where λt ∈ [0,+∞) and µt ∈ [0, 1) are real numbers.
Conventions adopted in [2] and [3] correspond to the following values of the
cost coefficients:

λt = κ, µt =
κ

1 + κ
, ∀t = 1, . . . , T,(4)

and
λt = κ, µt = κ, ∀t = 1, . . . , T,(5)

respectively. A reader should thus be advised that the results established
in various papers are not necessarily directly comparable. Denote by φt =
(αt, βt), t = 0, . . . , T, a trading strategy, where αt stands for the number of
shares and βt denotes the amount of funds invested in riskless bonds at time
t (after the portfolio rebalancement). We assume that a trading strategy φ
is self-financing inclusive of transaction costs. Therefore, the self-financing
condition has the following form (2):

(6) βt = βt−1(1+r)−(1+λt)St|∆tα|I{∆tα>0}+(1−µt)St|∆tα|I{∆tα<0}

for every t = 0, . . . , T, where ∆tα = αt − αt−1. Equivalently, we have

(2) We could have alternatively assumed that βt is less than or equal to the right-
hand side of (6)—such a modification corresponds to the allowance for the intertemporal
consumption. This is not relevant from the viewpoint of our further results, however.
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αt−1St + βt−1(1 + r) = αtSt + βt + λt(αt − αt−1)StI{αt>αt−1}

+ µt(αt−1 − αt)StI{αt−1>αt}

for every t = 0, . . . , T. In view of (6) it is clear that the transaction cost
is charged on the change in the net stock position. Notice also that if
trading at time 0 is not cost-free, we need to introduce also the notion of
a pre-trading portfolio at time 0, (α̃0, β̃0) say. It will soon become clear
that the relevant quantities, such as the replication cost or the seller’s price,
depend on the pre-trading composition of the portfolio (more exactly, on the
individual’s endowment in shares). It is useful to observe that the numbers
αt, which represent the number of shares held at time t, can be chosen with
no restrictions. Given the values of α’s for all dates, the corresponding β’s
are uniquely determined by the self-financing condition. In general, it is
essential to assume that a portfolio can be rebalanced at the terminal date
T (a revision of a portfolio at the terminal date is irrelevant when trading at
time T is cost-free). It will be sometimes convenient to make the following
additional assumptions, which refer to the absence of transaction costs at
the initial (or terminal) date.

Assumption (TC.1). No transaction costs are incurred when a portfolio
is established at time 0 (i.e., λ0 = µ0 = 0). Consequently, the initial wealth
of any self-financing trading strategy φ equals V0(φ) = α0S0 + β0.

Under (TC.1), the concept of a pre-trading portfolio at time 0 has no
relevance. Indeed, since the portfolio can be revised at no cost, the only
quantity that really matters is the initial wealth V0(φ), and not, for instance,
the initial endowment in shares. For the sake of expositional clarity we
make this assumption throughout this section. Some authors also make the
following assumption, which has even more important consequences for the
valuation of derivative securities.

Assumption (TC.2). No transaction costs are incurred when a port-
folio is liquidated at the terminal date T (i.e., λT = µT = 0). In this case,
the self-financing condition takes the following form for t = T :

(7) αT−1ST + βT−1(1 + r) = αT ST + βT .

Assumption (TC.2) allows to assume, as in the case of a model without
transaction costs, that all claims are settled in cash and all portfolios are
liquidated at time T. Let us explain this point in some detail. Generally
speaking, in the framework of models with transaction costs, it is essential to
distinguish between various ways in which a claim is settled at time T. Hence,
it appears convenient to define a contingent claim as a two-dimensional
random variable, X = (gT , hT ) say, where gT and hT represent the number
of shares and the amount of cash transferred at time T from the writer
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of the claim X to its holder (or conversely, depending on the actual sign
of gT and hT ). We say that a trading strategy φ replicates the claim X
that is settled by delivery if αT = gT and βT = hT . It is clear that the
(minimal) initial value of the replicating portfolio of an arbitrary contingent
claim X settled by delivery, referred to as the seller’s replicating cost, can
be computed using the standard recursive procedure, provided, of course,
that the class of replicating strategies for X is non-empty. On the other
hand, under assumption (TC.2), one may assume, without loss of generality,
that all claims are settled in cash, meaning that the claim X = (gT , hT ) is
identified with the claim X̃ = (0, gT ST + hT ). We shall assume throughout
that a claim is settled by delivery.

1.2. Replication of options. For simplicity, let us first consider replication
of a European call option in the CRR model under assumption (TC.1). A
long call option settled by delivery corresponds, by definition, to the claim
CT = (I{ST >K},−KI{ST >K}). It is thus clear that the replicating portfolio
is composed, at the expiry date T, of one share of the stock, combined
with a short position in riskless bonds equal to the strike price if ST > K
(otherwise, it contains no assets at all). A short call option settled by
delivery is represented by the claim −CT = (−I{ST >K},KI{ST >K}). Hence,
the replicating portfolio of short call involves, at the option’s expiry, a short
position in one share and a long position in riskless bonds when ST > K. In
the presence of transaction costs, one needs to distinguish replicating costs
of short and long positions. Basically, a seller (a buyer, resp.) of a given
claim should replicate the long position (the short position, resp.) in order
to hedge the risk. Therefore the seller’s replication cost of X is given by the
formula

(8) ps
0(X) := inf{V0(φ) | ∃φ ∈ Φ : αT = gT and βT = hT },

where Φ is the class of all self-financing trading strategies. It is clear that
ps
0(X) represents the minimal cost of a replicating strategy (if it exists). It is

natural to introduce the buyer’s replication cost pb
0(X) by setting pb

0(X) =
−ps

0(−X), or more explicitly,

(9) pb
0(X) := − inf{V0(φ) | ∃φ ∈ Φ : αT = −gT and βT = −hT }.

The first minus sign in (9) allows us to directly compare both quantities.
In the absence of transaction costs, we have ps

0(X) = pb
0(X) = π0(X); that

is, the replicating costs coincide with the arbitrage price of the claim X. As
already mentioned, it is reasonable to assume that in some circumstances,
a writer of a call option would like to hedge against his short position using
the replicating strategy of a long call (though such a strategy could appear
to be sub-optimal, in the sense made precise in what follows). Similarly, a
buyer of the option may find it useful to hedge against his long call position
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(or rather against the associated short position in bonds (3)) by forming a
portfolio which dynamically replicates the short call option. Note that under
transaction costs, the existence of a replicating strategy is no longer a trivial
matter. It can be checked, however, that in the CRR model with propor-
tional transaction costs, a European contingent claim admits a replicating
(self-financing) strategy.

1.3. Perfect hedging of contingent claims. As pointed out, among oth-
ers, by Bensaid et al. [2] and Edirisinghe et al. [13], the perfect replication
of a contingent claim is not necessarily the optimal (i.e., cheapest) way of
hedging the risk exposure. In some circumstances, it is possible to find a
dynamic portfolio which ultimately dominates a given contingent claim for
any state of nature, and requires less wealth at the initial date than the
dynamic portfolio that replicates the claim. Such a trading strategy, which
is sometimes referred to as a super-hedging strategy for X, is termed here
a perfect hedging against a short position in a claim X. If a claim is settled
by physical delivery of an underlying asset, we have the following definition
(notice that the possibility of a revision of the portfolio φ at the terminal
date T is essential here).

Definition 1.1. We say that a self-financing trading strategy φ is a
perfect hedging against a short position in a contingent claim X = (gT , hT )
settled by delivery at time T if, at the terminal date, we have αT ≥ gT and
βT ≥ hT .

Our aim is to determine a trading strategy with the minimal initial
wealth among all perfect hedging strategies. It is rather obvious that we may
restrict our attention (4) to these strategies for which αT = gT and βT ≥ hT .
Notice that for any claim X a perfect hedging against a short position
in X leads to a terminal portfolio which is sufficient to meet the liability
represented by X, with possibly some excess in certain states. First consider
a party who has sold at time 0 a claim X for the price cs(X). Formally, we
assume that the pre-trading composition of the seller’s portfolio at time 0
is (0, cs(X),−1), where the last component represents the short position in
X. The post-trading portfolio of the seller at time 0 is (αs

0, β
s
0,−1), and the

post-trading portfolio at the terminal date T needs to satisfy (it is implicitly

(3) It is implicitly assumed that the option was purchased on margin, that is, with
borrowed cash. Therefore, an option buyer is exposed to the risk of insolvency at the
terminal date T.

(4) Essentially, this follows from the fact that the stock price is strictly positive, and
from our current assumption that transaction costs are proportional to the turnover. This
wouldn’t be true if, for instance, a constant (i.e., independent of the transaction’s size)
transaction cost were considered.
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assumed that the claim X has already been settled)

(αs
T − gT , βs

T − hT , 0) = (αs
T − gT , βs

T − hT , 0) ≥ (0, 0, 0),

where the last inequality is component-wise. The minimal price cs(X) for
which there exists a self-financing strategy with the above properties is called
the seller’s price of X, and is denoted by πs

0(X). Now consider a party who
contemplates the purchase of a claim X. Generally speaking, a buyer of the
claim X can always be seen as a seller of the claim −X. The buyer’s portfolio
at time 0 is (0, cs(−X), 1), and the post-trading portfolio at time 0 equals
(αb

0 , βb
0 , 1). At the terminal date we require that

(αb
T + gT , βb

T + hT , 0) = (αb
T + gT , βb

T + hT , 0) ≥ (0, 0, 0).

The least real number cs(−X) for which there exists a trading strategy with
these properties is, of course, the seller’s price of −X, that is, πs

0(−X).
Notice that the number −πs

0(−X) determines the maximal amount of cash
the buyer can borrow in order to purchase the claim X, and still be able
to repay his debts at the terminal date after the claim X is settled. This
latter value is denoted by πb

0 (X), and is referred to as the buyer’s price of
X. Typically, if X is a non-negative claim then both the seller’s price πs

0(X)
and the buyer’s price πb

0 (X) are non-negative numbers; in addition, the in-
equality πb

0 (X) ≤ πs
0(X) is valid. Formally, we have the following definition

(the seller’s price is sometimes referred to as the super-hedging price).

Definition 1.2. The seller’s price of X at time 0 of a claim X =
(gT , hT ), denoted by πs

0(X), is the minimal initial cost of a perfect hedging
strategy against the short position in X, that is,

(10) πs
0(X) = inf{V0(φ) | ∃φ ∈ Φ : αT ≥ gT and βT ≥ hT }.

The buyer’s price of X at time 0, denoted by πb
0 (X), is set to be equal to

−πs
0(−X). More explicitly,

(11) πb
0 (X) = − inf{V0(φ) | ∃φ ∈ Φ : αT ≥ −gT and βT ≥ −hT }.

Observe that the seller’s and buyer’s prices do not depend on an in-
vestor’s preferences and probability beliefs. Moreover, it should be stressed
that if an individual were able to sell the claim X at the price πs

0(X), such
a transaction would lead to an arbitrage opportunity in the market, in gen-
eral (by symmetry, a similar remark applies to the buyer’s price). For this
reason, the seller’s and buyer’s prices can hardly be seen as arbitrage prices.

Remarks. In contrast to the option’s replicating strategy in the CRR
model with no transaction costs, the perfect hedging under transaction costs
is a path-dependent strategy, in general. This may be explained by the fact
that the optimal trading policy depends not only on the current stock price,
but also on the shares portfolio inherited from the preceding date.
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2. Example. The following example of the two-period CRR model
was considered in Bensaid et al. [2] (see also Edirisinghe et al. [13]). For
the reader’s convenience we preserve their assumptions concerning the cost
coefficients (see (4)). We consider a call option with exercise price K = 100,
assuming the following binomial lattice describing the stock price: S0 = 100,
Su

1 = 130, Sd
1 = 90 at time t = 1, and finally

Suu
2 = 169, Sud

2 = Sdu
2 = 117, Sdd

2 = 81

at the terminal date T = 2 (this means that u = 1.3 and d = 0.9).
Furthermore, we assume here that conditions (TC.1)–(TC.2) are met, so
that transactions made at time 0 and T are exempted from costs. Take
r = 0, and define CT = (I{ST >K},−KI{ST >K}), or equivalently (in view of
(TC.2)), CT = (0, (ST − K)+). It is easy to check that in the absence of
transaction costs, the arbitrage price of a European call option with strike
K = 100 equals π0(CT ) = $10.69. We assume from now on that λ1 = 0.2
and µ1 = 0.2(1 + 0.2)−1 (that is, κ = 0.2 in (4) for t = 1).

2.1. Seller’s costs. It is not hard to check that the initial cost of the
unique replicating strategy of the long call option equals ps(CT ) = $15.33.
In particular, the unique replicating strategy involves at time 0 the purchase
of 0.7263 shares and the borrowing of $57.30; the portfolio is then revised at
time 1 in an appropriate way. [2] noted the existence a trading strategy, φ̂
say, which involves at time 0 the purchase of 0.8 shares of stock, combined
with the borrowing of $64.80, and such that the terminal value of φ̂ domi-
nates X. To completely specify the strategy φ̂, it is sufficient to assume that
it involves no trading at time 1. The initial cost of the strategy φ̂ amounts
to $15.2, so that it is less than the replicating cost of the long call. This
shows that under transaction costs, the dynamic portfolio that matches the
claim X at the terminal is not necessarily the cheapest way of hedging the
risk exposure. It should be stressed, however, that the strategy φ̂ is not
the optimal perfect hedging of the call option. It can be shown by solving
a simple minimization problem that the minimal cost of hedging against
the short position in the option equals (approximately) πs

0(CT ) = $14.19.

The trading strategy φ̃ which realizes this initial cost involves the buying
at time 0 of 0.7467 shares (this requires, of course, $74.67 cash) combined
with borrowing $60.48. If the stock price declines during the first period,
the portfolio is not modified at time 1. On the other hand, if the stock price
rises during this period, we buy an additional 0.2533 shares of stock. In this
case, the portfolio is composed at time 1, after the rebalancement, of one
share of stock, combined with borrowing $100. The latter number is found
from the following equality:

60.48 + 0.2533× 130× 1.2 = 100.
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It is thus clear that if the stock price rises in the first period, the rebal-
ancement at time 1 leads to the perfect replication of the option at expiry.
Furthermore, if the stock price declines twice in a row, the terminal wealth
is

−60.48 + 74.67× 0.9× 0.9 = 0,

so that the payoff from the option is matched exactly. Finally, if the stock
price falls in the first period and then goes up, the terminal value of our
portfolio is

−60.48 + 74.67× 0.9× 1.3 = 26.88 > 17,

hence, after meeting the liability, we end up with a surplus of cash. We
conclude that the seller’s price of the option equals πs

0(CT ) = $14.19.

2.2. Buyer’s costs. Let us now examine the buyer’s price—that is, the
maximal amount of cash one may borrow against the call option. By rea-
soning in a similar way to that above, one finds that the optimal trading
strategy now involves selling short of 0.4722 shares of the stock and the
long position in riskless bonds at $38.25. In contrast to the previous case,
no trading takes place at time 1. If the price rises during both periods, the
terminal wealth amounts to

38.25− 47.22× (1.3)2 = −41.55 > −69.

In all other cases the portfolio’s value at the terminal date exactly matches
the claim −X, since

38.25− 47.22× 1.3× 0.9 = −17 and 38.25− 47.22× (0.9)2 = 0.

This shows that the buyer’s price equals (approximately) πb
0 (CT ) = $8.97.

As already mentioned, the buyer’s price may be interpreted as the maximal
amount of cash the owner of the call option may borrow from the bank,
and still be sure that he will be able to repay his loan at time T in all
circumstances. For completeness, we shall now find the replication cost
of a short call option. It appears that the unique replicating strategy for
the short position in a call option involves selling short 0.3353 shares of
stock and investing $27.98 in bonds (this generates $5.55 of cash). The
portfolio is then revised at time 1 by shorting, in addition, 0.6647 shares
in the up-state, and shorting 0.1396 shares in the down-state. This means
that in the up-state we have −$130 in shorted shares and $100 in riskless
bonds. In the down-state, the corresponding numbers are −$42.498 and
$38.25, respectively. One can easily check that this portfolio replicates the
short call option. The amount $5.55 can be seen as the maximal amount
of cash one can borrow from the bank against the call option, if one wishes
to repay the debt exactly at every state at time T. Summarizing, we obtain
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the following chain of inequalities:

pb
0(CT ) = 5.55 < πb

0 (CT )
= 8.97 < π0(CT ) = 10.69 < πs

0(CT ) = 14.19 < ps
0(CT ) = 15.33,

where ps
0(CT ) and pb

0(CT ) denote the seller’s and buyer’s replicating cost,
respectively. It is worthwhile to point out that any price belonging to the
open interval (8.97, 15.33) would be consistent with the absence of arbitrage
in the market model. More precisely, if the option was sold at some price
from this interval, neither the seller of the option nor its buyer would be able
to make riskless profit. On the other hand, if someone was able to sell the
option at the seller’s price πs

0(CT ) (or buy it at the buyer’s price πb
0 (CT )), the

market model would no longer be arbitrage-free. In this sense, the buyer’s
and seller’s prices provide the lower and upper bounds for the values of the
option’s price consistent with no-arbitrage. Recall that we assume here that
conditions (TC.1)–(TC.2) are satisfied. Somewhat surprisingly, assumption
(TC.2), which was imposed to make the calculations simpler, is in fact
responsible for the non-trivial form of the optimal strategy (we say that a
perfect hedging strategy with the minimal cost is trivial if it replicates a
given claim).

3. Optimality of replicating strategies. In this section, we shall
frequently assume that the cost coefficients are constant over time: λt = λ
and µt = µ for every date t = 0, . . . , T. Our main goal is to show that
for a large class of contingent claims the optimal perfect hedging strategy
coincides with the replicating strategy. For convenience, we restrict our
attention to the path-independent European claims; that is, claims of the
form X = (gT , hT ), where gT = g(ST ) and hT = h(ST ) are functions
g, h : R → R. Instead of analysing the number of long or short positions
in shares, we shall focus on the amount of funds invested in shares and
bonds at any date t. We write xt = αtSt and yt = βt to denote the post-
trading amounts of funds which are invested at time t in shares and bonds
respectively. In other words, a post-trading portfolio at time t is identified
with a vector (xt, yt), with both components expressed in units of cash.
Similarly, we write (x̃t, ỹt) to denote the pre-trading portfolio at time t. In
particular, (x̃0, ỹ0) represents the pre-trading portfolio at time 0, that is, the
initial endowment in shares and cash. We denote by Mt and Lt the amounts
of funds transferred at time t from shares to bonds and from bonds to shares,
respectively. For any t, the non-negative random variables Mt and Lt are
assumed to be measurable with respect to the σ-field Ft = σ(S0, . . . , St)
generated by the observations of stock price up to time t. We postulate,
without loss of generality, that the equality MtLt = 0 holds for any t. The
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portfolio’s dynamics are subject to the following rules:

x̃t+1 = ξt+1(x̃t + Lt −Mt), ỹt+1 = (1 + r)(ỹt + (1− µt)Mt − (1 + λt)Lt)

for every t ≤ T − 1, where ξt+1 = St+1/St is a random variable which
takes values in the set {u, d} (see (2)) and the initial condition (x̃0, ỹ0) is
represented by an arbitrary vector in R2. We find it convenient to decouple
the portfolio’s evolution in the following way:

xt = x̃t + Lt −Mt, yt = ỹt + (1− µt)Mt − (1 + λt)Lt

for t = 0, . . . , T, and

x̃t+1 = ξt+1xt, ỹt+1 = (1 + r)yt

for t = 0, . . . , T − 1. The first pair of equations reflects transactions which
occur at time t = 0, . . . , T ; the second governs the dynamics of the portfolio
over each period [t, t+1] for t = 0, . . . , T−1. Denote by ps

0(X|x̃0) the seller’s
replication cost of X, given that a seller is endowed with x̃0 units of cash
invested in shares (i.e., owns x̃0/S0 shares of the stock) before the trade at
time 0 begins. Formally, the seller’s replication cost ps

0(X|x̃0) equals (cf. (8))

ps
0(X|x̃0) := inf{ỹ0 ∈ R | ∃φ ∈ Φ(x̃0,ỹ0) : xT = ST gT and yT = hT },

where Φ(x̃0,ỹ0) stands for the class of those self-financing trading strategies
which start from the initial endowment (x̃0, ỹ0). The buyer’s replication cost
is defined by the equality pb

0(X|x̃0) = −ps
0(−X|x̃0), or explicitly (cf. (9)) by

pb
0(X|x̃0) := − inf{ỹ0 ∈ R | ∃φ ∈ Φ(x̃0,ỹ0) : xT = −ST gT and yT = −hT }.

One can easily check that under (TC.1) we have ps
0(X|x̃0) = ps

0(X|0)− x̃0,
so that, in this case, it is enough to search for the replication cost ps

0(X|0)
which corresponds to zero initial endowment. The seller’s price, i.e., the
minimal cost of perfect hedging, is given by

(12) πs
0(X|x̃0) := inf{ỹ0 ∈ R | ∃φ ∈ Φ(x̃0,ỹ0) : xT ≥ ST gT and yT ≥ hT }

and the buyer’s price equals

(13) πb
0 (X|x̃0) := − inf{ỹ0 ∈ R |

∃φ ∈ Φ(x̃0,ỹ0) : xT ≥ −ST gT and yT ≥ −hT }.
From the definitions above it is obvious that, for any contingent claim X and
any initial endowment x̃0, we have πs

0(X|x̃0) ≤ ps
0(X|x̃0) and pb

0(X|x̃0) ≤
πb

0 (X|x̃0). A trading strategy which realizes the infimum in (12) (in (13),
resp.) is referred to as the optimal strategy for a seller (for a buyer, resp.) of
X. Our aim is now to show that for some classes of contingent claims, repli-
cating strategies are optimal for both the seller and the buyer (independently
of the initial endowment in shares). In other words, we wish to prove that for
any x0 ∈ R we have πs

0(X|x̃0) = ps
0(X|x̃0) and πb

0 (X|x̃0) = pb
0(X|x̃0), pro-

vided that specific assumptions are imposed on the claim X and/or on the
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model’s coefficients. For the sake of convenience, we write s1 > . . . > sT+1

to denote the stock price values at the terminal date. Also, we write
gi = sig(si) and hi = h(si), and we identify a claim X with a finite subset of
points in the plane: (gi, hi), i = 1, . . . , T +1. Since the case of general claims
is rather cumbersome, we restrict out attention, unless otherwise specified,
to those claims which satisfy

(14) (gi/u− gi+1/d)(hi+1 − hi) ≥ 0, ∀i = 1, . . . , T + 1.

It is easily seen that claims corresponding to the long and short positions in
European options settled by delivery satisfy condition (14).

3.1. Long call and put options. We are now in a position to formulate
conditions which will appear sufficient for the optimality of replication.

Assumption (TC.3). We say that a European contingent claim X =
(g(ST ), h(ST )), which settles at time T, satisfies condition (TC.3) if hi+1 ≥
hi for all i = 1, . . . , T, and the following implications are valid:

hi+1 − hi = 0 ⇒ gi

u
− gi+1

d
= 0,(15)

hi+1 − hi > 0 ⇒ hi+1 − hi

u(1 + λ)
<

gi

u
− gi+1

d
<

hi+1 − hi

d(1− µ)
.(16)

Let us examine some special, but important, cases of contingent claims
which satisfy assumption (TC.3). For instance, for long call and put options
we have hi+1 ≥ hi for every i; in addition, the implication (15) is easily seen
to be satisfied. Finally, in both cases, it is enough to verify the validity of
(16) only at the node corresponding to the exercise price K, that is, for i
such that hi+1 ≥ K > hi. Consider first a long call option. Denote by s the
unique value of the stock price at time T − 1 which satisfies su > K and
sd ≤ K. Condition (16) is easily seen to hold, as it takes the following form:

K

u(1 + λ)
<

su

u
− 0

d
<

K

d(1− µ)
,

or equivalently, su(1 + λ) > K and sd(1− µ) < K. Similarly, for a long put
option, we consider the value of s for which su ≥ K and sd < K. We need
to show that

K

u(1 + λ)
<

0
u
− −sd

d
<

K

d(1− µ)
,

but this condition is, of course, identical to the one for the long call option.

3.2. Direct approach. By the direct approach, as opposed to the mar-
tingale approach, we mean a straightforward analysis of the class of feasible
strategies. A trading strategy is called feasible if it is self-financing, inclusive
of transaction costs, and satisfies the terminal constraints as in (12)–(13).
We start this section with simple, but useful, auxiliary results.
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For any two points (gi, hi) and (gi+1, hi+1) which satisfy (16), we denote
by (Gi,Hi) the intersection of the following lines:

x = − (1 + r)y − hi

u(1 + λ)
+

gi

u
, x = − (1 + r)y − hi+1

d(1− µ)
+

gi+1

d
.

For convenience, we write ũ = 1/u, d̃ = 1/d, µ̃ = (1 + r)/(1 − µ), λ̃ =
(1+r)/(1+λ), h̃i = hi/(1+r), and h̃i+1 = hi+1/(1+r). Then the equations
above become

x = −λ̃ũ(y − h̃i) + ũgi, x = −µ̃d̃(y − h̃i+1) + d̃gi+1.

It is easily seen (since d̃µ̃− ũλ̃ > 0) that

Hi =
d̃µ̃h̃i+1 − ũλ̃h̃i + d̃gi+1 − ũgi

d̃µ̃− ũλ̃
,

or equivalently,

(17) Hi =
(1 + λ)uhi+1 − (1− µ)dhi + (1 + λ)(1− µ)(ugi+1 − dgi)

(1 + r)((1 + λ)u− (1− µ)d)
.

Furthermore, we have

Gi =
ũd̃(µ̃λ̃(h̃i − h̃i+1) + µ̃gi − λ̃gi+1)

d̃µ̃− ũλ̃
(18)

=
hi − hi+1 + (1 + λ)gi − (1− µ)gi+1

(1 + λ)u− (1− µ)d
.

The next lemma will prove useful in the martingale approach (both formulae
easily follow by straightforward calculations).

Lemma 3.1. Let

p̂ =
(1 + λ)(1 + r)− (1− µ)d

(1 + λ)u− (1− µ)d
, p̃ =

(1− µ)(1 + r)− (1− µ)d
(1 + λ)u− (1− µ)d

.

Then

(1 + r)(Hi + (1 + λ)Gi) = p̂(hi + (1 + λ)gi) + (1− p̂)(hi+1 + (1− µ)gi+1)
and
(1 + r)(Hi + (1− µ)Gi) = p̃(hi + (1 + λ)gi) + (1− p̃)(hi+1 + (1− µ)gi+1).

Since in what follows we shall apply the backward induction, the follow-
ing elementary lemma will prove useful.

Lemma 3.2. Consider the points (gi, hi), i = j − 1, j, j + 1, which corre-
spond to the three consecutive values sj−1 > sj > sj+1 of the terminal stock
price. Suppose that for i = j − 1 and i = j the pair of points (gi, hi) and
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(gi+1, hi+1) satisfies (15)–(16). Then for the pair of the corresponding in-
tersection points, (Gj−1,Hj−1) and (Gj ,Hj), conditions (15)–(16) are also
met.

P r o o f. Suppose that the points (gi, hi), i = j−1, j, j+1, satisfy (TC.3).
We wish to show that the intersection points (Gj−1,Hj−1) and (Gj ,Hj) also
satisfy (TC.3)—that is, implication (15) holds (this is rather trivial) and

Hj −Hj−1

u(1 + λ)
<

Gj−1

u
− Gj

d
<

Hj −Hj−1

d(1− µ)

provided that Hj > Hj−1 (it will soon become clear that Hj−Hj−1 is never
negative). For simplicity of notation, we write j−1 = 1 and j = 2. We need
to show that H2 > H1 and

ũλ̃

1 + r
<

ũG1 − d̃G2

H2 −H1
<

d̃µ̃

1 + r
.

By straightforward calculations we find that

ũG1 − d̃G2

=
ũd̃(ũµ̃λ̃(h̃1 − h̃2) + µ̃(ũg1 − d̃g2) + d̃µ̃λ̃(h̃3 − h̃2)− λ̃(ũg2 − d̃g3))

d̃µ̃− ũλ̃

and

H2 −H1 =
ũλ̃(h̃1 − h̃2) + ũg1 − d̃g2 + d̃µ̃(h̃3 − h̃2)− ũg2 + d̃g3

d̃µ̃− ũλ̃
.

We define γ = ũλ̃(h̃1 − h̃2) + ũg1 − d̃g2 and δ = d̃µ̃(h̃3 − h̃2) − ũg2 + d̃g3.
Under (TC.3), γ + δ is a strictly positive number if h3 > h1. Indeed, it
follows from (15)–(16) that

ũg1 − d̃g2 ≥ ũλ̃(h̃2 − h̃1), ũg2 − d̃g3 ≤ d̃µ̃(h̃3 − h̃2).

and the first (the second, resp.) inequality is strict if h2 > h1 (if h3 > h2,
resp.). Since manifestly

H2 −H1 =
γ + δ

d̃µ̃− ũλ̃
, ũG1 − d̃G2 =

ũd̃(µ̃γ + λ̃δ)

d̃µ̃− ũλ̃
,

it is clear that H2 −H1 > 0, and

ũλ̃

1 + r
< ũd̃ λ̃ ≤ ũG1 − d̃G2

H2 −H1
=

ũd̃(µ̃γ + λ̃δ)
γ + δ

≤ ũd̃µ̃ <
d̃µ̃

1 + r
,

since d̃ > 1/(1 + r) and ũ < 1/(1 + r). If h3 = h2 = h1 then, of course,
γ = δ = 0, so that H1 = H2 and ũG1 = d̃G2.

We are now in a position to prove the main result of this section (it is a
straightforward generalization of Theorem 3.3 in [2]).
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Proposition 3.1. Let a European contingent claim X = (g(ST ), h(ST ))
satisfy condition (TC.3). Then the optimal hedging strategy for a seller of
X coincides with the unique self-financing replicating strategy.

P r o o f. The proof is based on a direct analysis of the set of feasible
portfolios. Consider the class Asi

of post-trading feasible portfolios (x, y)
at time T for a fixed (but otherwise arbitrary) level si of the stock price. It
is clear that Asi

= {(x, y) ∈ R2 | x ≥ sig(si), y ≥ h(si)}. The class Ãsi
of

pre-trading feasible portfolios at time T equals

Ãsi
= {(x̃, ỹ) ∈ R2 |
∃l,m ≥ 0, ∃(x, y) ∈ Asi

: (x̃, ỹ) = (x + m− l, y + (1 + λ)l − (1− µ)m)}.

In other words, the pre-trading feasible set Ãsi
is the image of the mapping

Θ : Asi
× R2

+ → R2 which is given by

Θ(x, y,m, l) = (x+m−l, y−(1−µ)m+(1+λ)l), ∀(x, y, m, l) ∈ Asi
×R2

+,

that is, Ãsi
= Θ(Asi

× R2
+). Now we make the inductive step. For any

generic value s of the stock price at time T − 1, the class of post-trading
feasible portfolios equals

As = {(x, y) ∈ R2 | (ux, (1 + r)y) ∈ Ãsu}

∩ {(x, y) ∈ R2 | (dx, (1 + r)y) ∈ Ãsd}

and, as before, Ãs = Θ(As × R2
+). Using Lemma 3.2, it is not difficult

to check that the post-trading feasible set and, more importantly, the pre-
trading feasible set at any time and at any node of the binomial lattice
is a (shifted) convex cone. Moreover, the slopes of the half-lines which
determine the pre-trading cone are always −(1−µ) and −(1+λ). Therefore,
at any node of the binomial lattice the corresponding pre-trading cone is
uniquely determined by its vertex. In order to find the seller’s price (and
the associated trading strategy) it is thus sufficient to determine at each
stage the set of vertices of pre-trading cones. This can be easily done using
the backward induction, and taking into account, in particular, formulae
(17)–(18).

The following corollary to Proposition 3.1 summarizes the properties of
the optimal hedging of European options from the perspective of the option
writer.

Corollary 3.1. The seller’s price of the long call and put options coin-
cides with the seller’s replication cost of the long call and put options. The
initial portfolio of the replicating strategy for the long call option (for the
long put option, resp.) involves purchase of shares (short-selling of shares,
resp.). In both cases any upward movement of the stock price is associ-
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ated with a purchase of additional shares of stock. On the other hand , an
additional amount of shares is shorted after every decline of the stock price.

P r o o f. All assertions easily follow from an analysis of the set of feasible
portfolios.

3.2.1. Martingale approach. We shall now examine the martingale ap-
proach to the perfect hedging against short positions in options. Let us start
by analysing the one-period case, i.e., T = 1. We assume also that x̃0 = 0
and we put c = ỹ0. Generally speaking, we search for the minimal value of
c such that

α0 = l0 −m0, β0 = c + (1− µ0)m0S0 − (1 + λ0)l0S0,

for some real numbers m0 ≥ 0, l0 ≥ 0 such that l0m0 = 0, and

α1 = α0 + l1 −m1 = g(S1),
β1 = β0(1 + r) + (1− µ1)m1S1 − (1 + λ1)l1S1 ≥ h(S1),

where l1 and m1 are non-negative random variables such that l1m1 = 0.
Consider first a call option. Since the replicating strategy of the long call
involves purchasing shares at time 0, we have

α0 = l0, β0 = c− (1 + λ0)l0S0,

for some real number l0 ≥ 0. At time 1, in the up-state we have

αu
1 = α0 + lu1 = g(Su

1 ), βu
1 = β0(1 + r)− (1 + λ1)lu1Su

1 ≥ h(Su
1 ),

for some lu1 ≥ 0, and in the down-state

αd
1 = α0 −md

1 = g(Sd
1 ), βd

1 = β0(1 + r) + (1− µ1)md
1S

d
1 ≥ h(Sd

1 ),

for some md
1 ≥ 0. As already mentioned, we wish to minimize the initial

cost c subject to the above set of constraints. This optimization problem
can be easily solved, yielding the following explicit formula for the seller’s
price of the call option (we use the general notation, in order to emphasise
that the result holds for any claim X which satisfies (TC.3), and such that
the replicating strategy involves purchasing shares at time 0 and at time 1
in the up-state, and selling shares at time 1 in the down-state)

(19) πs
0(X|0)

=
p̂s(h(Su

1 ) + (1 + λ1)Su
1 g(Su

1 )) + (1− p̂s)(h(Sd
1 ) + (1− µ1)Sd

1g(Sd
1 ))

1 + r
,

where

p̂s :=
(1 + λ0)(1 + r)S0 − (1− µ1)Sd

1

(1 + λ1)Su
1 − (1− µ1)Sd

1

=
(1 + λ0)(1 + r)− (1− µ1)d

(1 + λ1)u− (1− µ1)d
.

It is easily seen that p̂s ∈ (0, 1) and the pair {p̂s, 1−p̂s} defines the martingale
measure P̂s for the process Ŝs, which equals Ŝs

0 = (1 + λ0)S0 at time 0, and
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satisfies

Ŝs
1 =

{
(1 + λ1)(1 + r)−1Su

1 in the up-state,
(1− µ1)(1 + r)−1Sd

1 in the down-state,
at time 1. In particular, the seller’s price of a call option admits the following
representation (we assume that dS0 ≤ K < uS0):

πs
0(CT |0) = (1 + r)−1p̂s((1 + λ1)uS0 −K) = EP̂s

((1 + r)−1(Ŝs
T −K)+).

The last equality is, of course, a straightforward generalization of the stan-
dard risk-neutral valuation formula.

Now consider the seller’s price of a put option. Since the replicating
strategy of the long put involves shorting shares at time 0 (recall that we
consider an individual who does not own shares at time 0 before trading)
we need to modify the first pair of equations. We now have

α0 = −m0, β0 = c + (1− µ0)m0S0,

for some m0 ≥ 0. On the other hand, the equations associated with the
portfolio’s revision at time 1 are the same as in the case of a call option.
The seller’s price of a put option is easily seen to be

πs
0(X|0)

=
p̃s(h(Su

1 ) + (1 + λ1)Su
1 g(Su

1 )) + (1− p̃s)(h(Sd
1 ) + (1− µ1)Sd

1g(Sd
1 ))

1 + r
,

where

p̃s :=
(1− µ0)(1 + r)S0 − (1− µ)Sd

1

(1 + λ1)Su
1 − (1− µ1)Sd

1

=
(1− µ0)(1 + r)− (1− µ)d

(1 + λ1)u− (1− µ1)d
.

Note that the pair {p̃s, 1− p̃s} is the unique martingale measure P̃s for the
process S̃s, which equals S̃s

0 = (1− µ0)S0 at time 0, and

S̃s
1 =

{
(1 + λ1)(1 + r)−1Su

1 in the up-state,
(1− µ1)(1 + r)−1Sd

1 in the down-state,

at time 1. In particular, the seller’s price of a put option satisfies (we assume
that uS0 ≥ K)

πs
0(PT |0) = (1+ r)−1(1− p̃s)(K− (1−µ1)dS0) = EP̃s

((1+ r)−1(K− S̃T )+).

Now consider a multi-period case. We shall focus on the case of a call
option. Assume that the cost coefficients are constant over time. In this
case, we may proceed by working backwards in time from the terminal date
T. First, we associate with any generic terminal value si of the stock price
two values, f1(si) and f2(si) say, where

f1(si) = fu(gi, hi) := hi +(1+λ)gi, f2(si) = fd(gi, hi) := hi +(1−µ)gi.
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Then, at any node of the lattice corresponding to the date T−1 we introduce
the two values

f1(ST−1) = (1 + r)−1(p̂sf1(uST−1) + (1− p̂s)f2(dST−1)),

f2(ST−1) = (1 + r)−1(p̃sf1(uST−1) + (1− p̃s)f2(dST−1)).

From Lemma 3.1, it is clear that

f1(ST−1) = Hi + (1 + λ)Gi = fu(Gi,Hi),

f2(ST−1) = Hi + (1− µ)Gi = fd(Gi,Hi),

where, by convention, uST−1 = si (so that dST−1 = si+1). From Propo-
sition 3.1, we know already that the point (Gi,Hi) represents the option’s
replicating portfolio at time T − 1, for the value ST−1 of the stock price.
This shows that we may consider T −1 as the terminal date in what follows.
By repeating this procedure T − 2 times, we find the values fu(uS0) and
fd(dS0). In view of (19), we have

πs
0(X|0) = (1 + r)−1(p̂s(Hu

1 + (1 + λ)Gu
1 ) + (1− p̂s)(Hd

2 + (1− µ)Gd
2)),

where (Gu
1 ,Hu

1 ) and (Gd
1,H

d
1 ) represent the option’s replicating portfolio at

time 1, in the up-state and in the down-state, respectively. Put another
way, the seller’s price of the option equals

πs
0(X|0) = (1 + r)−1(p̂sf

u(Gu
1 ,Hu

1 ) + (1− p̂s)fd(Gd
2,H

d
2 )).

The considerations above may be used to construct a simple recursive pro-
cedure for finding the seller’s price of the option and the option’s replicating
strategy.

3.3. Short call and put option. We shall now examine the optimality of
the replicating strategy from the perspective of the option buyer—that is,
for the short call and put options. Note first that we now have hi+1 ≤ hi

for all i. We assume throughout that d(1 + λ) < u(1− µ), that is, ũµ̃ < d̃ λ̃.
Actually, we shall need an even stronger assumption, namely

(20)
ũµ̃ =

1 + r

u(1− µ)
<

1
1 + λ

=
λ̃

1 + r
,

µ̃

1 + r
=

1
(1− µ)

<
1 + r

d(1 + λ)
= d̃ λ̃,

that is,

(21)
1 + λ

1− µ
< min

(
u

1 + r
,
1 + r

d

)
.

It is obvious that, for fixed u and d, inequality (21) is satisfied provided
that the cost coefficients λ and µ are small enough. We will check later
that if condition (21) holds, the set of pre-trading feasible portfolios is, at
every node of the lattice, a convex cone with the same properties as in the
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case of long options. This will imply (see Proposition 3.3) that condition
(21) is sufficient for the optimality of replicating strategy for any contingent
claim. However, since the replicating strategy of a short option has some
interesting features, we shall first consider this specific class of contingent
claims. The following condition is a counterpart of assumption (TC.3).

Assumption (TC.4). We say that a claim X satisfies (TC.4) if hi+1 ≤ hi

for all i = 1, . . . , T, condition (15) holds, and the following implication is
valid:

(22) hi − hi+1 > 0 ⇒ hi − hi+1

u(1− µ)
<

gi+1

d
− gi

u
<

hi − hi+1

d(1 + λ)
.

In order to show that the short call option settled by delivery satisfies
(22) we need to verify that if su > K and sd ≤ K then

K

u(1− µ)
<

0
d
− −su

u
<

K

d(1 + λ)
,

or equivalently, that su(1−µ) > K and sd(1 + λ) < K. It is thus clear that
condition (TC.4) is satisfied by a short call option provided that the cost
coefficients are small enough. For the short put option, we need to check
that if a generic stock price s satisfies su ≥ K and sd < K, then

K

u(1− µ)
<

sd

d
− 0

u
<

K

d(1 + λ)
.

We obtain the same inequalities as in the case of a short call.

3.4. Direct approach. Once again we start by a straightforward analysis
of the class of feasible trading strategies. Since we shall proceed along similar
lines to the case of long options, we do not go into details. For any two points
(gi, hi) and (gi+1, hi+1) which satisfy (22), we write (Ĝi, Ĥi) to denote the
intersection of the following lines:

x = − (1 + r)y − hi

u(1− µ)
+

gi

u
, x = − (1 + r)y − hi+1

d(1 + λ)
+

gi+1

d
.

Using the same notation as before, we find that

Ĥi =
d̃ λ̃h̃i+1 − ũµ̃h̃i + d̃gi+1 − ũgi

d̃ λ̃− ũµ̃
,

Ĝi =
ũd̃(µ̃λ̃(h̃i − h̃i+1) + λ̃gi − µ̃gi+1)

d̃ λ̃− ũµ̃

and thus

Ĥ1 − Ĥ2 =
γ̃ + δ̃

d̃ λ̃− ũµ̃
, d̃ Ĝ2 − ũĜ1 =

ũd̃ (λ̃γ̃ + µ̃δ̃)

d̃ λ̃− ũµ̃
,
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where γ̃ = ũµ̃(h̃2 − h̃1) − ũg1 + d̃ g2 and δ̃ = d̃ λ̃(h̃2 − h̃3) + ũg2 − d̃ g3 are
non-negative numbers (γ̃ + δ̃ is strictly positive if h1 > h3). It remains to
check that (cf. (22))

ũµ̃

1 + r
<

d̃ Ĝ2 − ũĜ1

Ĥ1 − Ĥ2

<
d̃ λ̃

1 + r

if Ĥ1 − Ĥ2 > 0. Indeed, using (21), we obtain

d̃ Ĝ2 − ũĜ1

Ĥ1 − Ĥ2

≤ ũd̃ µ̃ <
d̃ λ̃

1 + r
,

d̃ Ĝ2 − ũĜ1

Ĥ1 − Ĥ2

≥ ũd̃ λ̃ >
ũµ̃

1 + r
.

We are in a position to formulate the following result, which is a counterpart
of Lemma 3.2.

Lemma 3.3. Consider the points (gi, hi), i = j − 1, j, j + 1, which cor-
respond to the three consecutive levels sj−1 > sj > sj+1 of the stock price
at time T. Suppose that , for i = j − 1, j, the pair of points (gi, hi) and
(gi+1, hi+1) satisfies (22). Then the intersection points (Ĝj−1, Ĥj−1) and
(Ĝj , Ĥj) also satisfy (22).

The proof of the next result relies on arguments similar to those used in
the proof of Proposition 3.1. Therefore we leave the details to the reader.

Proposition 3.2. Suppose that condition (21) is satisfied. If a claim
X = (g(ST ), h(ST )) satisfies condition (TC.4) then the optimal hedging
strategy for the seller of X coincides with the unique trading strategy that
replicates X.

The following corollary provides sufficient conditions for the optimality
of replication for short call and put options, that is, from the perspective of
an option’s buyer.

Corollary 3.2. Suppose that for the unique generic value s of the stock
price at time T − 1 which satisfies su > K > sd, we have su(1 − µ) >
K > sd(1 + λ). If , in addition, condition (21) is satisfied , then the optimal
hedging strategy for the buyer of a call and a put option coincides with the
option’s replicating strategy. The initial portfolio of the replicating strategy
for the short call (put , resp.) option involves shorting (purchasing , resp.)
shares. In both cases a downward (upward , resp.) movement of the stock
price corresponds to a purchase (a sale, resp.) of additional shares of stock.

Remark. If the inequality d(1 + λ) < u(1 − µ) fails to hold, the op-
timal hedging strategy for a buyer does not necessarily coincide with the
replicating strategy.

3.4.1. Martingale approach. We shall now focus on the martingale ap-
proach to the perfect hedging against long positions in European options,
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that is, from the buyer’s perspective. As before, we take T = 1 and we
assume that x̃0 = 0. First consider the buyer’s price of a call option. The
replicating strategy of the short call option involves selling of shares at time
0 so that

α0 = −m0, β0 = c + (1− µ0)m0S0,

where c = ỹ0 and m0 is a non-negative real number. If the stock price
rises, at time 1 we need to sell more shares so that we get the following
relationships:

αu
1 = α0 −mu

1 = g(Su
1 ), βu

1 = β0(1 + r) + (1− µ1)mu
1Su

1 ≥ h(Su
1 ),

for some mu
1 ≥ 0. On the other hand, if the stock price falls, we buy shares

and thus

αd
1 = α0 + ld1 = g(Sd

1 ), βd
1 = β0(1 + r)− (1 + λ1)ld1Sd

1 ≥ h(Sd
1 ),

for some ld1 ≥ 0 in the down-state. For any claim X whose replicating
strategy has such features, we get

πb
0 (X|0)

=
p̂b(h(Su

1 ) + (1− µ1)Su
1 g(Su

1 )) + (1− p̂b)(h(Sd
1 ) + (1 + λ1)Sd

1g(Sd
1 ))

1 + r
,

where

p̂b :=
(1− µ0)(1 + r)S0 − (1 + λ1)Sd

1

(1− µ1)Su
1 − (1 + λ1)Sd

1

=
(1− µ0)(1 + r)− (1 + λ1)d

(1− µ1)u− (1 + λ1)d
.

The pair {p̂b, 1 − p̂b} corresponds to the martingale measure P̂b for the
process Ŝb which equals Ŝb

0 = (1− µ0)S0 at time 0 and satisfies

Ŝb
1 =

{
(1− µ1)(1 + r)−1Su

1 in the up-state,
(1 + λ1)(1 + r)−1Sd

1 in the down-state,

at time 1. In particular, the buyer’s price of a call option satisfies

πb
0 (CT |0) = (1 + r)−1p̂b((1− µ1)uS0 −K) = EP̂b

((1 + r)−1(Ŝb
T −K)+).

It remains to examine the buyer’s price of a put option. We have

α0 = l0, β0 = c− (1 + λ0)l0S0,

for some l0 ≥ 0, and the equations associated with the portfolio’s revision
at time 1 remain the same as above. Hence, the buyer’s price of any claim
X, which has similar features as a put option, is

πb
0 (X|0)

=
p̃b(h(Su

1 ) + (1− µ1)Su
1 g(Su

1 )) + (1− p̃b)(h(Sd
1 ) + (1 + λ1)Sd

1g(Sd
1 ))

1 + r
,
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where

p̃b :=
(1 + λ0)(1 + r)S0 − (1 + λ1)Sd

1

(1− µ1)Su
1 − (1 + λ1)Sd

1

=
(1 + λ0)(1 + r)− (1 + λ1)d

(1− µ1)u− (1 + λ1)d
.

The pair {p̃b, 1 − p̃b} represents the martingale measure, P̃b say, for the
process S̃ which equals S̃b

0 = (1 + λ0)S0 and

S̃b
1 =

{
(1− µ1)(1 + r)−1Su

1 in the up-state,
(1 + λ1)(1 + r)−1Sd

1 in the down-state.

Finally, we have

πb
0 (PT |0) = (1+r)−1(1− p̃b)(K− (1+λ1)dS0) = EP̃b

((1+r)−1(K− S̃b
T )+).

This completes the study of short positions in the one-period case. The
multi-period case is left to the reader.

3.5. Case of small costs. Let us return to the small costs assumption.
Our purpose is to show that the exact replication is an optimal way of
hedging for any contingent claim (long or short), provided that transaction
costs are small enough. For the sake of generality, we no longer assume that
the cost coefficients are constant over time. In the case of time-dependent
cost coefficients, condition (20) is modified as follows.

Assumption (TC.5). The cost coefficients satisfy

(23)
u(1− µt)

1 + r
> 1 + λt−1,

d(1 + λt)
1 + r

< 1− µt−1, ∀t = 1, . . . , T.

We define

Ad =
d(1− µt)

1 + r
, Bd =

d(1 + λt)
1 + r

, Au =
u(1− µt)

1 + r
, Bu =

u(1 + λt)
1 + r

,

so that obviously Ad < Bd, Au < Bu, Ad < Au and Bd < Bu. By combin-
ing these inequalities with (23), we obtain 0 < Ad < Bd < 1 − µt−1 and
Bu > Au > 1 + λt−1. Consequently, the absolute value of the slope of the
piecewise linear boundary of the convex set of feasible post-trading portfolios
at time t may, in principle, take the following values: (Ad, Bu), (Ad, Au, Bu),
(Ad, Bd, Bu), (Ad, Bd, Au, Bu) and (Ad, Au, Bd, Bu) (in ascending order).
Observe that the last case assumes implicitly that Au ≤ Bd. However, using
(23) we get

Au =
u(1− µt)

1 + r
> 1 + λt−1 ≥ 1, Bd =

d(1 + λt)
1 + r

< 1− µt−1 ≤ 1;

it is thus clear that we cannot have Au ≤ Bd. This shows that we need to
analyse only the remaining four cases. It is easily seen that the pre-trading
portfolio is, at any time and at any node of the binomial lattice, a convex
cone with the slopes −(1−µt) and −(1+λt). We conclude that replication is
an optimal hedging strategy for any contingent claim. We are in a position
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to formulate the last result of this paper (let us mention that Proposition
3.3 generalizes Theorem 3.2 in [2]).

Proposition 3.3. Under (TC.5), for any (5) European contingent claim
X which settles at time T the replicating strategy is the optimal perfect hedg-
ing strategy for both the seller and the buyer of X. In particular , πs

0(X) =
ps
0(X) and πb

0 (X) = pb
0(X).

Remark. We could have considered also the case of time-dependent
coefficients u, d and r. Assume, for instance, that (cf. (2)) ξt = St/St−1 ∈
{ut, dt} for every t = 1, . . . , T, where ut and dt satisfy 0 < dt < 1 + rt < ut.
Assumption (TC.5) would have the following form:

(24)
ut(1− µt)

1 + rt
> 1 + λt−1,

dt(1 + λt)
1 + rt

< 1− µt−1, ∀t = 1, . . . , T.

Under assumption (24), the optimality of exact replication of a contingent
claim is still valid.
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