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INFORMATION INEQUALITIES FOR THE MINIMAX RISK

OF SEQUENTIAL ESTIMATORS (WITH APPLICATIONS)

Abstract. Information inequalities for the minimax risk of sequential es-
timators are derived in the case where the loss is measured by the squared
error of estimation plus a linear functional of the number of observations.
The results are applied to construct minimax sequential estimators of: the
failure rate in an exponential model with censored data, the expected pro-
portion of uncensored observations in the proportional hazards model, the
odds ratio in a binomial distribution and the expectation of exponential
type random variables.

1. Introduction. Let X1,X2, . . . be a sequence of independent iden-
tically distributed random vectors (i.i.d. r.v.’s) in R

l each with probability
distribution Pθ with θ ∈ Θ, where Θ is an open interval of reals. Assume
that the family {Pθ : θ ∈ Θ} is dominated by some σ-finite measure µ on
R

l and let pθ(x) denote dPθ/dµ at the point x ∈ R
l.

In this paper we consider minimax estimation of the parameter θs, where
s 6= 0 is a given real number, under squared error loss L with a weight h(θ):

L(τ, θ) = (τ − θs)2h(θ).

We shall investigate estimators TN of θs under a sequential sampling scheme
with the random variable N denoting the number of observations. Let c(θ)
denote the average cost of a single observation. Usually it is assumed that
c(θ) does not depend on θ, but it is more natural to assume that the cost
of observing each Xi is a function of Xi, say ξ(Xi). Then the average cost
of observing the whole sample X1, . . . ,XN , where N is a stopping time, is
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equal to

Eθ

[ N∑

i=1

ξ(Xi)
]
= EθN · Eθξ(X1)

by the Wald lemma. Hence the total risk of the sequential procedure TN is

(1) R(TN , θ) = Eθ[L(TN , θ)] + c(θ)EθN,

where c(θ) = Eθξ(X1).
The main aim of this article is to provide general information inequalities

for the minimax value when the risk of sequential estimators is of the form
(1) and when the parameter space is Θ = (0, θ1) for some 0 < θ1 ≤ ∞ or
Θ = (θ2,∞) for some 0 ≤ θ2 < ∞ (see Theorem 2.1 in Section 2). These
bounds are applicable to a wide range of estimation problems.

First we use the results obtained to estimate the exponential mean life-
time in the model with censored data under the risk defined by (1). There
are several proposals of sequential procedures in the above model. Gardiner
and Susarla (1984) and Gardiner, Susarla, and van Ryzin (1986) proposed
sequential asymptotically risk efficient procedures. Some asymptotic distri-
bution results for the procedures introduced in Gardiner, Susarla and van
Ryzin (1986) can be found in Gardiner and Susarla (1991). Bayesian se-
quential estimation with censored data was investigated in Tahir (1988).
However, very few papers concern minimax estimation from censored data.
In particular, minimax estimation in the exponential failure time model un-
der the presence of a censoring mechanism was considered by Gajek and
Gather (1991) for the case of fixed sample size. They gave a lower bound
on the minimax risk but a minimax estimator was not found. The problem
of minimax sequential estimation in the model considered by Gajek and
Gather (1991) was investigated in Mizera (1996) under some additional re-
strictions on the expected number of observations. One of the motivations
for the present paper is to construct a minimax estimator in the same model
provided that the sample size is randomly chosen and that the risk function
incorporates the cost of observations (see Section 3).

In Section 4 we investigate the problem of estimating the expected pro-
portion of uncensored observations in the proportional hazards model. Re-
call that subject to this model the distribution function G of the censoring
random variable Y satisfies the equation

1−G(y) = [1− F (y)]d for all y,

where F denotes the distribution function of the censored r.v. X and d > 0
is the censoring parameter. The expected proportion of the uncensored
observations, θ, is then equal to 1/(d+1). In Section 4 we propose a simple
sequential estimator of θ and prove its minimaxity by applying the bounds
proven in Section 2.
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In Section 5 we apply Theorem 2.1 to the problem of minimax estimation
of the expectation of a one-parameter exponential type family of probability
distributions. Bayesian sequential estimation in an exponential family was
considered e.g. by Mayer Alvo (1977). Using Bayesian methods Magiera
(1977) investigated minimax estimation with the cost function depending
only on time for an exponential class of processes with continuous time.
He showed that under some additional assumptions the fixed-time plan is
minimax. We consider discrete time exponential processes under the condi-
tion that the cost is some real function possibly depending on an unknown
parameter.

Finally, we consider the problem of estimating the odds ratio θ in a
binomial distribution. In Section 5 we propose a simple sequential estimator
of θ and derive its minimaxity from the information inequality of Theo-
rem 2.1.

2.Lower bounds on the minimax value. LetN be a random variable
defined on the same probability space (Ω,S,Pθ) as the sequence X1,X2,. . .,
where Pθ is the product measure generated by Pθ. Let σ(X1,. . .,Xn) denote
the σ-algebra generated by the finite sequence X1,. . .,Xn. If the r.v. N is
integer-valued and

(i) {ω ∈ Ω : N(ω) ≤ n} ∈ σ(X1, . . . ,Xn) for n = 1, 2, . . . ,

(ii) Pθ({ω ∈ Ω : N(ω) < ∞}) = 1,

then N is called a stopping time (see e.g. Chow, Robbins and Siegmund
(1971)) or a proper stopping time (see Woodroofe (1982)). Let Tn =
Tn(X1, . . . ,Xn) be an estimator of θs, s 6= 0, based on n observations
X1, . . . ,Xn. Having a sequence (Tn, n = 1, 2, . . .) of statistics and the
stopping time N , we construct a sequential estimator TN . Throughout the
paper we assume that the following Cramér–Rao–Wolfowitz inequality holds
(see e.g. Wolfowitz (1947)):

(2) Eθ[TN − θs]2 ≥ b2(θ) +
[sθs−1 + b′(θ)]2

I(θ)EθN
for all θ ∈ Θ,

where b(θ) = EθTN − θs and I(θ) = Varθ
[

∂
∂θ

log pθ(X1)
]
.

Let h(·) be a positive weight function and c(·) be a positive cost function.
Then we have the following

Theorem 2.1. Assume that (2) holds and Θ = (0, θ1) for some 0 < θ1 ≤
∞ (resp. Θ = (θ2,∞) for some 0 ≤ θ2 < ∞).

(i) Assume that 0 < c(θ) ≤ s−2θ2s+2I(θ)h(θ) for all θ ∈ Θ such that

θ < δ, for some δ > 0 (resp. θ > κ, for some κ > 0). If the limits as θ → 0
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(resp. θ → ∞) of h(θ)θ2s and θ−2c(θ)/I(θ) exist and are finite, then

lim sup
θ→0

(θ→∞)

{Eθ[TN − θs]2h(θ) + c(θ)EθN}

≥ lim
θ→0

(θ→∞)

|s|θs−1

√
c(θ)h(θ)

I(θ)

(
2− |s|

θs+1

√
c(θ)

I(θ)h(θ)

)
.

(ii) Assume that c(θ) ≥ s−2θ2s+2I(θ)h(θ) for all θ ∈ Θ such that θ < δ,
for some δ > 0 (resp. θ > κ, for some κ > 0). If the limit as θ → 0 (resp.
θ → ∞) of h(θ)θ2s exists and is finite, then

lim sup
θ→0

(θ→∞)

{Eθ[TN − θs]2h(θ) + c(θ)EθN} ≥ lim
θ→0

(θ→∞)

h(θ)θ2s.

In the proof we shall need the following three lemmas.

Lemma 2.2. For all A,B, z > 0, we have

A

z
+Bz ≥ 2

√
AB.

Lemma 2.3. For all D > 0 and z ∈ R, we have

z2 +D|1 + z| ≥
{
D −D2/4 for 0 < D ≤ 2,
1 for D ≥ 2.

Lemma 2.4 (extended L’Hospital rule). Let x0 ∈ [a, b] and D = (a, b) \
{x0}. Assume that f, g : D → R are differentiable. If g′(x) 6= 0 for every

x ∈ D and

lim
x→x0

f(x) = lim
x→x0

g(x) = 0, +∞ or −∞,

then

lim inf
x→x0

f ′(x)

g′(x)
≤ lim inf

x→x0

f(x)

g(x)
≤ lim sup

x→x0

f(x)

g(x)
≤ lim sup

x→x0

f ′(x)

g′(x)
.

We omit the proofs of Lemmas 2.2 and 2.3 as they are elementary. The
proof of Lemma 2.4 can be found in Gajek (1987).

Proof of Theorem 2.1. (i) The proof is somewhat similar to the proofs
of Theorem 2 in Gajek (1987) and Theorem 2.7 in Gajek (1988). First, we
prove the bound as θ → 0. Observe that the lower bound given in (i) is equal
to 0 if limθ→0 θ

2sh(θ) = 0, so without loss of generality we can assume that
this limit is positive. Applying (2) and Lemma 2.2 we obtain for all θ ∈ Θ,
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(3) Eθ[TN − θs]2h(θ) + c(θ)EθN

≥
[(

b(θ)

θs

)2

+
s2
(
1 + b′(θ)

sθs−1

)2

θ2I(θ)EθN

]
θ2sh(θ) + c(θ)EθN

≥
[(

b′(θ)

sθs−1

)2

+
2|s|
θs+1

√
c(θ)

I(θ)h(θ)

∣∣∣∣1 +
b′(θ)

sθs−1

∣∣∣∣
]
θ2sh(θ)

+

[(
b(θ)

θs

)2

−
(

b′(θ)

sθs−1

)2]
θ2sh(θ).

Since for some δ > 0 we have 0 < c(θ) ≤ s−2θ2s+2I(θ)h(θ) for all θ < δ,
therefore

0 <
2|s|
θs+1

√
c(θ)

I(θ)h(θ)
≤ 2 for all θ < δ,

and from Lemma 2.3 and (3) we have

(4) Eθ[TN − θs]2h(θ) + c(θ)EθN

≥ |s|θs−1

√
c(θ)h(θ)

I(θ)

(
2− |s|

θs+1

√
c(θ)

I(θ)h(θ)

)

+

[(
b(θ)

θs

)2

−
(

b′(θ)

sθs−1

)2]
θ2sh(θ) for all θ < δ.

Observe that (i) holds if the left hand side of (3) is unbounded on each inter-
val (0, δ1). So assume the opposite. Then the condition limθ→0 θ

2sh(θ) < ∞
and the first inequality in (3) imply together that limθ→0 b(θ) = 0. In order
to prove (i) it is enough to show that

(5) lim sup
θ→0

[(
b(θ)

θs

)2

−
(

b′(θ)

sθs−1

)2]
≥ 0

and next to combine it with (4). Suppose that (5) is not satisfied. Then, for
some ε > 0, (b(θ)/θs)2 − (b′(θ)/(sθs−1))2 < 0 for θ < ε. Hence b′(θ) 6= 0 for
θ < ε and by Theorem 5.12 of Rudin (1976), either b′(θ) > 0 for all θ < ε
or the reverse inequality holds on (0, ε). In the first case we have for s > 0
and θ ∈ (0, ε),

(6) − b′(θ)

sθs−1
<

b(θ)

θs
<

b′(θ)

sθs−1
.

Since
d

dθ

[
b(θ)

θs

]
= sθ−1

[
b′(θ)

sθs−1
− b(θ)

θs

]
,

from (6) it follows that b(θ)/θs is increasing on (0, ε) and so the limit of
b(θ)/θs exists as θ → 0. Hence, from Lemma 2.4 and (6), we obtain
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lim inf
θ→0

b′(θ)

sθs−1
= lim inf

θ→0

b(θ)

θs
= lim sup

θ→0

b(θ)

θs
≤ lim sup

θ→0

b′(θ)

sθs−1
.

When s < 0 the opposite inequalities in (6) hold but b(θ)/θs is still increasing
on (0, ε). Hence the limit of b(θ)/θs exists and b(θ) → ∞ as θ → 0, and by
Lemma 2.4,

lim inf
θ→0

b′(θ)

sθs−1
≤ lim inf

θ→0

b(θ)

θs
= lim sup

θ→0

b(θ)

θs
= lim sup

θ→0

b′(θ)

sθs−1
.

In each case if limθ→0 b(θ)/θ
s is finite, then (5) is satisfied, a contradiction;

if not, then (i) follows directly from (3). The case b′(θ) < 0 for θ ∈ (0, ε)
can be treated in the same way. The proof of the theorem for θ → ∞ is a
bit more complex though quite similar.

Theorem 2.1 shows that the minimax risk of each estimator which sat-
isfies inequality (2) depends neither on the estimator nor on the stopping
time. Now consider the scale family of Lebesgue densities

(7) F = {fθ : fθ(x) = (1/θ)f1(x/θ), x ≥ 0, θ ∈ Θ},
where f1 is a given Lebesgue density. Assume that f1 is differentiable. Let
I(θ) denote the Fisher information of a single observation X, which has
Lebesgue density fθ ∈ F . It is easy to show that

(8) I(θ) = θ−2A1,

where

(9) A1 =

∞\
0

[
1 +

uf ′

1(u)

f1(u)

]2
f1(u) du.

Let X1,X2, . . . be i.i.d. r.v.’s each with Lebesgue density fθ, where
fθ ∈ F . Let V denote the minimax value in estimating θs, s 6= 0, under the
risk given by (1) and the weight function h(θ) = θ−2s, i.e.

V = inf
TN

sup
θ∈Θ

{Eθ[TN − θs]2θ−2s + c(θ)EθN}.

Then the following result holds.

Proposition 2.5. Assume that Θ = (0, θ1) for some 0 < θ1 ≤ ∞ (resp.
Θ = (θ2,∞) for some 0 ≤ θ2 < ∞). Let A1 be defined by (9).

(i) If 0 < c(θ) ≤ s−2A1 for all θ ∈ Θ such that θ < δ, for some δ > 0
(resp. θ > κ, for some κ > 0), then

V ≥ lim
θ→0

(θ→∞)

|s|
√

c(θ)

A1

(
2− |s|

√
c(θ)

A1

)

provided that the right-hand side exists.
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(ii) If c(θ) ≥ s−2A1 for all θ ∈ Θ such that θ < δ, for some δ > 0 (resp.
θ > κ, for some κ > 0), then V ≥ 1.

P r o o f. The result follows from Theorem 2.1 for h(θ) = θ−2s and I(θ)
defined by (8).

Proposition 2.5(ii) implies that if the cost of collecting observations is
too large then trivial estimators may be both minimax and admissible. To
be more precise, define T0 to be a given constant Cs ∈ R and assume that
c(θ) ≥ s−2A1. Then the lower bound on V is equal to 1 provided that
EθN > 0. If EθN = 0 for some θ ∈ Θ, then TN = T0 a.s. [Pθ]. Moreover,
if s > 0 and Θ = [θ2,∞), where 0 < θ2 < ∞, then

inf
C∈R

sup
θ∈Θ

R(T0, θ) = 1.

If s < 0 and Θ = (0, θ1] for some θ1 > 0, then the same holds. So V ≥ 1 no
matter what EθN is, provided Θ is a properly truncated parameter space.
On the other hand, the estimator TN ≡ Cs makes the supremum of the risk
equal 1, for every C ∈ [21/sθ1, θ1] when Θ = (0, θ1] and s < 0. Hence it
is a minimax (and admissible) estimator of θs in this case. If s > 0 and
Θ = [θ2,∞) for some θ2 > 0 the estimator TN ≡ Cs with C ∈ [θ2, 2

1/sθ2]
is minimax and admissible (to prove admissibility, it is sufficient to notice
that TN = Cs is the unique locally optimal estimator at the point θ = C).

3. Application to censored data from an exponential distribu-
tion. Assume now that each random variable X1,X2, . . . has an exponential
distribution with Lebesgue density

fθ(x) = (1/θ) exp(−x/θ), x ≥ 0, θ ∈ Θ,

whereΘ = (0, θ1) for some 0 < θ1 ≤ ∞ or Θ = (θ2,∞) for some 0 ≤ θ2 < ∞.
Assume that the data consist of the sequence (Z1,∆1), (Z2,∆2), . . . defined
by

Zi = min(Xi, y0), ∆i =

{
1 for Xi ≤ y0,
0 for Xi > y0,

i = 1, 2, . . . ,

where y0 > 0 is a given censoring time. The average cost of each observation
is denoted by c(θ). Let a random variable Nr, denoting the number of
observations, be described in the following way:

Nr = min
{
m :

m∑

i=1

∆i ≥ r
}

for r = 1, 2, . . . ,

where r is a given integer. Define

p := P (∆ = 1) = P (X ≤ y0) = 1− exp(−y0/θ).
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Theorem 3.1. Assume that Θ = (0, θ1) for some 0 < θ1 ≤ ∞ and

supθ∈Θ[c(θ)/p] = limθ→0[c(θ)/p] = 1/(k+1)2, where k is a positive integer.

The estimator θ̃Nk
defined by

θ̃Nk
=

1

k + 1

[ k∑

i=1

Xi,Nk
+ (Nk − k)y0

]
,

where Xi,Nl
is the ith order statistic from X1, . . . ,XNl

, is a minimax esti-

mator of θ ∈ Θ under the loss weighted by θ−2.

P r o o f. Observe that

Pθ(Nk = n) =

(
n− 1

k − 1

)
pk(1− p)n−k, n = k, k + 1, . . .

It can be shown that, under the above conditions, the order statistics
X1,Nk

, . . . ,Xk,Nk
have a joint conditional density given Nk = n, which is

equal to the joint density of the order statistics from a random sample con-
sisting of k i.i.d. observations from a truncated distribution with density

(10) h(u) = (θp)−1 exp(−u/θ), 0 < u ≤ y0.

Note that

E θ̃Nk
= E[E(θ̃Nk

| Nk)] = E

[
1

k + 1
E
( k∑

i=1

Xi,Nk
+ (Nk − k)y0 | Nk

)]

= E

[
k

k + 1
EU +

1

k + 1
(Nk − k)y0

]
,

where U has density (10). Since EU = θ − y0q/p, ENk = k/p, where
p = 1− exp(−y0/θ), q = 1− p, therefore

(11) E θ̃Nk
=

k

k + 1
θ.

Further, observe that

(12) E(θ̃Nk
− θ)2 = Var θ̃Nk

+ (E θ̃Nk
− θ)2,

where Var θ̃Nk
= E[Var(θ̃Nk

| Nk)]+Var[E(θ̃Nk
| Nk)]. As E[Var(θ̃Nk

| Nk)]

= (k/(k + 1)2)VarU = (k/(k + 1)2)(θ2 − y20q/p
2) and Var[E(θ̃Nk

| Nk)]
= y20k(1− p)/[p2(k + 1)2], therefore

(13) Var θ̃Nk
=

k

(k + 1)2
θ2.

From (11)–(13) we obtain E(θ̃Nk
− θ)2 = θ2/(k + 1). Hence and from the

fact that supθ∈Θ[c(θ)/p] = 1/(k + 1)2 we have

(14) sup
θ∈Θ

[E(θ̃Nk
− θ)2θ−2 + c(θ)ENk] =

2k + 1

(k + 1)2
.
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Since the Fisher information I1(θ) of a single observation (Z,∆) is equal
to I1(θ) = θ−2p and limθ→0[c(θ)/p] = 1/(k + 1)2, from Theorem 2.1(i) for
θ → 0 we have the following inequality for a sequential estimator θ∗M of θ
with stopping time M :

(15) sup
θ∈Θ

[Eθ(θ
∗

M − θ)2θ−2 + c(θ)EM ] ≥ 2k + 1

(k + 1)2
.

Now (14) and (15) imply the assertion.

Theorem 3.2. Assume that Θ = (θ2,∞) for some 0 ≤ θ2 < ∞ and

supθ∈Θ[c(θ)/p] = limθ→∞[c(θ)/p] = 1/(k+1)2 , where k is a positive integer.

The estimator θ̃Nk
defined in Theorem 3.1 is a minimax estimator of θ ∈ Θ.

P r o o f. As in Theorem 3.1, from Theorem 2.1(i) for θ → ∞ we obtain
for a sequential estimator θ̌M of θ,

sup
θ∈Θ

[Eθ(θ̌M − θ)2θ−2 + c(θ)EθM ] ≥ 2k + 1

(k + 1)2
.

Now the result follows from (14).

Remark 3.3. The assumption that c(θ)/p = const. seems to be quite
natural in life time experiments. Indeed, suppose that the items on test are
observed only for a certain period of time y0 and classified afterwards. If
the life time X is greater than y0, the item is classified for sale, otherwise
the loss is c. Then c(θ) = cp, where p = P (X ≤ y0).

4. Minimax estimation in the proportional hazards model. Let
X1,X2, . . . be i.i.d. r.v.’s with absolutely continuous distribution function F .
Assume that X1,X2, . . . are censored on the right by i.i.d. r.v.’s Y1, Y2, . . .
which have a common distribution function G, so that the observations
available are the pairs (Zi,∆i), where

Zi = min(Xi, Yi), ∆i =

{
1, Xi ≤ Yi,
0, Xi > Yi,

i = 1, 2, . . .

Assume that the sequencesX1,X2, . . . and Y1, Y2, . . . are independent. Write
P (Z > t) = 1−H(t), t ∈ R.

The proportional hazards model is a parametric-nonparametric model in
which there exists a positive constant d, the so-called censoring parameter ,
such that

1−G(x) = (1− F (x))d, x ∈ R.

In this model, the expected proportion p = P (δ = 1) of uncensored obser-
vations satisfies the equation p = (1 + d)−1 and

1− F (x) = (1−H(x))p, x ∈ R.
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Note that the special case d = 0 (or p = 1) may be identified with the lack
of censoring.

This model was considered by Koziol and Green (1976), Csörgő (1988),
Csörgő and Mielniczuk (1988) and others (for a more complete list of refer-
ences and a survey of results, see Csörgő (1988)). In this section we consider
minimax estimation of p provided that the form of F is known. Let r(x) be
the hazard function of X, i.e.

r(x) = f(x)/[1− F (x)], x ∈ S,

where f is the density of X and S = {x ∈ R : 0 < f(x)}. Let T (x) =
− log(1− F (x)), x ∈ S, be the cumulative hazard function of X. Obviously
F (x) = 1− exp(−T (x)) and f(x) = r(x) exp(−T (x)) a.e. on S.

The aim of this section is to find a minimax sequential estimator of p
under the normalized square error loss function

L(p̃, p) = (p̃− p)2/p2,

with constant cost function, c(p) = c0, per observation. A natural estimator
of p, and to the best of our knowledge the only proposal in the literature, is
based on the statistic

(16) p̂n =
1

n

n∑

i=1

∆i.

Clearly, p̂n is unbiased and Var p̂n = p(1− p)/n.

However, using the statistics (16) does not lead to constructing a mini-
max sequential estimator. In fact, such an estimator is based on the statistic

p∗n =
1

n+ 1

n∑

i=1

T (Zi)

and, what is quite surprising, does not use any information from the se-
quence (∆1,∆2, . . .)!

Theorem 4.1. Assume that p ∈ (0, p) with 0 < p ≤ 1. Let 0 < c0 < 1
and define the stopping time N0 = 1/

√
c0 − 1 with probability 1. Then the

estimator

p∗N0
=

1

N0 + 1

N0∑

i=1

T (Zi)

is a minimax sequential estimator in the proportional hazards model consid-

ered above.

P r o o f. It is well known that ∆ and Z are independent in the propor-
tional hazards model and hence it is easy to show that the Fisher information
I(Z1,∆1)(p) of a single observation (Z1,∆1) is equal to 1/[p2(1− p)].



Information inequalities 95

Further, applying Theorem 2.1(i) with h(p) = p−2, c(p) = c0, 0 < c0 ≤ 1
and p → 0, we get the following lower bound for the minimax value in the
problem of estimating p by a sequential estimator p̃M :

(17) sup
p∈(0,1)

{E(p̃M − p)2p−2 + c0EM} ≥ 2
√
c0 − c0.

Since Z1 has distribution function H(t) = 1− [1− F (t)]1/p, therefore

P (T (Z1) ≤ t) = P (− log[1− F (Z1)] ≤ t) = P (1− F (Z1) ≥ e−t)

= P ([1− F (Z1)]
1/p ≥ e−t/p) = P (1−H(Z1) ≥ e−t/p)

= P (H(Z1) ≤ 1− e−t/p) = 1− e−t/p, t > 0,

because H(Z1) is uniformly distributed. Hence T (Z1) is exponentially dis-
tributed with scale parameter p, so

∑n
i=1 T (Zi) has a gamma distribution.

Therefore

E

[
1

n+ 1

n∑

i=1

T (Zi)

]
=

n

n+ 1
p and Var

[
1

n+ 1

n∑

i=1

T (Zi)

]
=

n

(n+ 1)2
p2.

Since N0 = n0 with probability 1 and p∗n = (n+1)−1
∑n

i=1 T (Zi), therefore

Ep∗N0
=

n0

n0 + 1
p, Var p∗N0

=
n0

(n0 + 1)2
p2 and E(p∗N0

−p)2p−2 =
1

n0 + 1
.

Hence

(18) R(p∗N0
, p) = E(p∗N0

− p)2p−2 + c0EN0 =
1

n0 + 1
+ c0n0.

From (17), (18) and the fact that n0 = 1/
√
c0 − 1, 0 < c0 ≤ 1, we obtain

the assertion.

5. Some other applications. In this section we show that Theorem 2.1
is applicable to a variety of problems. First of all we get immediately a result
analogous to that of Magiera (1977), who considered minimax sequential
estimation of continuous time exponential type stochastic processes. What
is more, our method proves minimaxity of the estimator (20) below also in
the case β = 0, which was not covered by Magiera (1977). It is also worth
noting that our result concerns discrete time processes and that the cost
function c may depend on θ.

The second example of applications of Theorem 2.1 concerns estimation
of the odds ratio and the inverse of the success probability in a sequence of
Bernoulli trials. It should be stressed that the result does not follow from
the first part of this section.

Minimax estimation for an exponential type family of distributions. Con-
sider a one-parameter exponential family of probability distributions Pθ,
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θ ∈ Θ ⊂ (0,∞), which are absolutely continuous with respect to a σ-finite
measure µ on R, with Radon–Nikodym derivatives

(19)
dPθ(x)

dµ(x)
≡ pθ(x) = w(x) exp[η(θ)t(x) + a(θ)], x ∈ R,

where t(x), w(x) denote measurable functions and a(θ), η(θ) are some real
functions defined on Θ.

Let X be a random variable with Radon–Nikodym density pθ(x) defined
by (19) and let I(θ) denote the Fisher information of X. Reparametriz-
ing family (19) if necessary, we may also assume that θ = Et(X). Then
I(θ) = 1/Var t(X) (see e.g. Lehmann (1983), Theorem 6.2). Assume that
X,X1,X2, . . . are i.i.d. random variables. We are interested in minimax
estimation of the parameter θ = Et(X) under the risk defined by (1) with
weight function h(θ) = I(θ). For the time being assume that c(θ) ≡ c, where
c ∈ R+.

Consider the following sequential estimator of θ:

(20) θ̌N,β =
N∑

i=1

t(Xi)/(N + β)

where the r.v. N is a stopping time and β ∈ R. If N is equal, with
probability 1, to a constant n0, the pair (N, θ̌N,β) is called a fixed-time plan

(see e.g. Magiera (1977)). Then we have

E(θ̌N,β − θ)2 = Var θ̌N,β + (E θ̌N,β − θ)2

=
1

(n0 + β)2
n0Var t(X) +

(
n0

n0 + β
θ − θ

)2

=
n0 + β2θ2I(θ)

(n0 + β)2I(θ)
.

Hence

(21) R(θ̌N,β, N) = E(θ̌N,β − θ)2I(θ) + cEN =
n0 + β2θ2I(θ)

(n0 + β)2
+ cn0.

Applying a simple extension of Theorem 2.1(i) and (21) it is easy to check
that under the above assumptions the following result holds:

Proposition 5.1. Assume that Θ = (0, θ1) for some 0 < θ1 ≤ ∞ (resp.
Θ = (θ2,∞) for some 0 ≤ θ2 < ∞).

(i) Assume that limθ→0 θ
2I(θ) = ∞ (resp. limθ→∞ θ2I(θ) = ∞) and

define the stopping time N1 to be equal to 1/
√
c with probability 1. Then

θ̌N1,0, defined by (20), is a minimax estimator of θ ∈ Θ.

(ii) Assume that supθ∈Θ θ2I(θ) = limθ→0 θ
2I(θ) = 1/β (resp.

supθ∈Θ θ2I(θ) = limθ→∞ θ2I(θ) = 1/β) for some β > 0. Let c be such
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that 0 < c < 1/β2 and define the stopping time N2 to be equal to 1/
√
c− β

with probability 1. Then θ̌N2,β is a minimax estimator of θ ∈ Θ.

Similar results to Proposition 5.1 can be easily deduced from Theorem
2.1 in the general case when the cost function c depends on the unknown
parameter θ. For example, we have

Remark 5.2. Assume that Θ = (0, θ1) for some 0 < θ1 ≤ ∞ (resp. Θ =
(θ2,∞) for some 0 ≤ θ2 < ∞) and limθ→0 θ

2I(θ) = ∞ (resp. limθ→∞ θ2I(θ)
= ∞). Let c(θ) > 0 be such that supθ∈Θ c(θ) = limθ→0 c(θ) = c (resp.
supθ∈Θ c(θ) = limθ→∞ c(θ) = c) for some c > 0 and consider the stopping
time N3 = 1/

√
c with probability 1. Then θ̌N3,0 is a minimax estimator of

θ ∈ Θ.

Now we present some examples of probability distributions that satisfy
the conditions of Proposition 5.1.

Examples. (a) Consider the r.v. X with gamma distribution of density

fθ(x) =
1

Γ (α)θα
xα−1e−x/θ

with respect to the Lebesgue measure, where x > 0, α is a given positive
real and θ ∈ Θ. The parameter θ is estimated under the risk (1) with weight
function h(θ) = I(θ). Suppose that Θ = (0, θ1) for some 0 < θ1 ≤ ∞, or
Θ = (θ2,∞) for 0 ≤ θ2 < ∞. According to the notation introduced earlier
t(X) = X/α, Et(X) = θ, I(θ) = α/θ2. Then

sup
θ∈Θ

θ2I(θ) = α and lim
θ→0 (θ→∞)

θ2I(θ) = α

and the conditions of Proposition 5.1(ii) are satisfied for β = 1/α.

(b) Suppose that the r.v. X has probability function

Pθ(X = x) =
e−θθx

x!
for x = 0, 1, 2, . . . , θ ∈ Θ

where Θ = (θ2,∞) for some 0 ≤ θ2 < ∞. Then t(X) = X, EX = θ,
I(θ) = 1/θ and limθ→∞ θ2I(θ) = ∞. By Proposition 5.1(i) the estimator
θ̌N1,0 is a minimax estimator of θ ∈ Θ.

(c) Suppose that the r.v. X is normally distributed with Lebesgue den-
sity

fθ(x) =
1√
2πθ

exp[−x2/(2θ)]

for x ∈ R, θ ∈ Θ, where Θ = (0, θ1) for some 0 < θ1 ≤ ∞ or Θ = (θ2,∞)
for some 0 ≤ θ2 ≤ ∞. Let the parameter θ be estimated under the risk (1)
with the weight function h(θ) = I(θ). We obtain t(X) = X2, Et(X) = θ,
I(θ) = 1/(2θ2) and Proposition 5.1(ii) holds for β = 2.
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Minimax estimation of the inverse of the success probability in a se-

quence of Bernoulli trials. Let X1,X2, . . . be a sequence of i.i.d. r.v.’s with
P (Xi = 1) = p1, P (Xi = 0) = q1 = 1 − p1, where p1 ∈ (0, p1) for some
0 < p1 < 1, i = 1, 2, . . . The minimax estimation of the function θ = p−1

1 ,
θ ∈ (1/p1,∞), is considered under the normalized squared error loss of es-
timation with weight h(θ) = θ−2. Assume also that the risk incorporates
some average cost K(θ) of collecting observations. Suppose that the cost
ξ(Xi) of the observation Xi is defined by

ξ(Xi) =

{
0 for Xi = 0,
c1 for Xi = 1, i = 1, 2, . . . ,

with fixed constant c1 ∈ (0, 1). Observe that K(θ) = E[
∑M

i=1 ξ(Xi)], where
M denotes a stopping rule. By the Wald lemma, K(θ) = c1EM/θ and the

total risk of an estimator θ̂M of θ is

R(θ̂M , θ) =
E(θ̂M − θ)2

θ2
+

c1EM

θ
.

Consider the stopping time

Nr = min
{
m :

m∑

i=1

Xi = r
}

for r = 1, 2, . . . ,

with fixed r (see also Section 3) and the estimator

(22) θ∗Nr
=

Nr

r + 1
.

It is easy to check that

R(θ∗Nr
, θ) =

r(1− θ−1) + 1

(r + 1)2
+ c1r

and

(23) sup
θ>1/p

1

R(θ∗Nr
, θ) =

1

r + 1
+ c1r.

Since the Fisher information I∗(θ) is 1/[θ2(θ − 1)], from Theorem 2.1(i)
for θ → ∞ we have

sup
θ>1/p

1

R(θ̂M , θ) ≥ √
c1(2−

√
c1).

Now (23) shows that for r = (1−√
c1)/

√
c1, θ

∗

Nr
given by (22) is a minimax

estimator of θ = p−1
1 , whenever θ ∈ (1/p1,∞).

Minimax estimation of the odds ratio. Now consider the problem of
estimating the odds ratio θ = p1/q1 from a sequence X1,X2, . . . of i.i.d.
r.v.’s with P (Xi = 1) = p1 and P (Xi = 0) = q1 = 1− p1, where q1 ∈ (0, q)
for some 0 < q < 1. Since θ = q−1

1 − 1 and the r.v.’s X ′

i = 1 − Xi are
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two-point distributed with success probability q1 ≡ P (X ′

i = 1), estimating
θ is formally equivalent to estimating the inverse of the success probability
q−1
1 (shifted by a constant) from the sequence X ′

1,X
′

2, . . . From the previous
section it follows that the statistic

θ∗N ′

r

=
N ′

r

r + 1
− 1,

where the stopping time is

N ′

r = min
{
m :

m∑

i=1

(1−Xi) = r
}
,

is a minimax estimator of the odds ratio θ = p1/q1 under the square error
loss with weight function h(θ) = q21 = (1 + θ)−2 provided that the cost
function is c(θ) = c1q1 = c1(1 + θ)−1 and r = (1 −√

c1)/
√
c1. The average

cost of observation, c(θ), is equal to c1q1 whenever the cost ξ(Xi) of the
observation Xi satisfies

ξ(Xi) =

{
c1 for Xi = 0,
0 otherwise,

for i = 1, 2, . . .
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