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POINCARE-MELNIKOV THEORY
FOR n-DIMENSIONAL DIFFEOMORPHISMS

Abstract. We consider perturbations of n-dimensional maps having
homo-heteroclinic connections of compact normally hyperbolic invariant
manifolds. We justify the applicability of the Poincaré-Melnikov method
by following a geometric approach. Several examples are included.

1. Introduction. The Poincaré-Melnikov method is a well known tool
for evaluating the distance between splitted invariant manifolds of fixed ob-
jects (such as fixed points, periodic orbits, invariant tori, ...) when one
perturbs a system of differential equations having homo-heteroclinic con-
nections between such objects ([15], [14], [2], [4], [11], [17]). Furthermore,
it is also an important tool for determining the transversality at intersec-
tion points of invariant manifolds. The method has been developed for
two-dimensional maps ([7], [9]) and applied to several examples ([10], [13]).
Recently Delshams and Ramirez-Ros [5] have given a systematic approach
for evaluating the Melnikov function (an infinite sum, in this context) under
some conditions of meromorphy of the functions involved.

A generalization to invariant manifolds associated with fixed points of
n-dimensional maps is given in [16] and [3]. The case of exact symplectic
maps is considered in [6].

Here we consider the case of perturbations of n-dimensional maps hav-
ing homo-heteroclinic connections of compact normally hyperbolic invariant
manifolds. We justify the applicability of the method by following a geo-
metric approach.
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Since we do not put restrictions on the dimensions of the invariant man-
ifolds we have to consider families of maps with several parameters. We
discuss the locus of homo-heteroclinic intersections in the space of parame-
ters.

In Section 2 we describe the setup, in Section 3 we prove the main
result (Theorem 3.5). Two particular cases, of unperturbed maps which are
interpolated by hamiltonian flows, are considered in Section 4. In Section
5 we present some examples for which we prove or disprove the existence
of “clinic” intersections. Some technical details concerning the analytical
computation of the Melnikov function are deferred to the Appendix.

2. Description of the setting. We consider families of maps
F.,:R"D>U—=R"

of class C", r > 3, depending C" on two parameters € and p with e € I C R,
0el,and p €V CR™. Also we shall use the notation

Fo(2) = F(o,2, ).
We assume that F' has the form

F(z,e,pn) = Fo(x) +eG(x, e, 1)
with Fy satisfying the following hypotheses:

H1. Fy has two C" normally hyperbolic invariant manifolds P*, P2 not
necessarily different, which are compact and connected. In particu-
lar, P!, P? may be hyperbolic fixed points.

H2. The stable invariant manifold of P!, say W, and the unstable in-
variant manifold of P2, say W, are d-dimensional.

H3. There exists a d-dimensional heteroclinic manifold joining P! to P2,
(homoclinic if P! = P2; in this case n must be even and d = n/2).

We are going to define the Melnikov function in this setting. First we

recall a result on existence and persistence of normally hyperbolic invariant
manifolds ([8], [12]).

THEOREM 2.1. Let F : R® D U — U be a C" diffeomorphism onto its
image, r > 1. Let M be a C" compact, connected, invariant manifold of F'.
Let M be r-normally hyperbolic, that is,

1. There exists a continuous decomposition TR‘”M =TM® N°*d N™.

2. TM & N®" are F-invariant.

3. Let 15" be the projections on N®% respectively. There exists a con-
stant A\, 0 < A < 1, such that for allm e M, and 0 < k <r,

IDE= (m)rar || 11 DF(F~ (m)) || < A
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and
IDE(m)par||* [T DE=H(E(m))|| < A
Then M has C" stable and unstable manifolds. Furthermore, there ex-
ists a C'' neighbourhood of F, say U, such that all F' € U have an invariant
manifold M’', C"-diffeomorphic to M, and M’ has stable and unstable in-
variant manifolds. Furthermore, these objects depend in a differentiable way
on parameters.

3. Construction of the Melnikov vector function. Let Iy C I and
Vo C V be open sets such that 0 € Iy and, if (e,p) € Iy x Vo, then F. ,
has normally hyperbolic invariant manifolds F; , ! 3 . depending C" on €, p
and such that P1 = P!, P2 = P2, Let W2, and W, be the stable and
unstable manlfolds of P17 " and Pg . Tespectively.

We consider a point z € (W§ — P1) N (W§ — P?) and a neighbourhood
D of it in (W§ — PY)n (W — P2) such that D N PY2 = .

We decompose
(3.1) IR, =TD®Q,

with @, orthogonal to T, D for all x € D. Because of the results on the
dependence of the invariant manifolds on parameters we can assume that
W2 and x + @, are transversal at their intersection point (taking smaller
Iy and Vj if necessary). Then there exist

2 D xIypx Vo —=U
defined by
B @, 1) = WER O (0 4+ Qu) N T,
We write 227 (z) = 2%"(z, €, ). Let v1(),...,vn—a(x) be a basis of Q,
depending C"~! on z € D.

Taking (z,¢, 1) € D x Iy x Vp, we want to measure the distance between
(z) and 27 (7). We define

Ai(z,e,p) = (27 () — 2%, (2),vi(x)), i=1,...,n—d,
Az e, 1) = (A (wf:u) s Apa(z,e, 1)),

( ) D A(.%' € ,U')’a 0-
The vector M is called the Melnikov function associated with the basis

u

Le,

Vly...,Un_q. It is of class C"~2. For z € D we define
= Fj(2),
s,u k _ .suk _ Fk s,u
xs,,u (.%') =z (.%', €, ,U,) - s,p(x (1’, €, M))7

0
gs,u k(x) — s k(x,e,,u) ,
» Oe I
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for k € Z, and
wi(x) = 6" ().
Notice that

(3.2) Mi(x, 1) = (§.(x) = (), vi()).

LEMMA 3.1. For any i € {1,...,n—d} and l; >0, l > 0 we have

h—1

(3.3) Mi(z,p) = Y (DFy(z~")G(z™"71,0, 1), vi(x))
k=—I2

+(DFg (@~ ")gn ~1 (), vi(@))
— (DFO_l2 (xlz)fz b2 (), v;(x)).
Proof. We have
w M = Fatl e ) = Folath ) + 2Glath b e, ).
Taking the derivative with respect to € we get

d d
%x?fékJﬂ DF(suk)£xsuk+G( izkﬂf:u')
d G
+€DIG($Z’,Zk,€,M)d€ suk+ E( sz’gnu’)’

and evaluating it at € = 0 gives
(3.4) & (@) = DRy ()€™ *(x) + G (2,0, p).
Now we shall prove that for all [ > 0,

(85) &%) =DR e +ZDF0 )G, 0, ).

Indeed, for I =1 it is (3.4) evaluated at k = —1. If it is true for [, using
(3.4) evaluated at k = -1 —1,

€0, p) = DEY (™) (DFy(a"" g =1 (@) + Gla ™', 0,)

+ Z DEF(z=®)G(=7*1,0,p)

:DFé—l-l(xfl 1 u —I— 1 +ZDF0 fk 7k71’07lu’)

which proves (3.5).
From (3.4) we have

i () = (DFy () 7H g 7 (@) = G(2*,0, 1)
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and equivalently
(3.6) &1 F(w) = DEy "t (6 (@) — G2, 0, ).

In the same way as before we check that for all [ > 0,

37 & %)= 2 ZDF0 “FYG(zF 0, ).

k=—1
Subtracting (3.7) with [ = I from (3.5) with [ = [; and taking the scalar
product with v;(x), we obtain (3.3). m

The next two lemmas will give us sufficient control on the last two terms
of formula (3.3).

LEMMA 3.2. Let p be fized, and v : I — R™ be a C' curve such that
v(e) € WE,, for alle € 1. Let v (e) = F, (v(€)). Suppose that there exists
an open subset U of W§, containing P!, such that ¥, (0) € U for all m > 0,
and there exists a continuous decomposztwn TR‘” =TU & N. Let II be
the projection on N. Then II~},(0) is bounded by a constant independent of
m > 0.

Proof. We enlarge all objects by adding the parameter €. Precisely, we
introduce

ﬁs(g) = (Ps(g)’g), ﬁ(x’gnu) = (F(x’gnu)’g)’ 7m(€) = (%ﬂ(e)’g)a
W2, = W2, x (e}, We =W, = W§ x {0},

U=Ux{oy, wi=Jwz,

From the definitions we have the decomposition

JREJ:Tﬁ@N

with N, = N, @ ((0,...,0,1)). Let go = (qo0,0) € U with gy being an
arbitrary point in U. We define Egio =qo+ N(;O. Since Egio and /VI7§ intersect
transversally at qo, if € is small enough there exists a C"~! curve ¢(¢) =
(g(e),¢e) such that ¢(0) = gp, and /VIZSM and Z;]vo intersect transversally at
q(e).
| )The tangent vector (¢'(0),1) to the curve ¢(¢) at ¢ = 0 depends contin-
uously on gg € U, and hence it has bounded norm in any compact subset of
Ucwg.
On the other hand, the vectors of T, WS have the form (w,0) € R™x {0}.
Let m > 0. We take v,,(0) as go. The tangent vector of the curve 7, at

g0 is (7,,,(0),1).
Since

T Wy = Ta, W5 @ ((¢'(0), 1))
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there exist a unique (w,,0) € TgIvO/WV/S and a unique a € R such that
(7/,(0),1) = a(q’(0),1) + (ws,,0). Then we have a = 1 and hence 7/, (0) =
¢'(0) + wy,. From w, € T,W§ we have 11+, (0) = II¢'(0).

Since qo = Y, (0) tends to P* as m — oo and P! is compact it fol-
lows that gy belongs to a compact subset of W and II+,,(0) is bounded
independently of m > 0. m

LEMMA 3.3. Let (gr)r>0 be a bounded sequence of vectors of R™. Then,
given v such that 0 < A < v < 1, there exists ¢ > 0 such that for all x € D
and k > 0,

[(DEy " (@*) gk, vi(x))] < ev®.
Proof. Let
N"P! = {(z,v) : x € P!, v € N, P, |jv]| <7}
be a tubular neighbourhood of P! with 1 > 0 small enough so that the map
Y : NTP* 5 R™  (2,v) = 2+,

is a diffeomorphism onto its image. This is possible because P! is compact.
Let m : N"P! — P be its first projection. Let 2 = N7P1 nW§.
Furthermore, we can assume that D and {2y are small enough so that
there exists ko such that FJ (D) N 2y = 0 for 0 < j < ko and FF(D) C £
for k > k.
We can assume that D is small enough so that Fo(D) N D = (). Let

D=0U ( U Fé“(D)).
0<k<ko
We consider the decomposition

TR‘”D =TDe® N

defined by
Npi@y = DF3(2)Qz, 0 <k <ko, z€D,
N, =T, WHPY), z €,
where @ is defined in (3.1), W§'(P1) is the unstable manifold of P! and 2’ =

w1~ z. The decomposition is continuous because 2’ depends continuously
on z. Let II be the projection on N.

Let v be such that 0 < A < v < 1. By continuity, taking a smaller (2 if
necessary, we have |[ITDF,; *(2)|| < v for all z € §2.

Here we have ITDF,;'IT = IIDF;*'. Indeed, let u = u; + u, with
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uy € TIE and u, € N,. Then
IIDF; (z)u = ITDFy (@) (ug + un)
= II(DEF; Y (x)us + DE; () uy)
= IIDF; ' (z)uy = IDF;  (z) 1T,
because DFy *(z) : T, D — Tp-1()D.
Now let a; = sup, .5 | IIDFy ‘(2" and b = a;v~". For k > ko,
[T DEG* (")
= [IIDE; o= (ke t Y DET (2™ . DF; (ab) |
= [T DE; o= ket Y T DY (2% F2) .. ITDE; ()
< |HIDE;H ™ Y| [ ITDEG (@) ... [T DF; (%))
< ap, VTR = by UF
Hence |[IIDF, *(z*)|| < bv*, for all k > 0, where b = max{b; : 0 < j
S k‘o} n

THEOREM 3.4. We have the following expression for the Melnikov vector:

o0
Mi(z,p) = Y (DFf(z7F)G(a7"7,0,p),vi(x)), Vp€Vp, Vo €D.
k=—o0
Furthermore, the sum is absolutely convergent. (It is geometrically conver-
gent with rate v, 0 < A < v < 1.)

Proof. In view of (3.3) we only have to prove that
(DFO_lQ(:clz)gZ L), v;(z)) =0 asly — oo.
and
(DFél(x*ll)Q b)), v(x)) = 0 asl — oo
Consider the decomposition and the projection II defined in the proof of

Lemma 3.3. Since

(DFy ™ (2")€;, " (), vi(2)) = (DFg " (2') I, ™ (2), vi(x)

and, by Lemma 3.2, I7¢° !> has bounded norm for each p and each z inde-
pendently of I5 > 0, Lemma 3.3 shows that

(DFy ™ (2")€, " (), vi(x)) = 0

as lo — 0o. The other limit is considered in the same way, using FO_1 instead
of Fg. u

THEOREM 3.5. Let Fyy be a map satisfying hypotheses H1I-H3. Let m +
2d —n > 0. Assume there exists (xg,po) € D x Vi such that M(xq, po) =
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0 and rk DM (xq, o) is mazimum. (Here we consider the derivative with
respect to x and fi.)

1. Then there exists a neighbourhood 2 C D x Iy x Vi of (x0,0, po) and
a manifold S C 2, (20,0, 10) € S, S ¢ {(z,0,p) € 2}, of class CT™=2 such
that

(a) SU{(z,0,u) € 2} ={(z,e,p) € 2: A(z,e,n) = 0}
(b) dmS=14+m+2d—n>1.

2. If we further assume that rk DM, (xo) is mazimum, where M, (x) =
M, x) (here we consider the derivative with respect to x) then there exists
2y C 2 such that for all (Z,2,71) € So = SN 2y with € # 0 we have

dim(T, Wz + T.WZ';) = min(n, 2d)
where z = 22 (T) = 2 ;(T). Notice that 2 € W2, NWZ'; and that if n < 2d

e, )
then W25 and WZ'z are transversal at z, and if n > 2d then

dim(T.WE, + T.WE) = dim T WS, + dim TL W,
Proof. 1. The function
A:DxIyxVy—=R"4  (x,e,u) = Az, e, ),
is of class C™™!, r > 3. We define
A:DxIyxVy— R4
by A_Q(x,a,,u) = A(z,e, 1) /e if e # 0, and A(z,0, 1) = M(z, ). It is of class
¢ We have
Az, e, 1) = M(z, 1) + O(e).
Clearly A(z,e,pu) = 0 if and only if either e = 0 or A(z,e,u) = 0. Since
rk DM (z0, 110) is maximum and equal to n —d,
rk DA(z0,0, o) = rk DM (29, o) =n — d

is also maximum. Then

S={(e,pu,z) : Alz,e,pu) =0}
is a manifold of class C"~2 and dimension 1+m+d—(n—d) = 1+m+2d—n
> 1 which can be parametrized by € and m + 2d — n variables of the set
(T1y oo s Ty sy fim)-

2. Let A, ,(x) = A(z,e, ). Let £2) be a neighbourhood of (zg,0, po) in
{2 such that

(3.8) rk DA, ,(z) =tk DM, () =tk DM,,, (20)

for all (x,e,p) € £2.

Let £# 0 and 2z € W2 N W2, so that

(3.9) z = 22 7(T) = 2z (7).
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We claim that
(3.10) dim(T, Wz, N T, WZ,) < dim Ker DAg ().

Indeed, we may assume that there exists u € T, Wz, N T. Wz, u # 0,

because otherwise the claim is obviously true. We ﬁrst prove that there
exists v € T=D such that

(3.11) u = Dt (T)v = Daz ,(T)v.

Indeed, let v = Dx%ﬁ(f)*lu. By construction we can write

x,, —x—i—g awu

If we define ©®" = Dz>%(T)v we have
&

n—d

n—d
wt =+ Z( Do (T)v)vi (T) + Z ;2 (T) Doy (T)v.

i=1

Since u* = u and algﬁ(f) = aj'z;(T) because 12 (T) = 22 4(T) = 2, we
have v —u* =u —u" € TZWJ} and also
n—d

ut —u' = 3 ((Das s ; — Dol ) @)0)vs ().

i=1
Since v;(7) is transversal to T,WZ'; we have u® — u" = 0, and hence (3.11)
follows.
If we write A; . () = A;(z,€, 1) then
DA; zz(Z)v = (z2 72(T) — 22 4(%), Dv;(T)v)
+ (D (T)v — Dag 5 (T)v, vi(T)),
so that, by (3.9) and (3.11), we have
DAg7ﬁ(f)fU = 07
(@) TeWe" — T.WZ7 is one-to-one.

eAz z(T), we have dimKer DA; 4(T) =

which proves (3.10) because Dz

Since € # 0 and Az ;(7)
dim Ker DAz 7(T). Now by (3.8),

dim Ker DAz (%) = dim Ker DMx(T),
and from (3.10) we deduce
(3.12) dim(T. Wz ; N T, WZ,) < dim Ker DM (7).

If 2d < n, then rk DMz(Z) = mln(d — d) = d. Therefore Ker DMz(T)
= {0} and hence by (3.12),

dim(T, W2 + T,WE) = 2d.

~
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If 2d > n, we have dim Ker DM7(Z) = d — (n — d) = 2d — n. Then
dim(TzWES,ﬁ + TzWEU,H) >d+d—(2d—n)=n.m

4. The case when the unperturbed map comes from a Hamil-
tonian. When the unperturbed map is the time 7 map of a Hamiltonian
the expression of the Melnikov function is simpler and the method is easier
to apply.

THEOREM 4.1. Consider Fy satisfying the hypotheses H1-H3, and S,
its homoclinic or heteroclinic d-dimensional manifold. Suppose that there
exists a Hamiltonian H : R?®® D U — R such that Fy is the time T map of
H. Let x € S\ (P'U P?). Assume that there exist first integrals Hy, ..., H,,
r = 2n — d, functionally independent at x, satisfying

1.{H,H;} =0,i=1,...,r.

2. There are constants cq,...,c, with S C{Hy=c1}N...Nn{H, =¢c.}.

Then

1. {grad Hy(z),...,grad H.(z)} is a basis of the orthogonal space to
T.S.
2. Given a perturbed map
Fla,e,p) = Fo(x) + eG(z, e, p),
the Melnikov function associated with this basis is M = (M, ..., M,) with

[e o]

(4.1) M;(x,n) = Z (G(x*71,0, p), grad H;(z"))
k=—oc0
where z* = Ff(z).

Proof. We shall not write the parameter i in order to simplify the no-
tation. The first part is an easy consequence of the fact that grad Hy(z),. ..,
grad H,(x) are independent and generate the orthogonal of 7,.S. To prove
the second part we begin by checking that
(4.2) DFEY(x)J grad Hy(z) = J grad H;(Fy (x)).

Indeed, let ¢j be the time s map of the vector field Xy, = J grad H; and
©' the time ¢ map of Xy = Jgrad H. The condition {H, H;} = 0 implies
that [X g, Xg,] =0, and hence
i o' (x) = ¢' 0 ().
Taking the derivative with respect to s and evaluating it at s = 0 we get
J grad H;(¢"(z)) = D' (x)J grad H;(x),

and putting t = n7 we have (4.2). Also we shall use the fact that
(DFE(z=*)T = JTDFE;*(x).J, because Fy is symplectic.
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Finally, from the general expression for the Melnikov function,

43 M) = f; (DFE@)G(a™1,0), grad H,(x)
_ i (G(e1,0), (DS ()" grad H,(x))
S (G ,0), T DEy ()] grad Hy(o)
el
— k:i (G(z*1)0), JTDFE (2)J grad Hy(z))
— i (G(z*F=1,0), JT J grad Hy(z")). w
el

REMARK 4.2. If r > n, although there exist r local first integrals, it may
be difficult to find explicit expressions for them in concrete examples.

REMARK 4.3. If Fyy coincides with the time 7 map of H on S, {H, H;}|s
= 0 and S is H;-invariant with d > n the theorem is also true. Indeed, since
S is invariant, J grad H;(x) € T,.S and therefore (4.2) still holds. In this case
we need d > n, because we want Hy,..., H., 7 = 2n — d, to be functionally
independent at x, but r < d because S is H;-invariant, i = 1,...,7.

In some examples, it may happen that the unperturbed system is a
projection to the set of some variables of the time T map associated with
a Hamiltonian flow. In this case the form of the Melnikov function can be
written in terms of the Hamiltonian.

THEOREM 4.4. Consider Fy satisfying the hypothesis H1-H3 and S, its
homoclinic or heteroclinic manifold of dimension d. Suppose there exists a
map F} ‘RY U - RY, U ' =U xV,V open in R" =", 0 €V, such that
if IT is the projection on U, then IIFj(x,0) = Fy(x), x € U, and such that
there exists a Hamiltonian H : U — R with F{ being its time T map. Let
r € S\ (P'UP?) and 2’ = (x,0). Assume that there exist first integrals
Hy,...,H,_4 functionally independent at x’, satisfying

1 {H H}=0i=1,...,n—d.

2. There exist constants cy,...,Cn—q such that 8" C {H; = c1}N...N
{H,—q=cn_q} where S" =S x {0}.

Then

1. {II grad Hy(z,0),...,II grad H,,_4(x,0)} is a basis of the orthogonal
space to T, S.
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2. Given a perturbed map
F(x,e,pu) = Fo(x) +eG(x, €, p),
the Melnikov function associated with this basis is M = (My, ..., M,_4)
with

[e o)

(4.4) Mi(z,p) = Y (G(a"71,0,p), IT grad H;(z*, 0))

k=—oc0
where % = Ff(x).
Proof. (a) Since 8’ =S x {0} C{Hi =c1}N...N{Hp_q = cp—_a}, the

vectors grad Hq(x,0),...,grad H,_4(x,0) are orthogonal to T,5" = T,S x
{0}, therefore IT grad Hy(z,0),. .., II grad H,,_4(z,0) are orthogonal to T, S.

(b) Formula (4.4) is proved in an analogous way to (4.1). We only have
to take into account that from F oi = io Fy where i : R” — R™ is defined
by i(x) = (,0), we have DF{(i(x))i = iDFy(x).

REMARK 4.5. As in Remark 4.3, for Theorem 4.4 to hold it is enough that
H interpolates Fy just on S, {H, H;}|s» = 0 and that S’ is H;-invariant.

5. Examples

EXAMPLE 1. As a first example we consider a very simple two-dimensio-
nal map which we shall generalize later. Let (z1,y1) = F(z,y) with

v1= (B +a)/(B+ax), y1=y(B+ax),

where o = sinh 7, § = cosh 7 and 7 > 0. It is easily checked that it has two
fixed points, (1,0) and (—1,0), which are hyperbolic, and the line {y = 0}
is a heteroclinic connection.

This map is the time 7 map of the system given by the Hamiltonian
H(z,y) = y(1 — 2?). Consequently, the associated Hamiltonian system has
(—=1,0) and (1,0) as hyperbolic saddle points and the unperturbed hetero-
clinic orbit is given by

x(t) = tanh(t + t9), y(t) =0.
Then, if 2o = tanh tg, yo = 0, the iterates (x,,y,) = f"(x0,yo) are given by
(5.1) T, = x(tn) = tanh(tn +tp), Yy, = 0.
Now we consider the perturbed map F. defined by the relations

z1 = (Bzr+a)/(B + ax) +chi(z,y),
y1 = y(B + ax)? + chy(z,y).
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By Theorem 4.1 the Melnikov function in the basis given by grad H(x,y) =
(—2xy,1 —22)T is

Z hg(:ﬂn_l, 0)(1 - SCEL)

n=—oo

with = zo. By (5.1) we have

[ee]

B ho(tanh((n — 1) + t9),0)
M(z) = Z cosh? (n7 + tg)

)

n=-—oo
with x = tanh t,.

If we take the particular perturbation hy(z,y) = = the Melnikov function
becomes

Mz) = i tanh(nt +tg — 7)
cosh?(n7 + to)

n=—oo

and using formula (6.1) of the Appendix,

2
M(z) = —5— — cothr((l — )\E) + A2dn? (Ato ))
sinh” 7
where A = 2K (m)/7 and K'(m)/K(m) = 7/T.
Since an()\to) is T7-periodic, and takes its maximum at ¢y = 0 which is
1 and its minimum at ¢ty = 7/2 which is 1 — m, we have

M(z) < —2, —coth7<(1—)\E) 21— )>

sinh” 7

= tanh(nt —171/2)
B Z cosh®(nt +7/2)"

n=—oo

On the other hand,

i tanh(nt — 7/2)

nh(nt —7/2) tanh(—n71 — 7/2)
cosh?(nt + 7/2) Z

cosh?(nt + 7/2) cosh?(—nt 4 7/2)

n=—oo

M m

tanh(nt — 7/2) Z tanh(nt + 37/2)

O(:osh (nT+17/2) cosh?(nr + 7/2)

n

tanh(nt — 7/2) — tanh(m’ +37/2)
cosh®(n7 4 7/2)

<0,

tnqg

3
o

because all terms in the last sum are negative. Hence if € is small the
perturbed map does not have heteroclinic points. Also we can have an
asymptotic expression of M (x) for 7 small.

From the relation K'(m)/K(m) = w/7, T can be expressed in terms of m
through ¢ = exp(—7K'(m)/K(m)) (see [1]) as 7 = —7%/Inq. If 7 is small,
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m is small and since ¢ = m/16 + O(m?) we have

m ~ 166_“2/7.

Since K(m) = Z(1+ m/4+ O(m?)) and E(m) = 5(1 —m/4 4+ O(m?)), for
7 small we have

M(zx) = (—273/3 4+ 0O(t%)) = —4/3 4+ O(7)

72sinh 7
uniformly with respect to tg.
If we take the particular perturbation ho(z,y) = 21 = (Bx+«a)/(8+ ax)
the Melnikov function is
oo
tanh(nt + tg)
M@= 2 collor +to)
L= cos (nT + to)
and using the calculations given in the Appendix gives
M(x) = mA3sn(Atg)en(Mo)dn(Mp),
where as before A = 2K (m)/7, and m is such that K'(m)/K(m) = «/7.
We have M (x);,—o = 0 and d(Agtor) tom0 = mA* # 0, where we have to take
into account that z = tanhty. Then if € is small enough the perturbed map
has a transversal heteroclinic point near the point (0, 0).

ExAMPLE 2. Here we consider the product of two maps of the previous

example. Let

(3517“17211,”1) = F(I’,’U,,y,’l))
be defined by
v1 = (Bz+a)/(B+ax), y1=y(B+ o),
up = (Bu+)/(B +au), vy =v(+au)?,
where o = sinh 7 and 8 = cosh 7 with 7 > 0.

The map F is the time 7 map of the Hamiltonian H (z,u,y,v) = y(1 —
2?) + v(1 — u?). Both the Hamiltonian system and the map (5.2) have
four fixed points (£1,+1,0,0) which are hyperbolic. The solutions of the
Hamiltonian equations for (z,u) € (—1,1) x (—1,1) are

z(t) = tanh(t +t1), y(t) = ki cosh?(t +t,),

u(t) = tanh(t +t3), v(t) = kg cosh?(t + t5),
with k1, ke, t1,t2 € R. The set {y = 0,v = 0,|z| < 1,|u] < 1} is a two-
dimensional heteroclinic manifold for the points (—1,—1,0,0) and (1, 1,0, 0).
If ¢ = 2o = tanhty, u = up = tanhts, yg = 0 and vy = 0 then the iterates
(xna Un sy Yns Un) - Fn(an o, Yo, UO) are

x, = x(tn) = tanh(tn +t1), Yy, =0,

(5.2)

5.3
(5.3) u, = u(rn) = tanh(rn +t3), v, =0.
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We first consider a general perturbation F. of F' given by

1 = (Bx + ) /(B + az) + chi(z,u,y,v),

up = (Bu+ a)/(B + au) + cha(z,u,y,v),

Y1 = y(ﬁ + am)2 + €h3($, u,y, U),

U1 = U(ﬁ + au)Q + 6h4($, u,y, U).
The functions H; (z,u,y,v) = y(1 — 2?) and Hy(z,u,y,v) = v(1 — u?) are
linearly independent first integrals in involution so that by Theorem 4.1
the Melnikov vector in the basis given by grad Hy(z,u,y,v) = (—2zy,0,1 —
22,0)T, grad Ha(z, u,y,v) = (0, —2uv, 0,1 —u?)T is M(2) = (My(z), Ma(2))
with

Mi(2) = > hg(zp_1,un-1,0,0)(1 — z2),

MQ(Z) = Z h4($n—1aun—1,050)(1_ui)’

where z = (xg,u0,¥0,v0) = (tanhtq,tanhts,0,0), and substituting (5.3)
gives

o0

B hs(tanh((n — 1)7 4 t1), tanh((n — 1)7 + ¢2),0,0)
M=) = Z cosh?(n7 + t1)

)

n=—oo

= ha(tanh((n — 1)7 + 1), tanh((n — 1) +¢5),0,0)
Ma(z) = Z COSh2(TL’T +t2)

n=—oo
In the particular case where hs(z,u,y,v) = w and hy(x,u,y,v) = x the
Melnikov vector becomes

2. tanh(nt 4ty — 1) 2. tanh(nt 4+t; —7)
Mi(z) = , Ms(z) = .
1(2) Z cosh?(nt +t;) 2(2) Z cosh?(nr + t5)

n=—oo n=—oo

We claim that M;j(z) and My(z) cannot vanish simultaneously. Denote
them by Ml(tl,tg) and Mg(tl,tg). Notice that Ml(tl,tg) = Mg(tg,tl). If
we fix t1, then ¢(t3) = M;i(t1,t2) has only one zero to = ;Q(tl), and t is
continuous. Indeed, from (6.1) we have, writing A = 2K/,

(t2) = ——
= sinh?(ty —t; — 7)

< (=382 (02— 11— 7) 4 AB O = 7))~ EOw))

2
+ COth(tQ -t — T) ((1 — )\E)— + )\anz()\h)) .
T
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The coefficient of coth(ty —t; — 7) can be bounded from below:

2K\ 2 2K\ 2 2K
(1——E>—+<—> dn? (—t1>
T T T T

_ 2<1_ 2K 2KR <¥t1>> > %(H 2K,((1—m)K—E)>

2%(1 2(1ﬂm)(K’K K’E)>:%<1+2(17T )(EK—W/2)>
:%(2(1wm)E’K+m>>0

Then limy, o0 (t2) = (1 — AE)2 + A2dn?(Mty) > 0 and limy, ,_o p(t2) =
—(1-XE)2 - A2dn?(At1) < 0. On the other hand,

oo

1
"(ty) = >0
#(t2) Zoo cosh?(n7 + t1) cosh?(n7 + to — 7)

n=

Furthermore, since M is of class C1, and (OM;/0ts)(t1,t2) = ¢'(t2) > 0,
by the implicit function theorem ¢, is of class C?.

Then if My (t9,t9) = 0 and My(t9,t3) = 0 we shall also have M (t3,1?)
= 0. Then either tO = £5(t9), in which case M(t9,t9) = 0, or 1§ # 1o (19).
In the latter case we can suppose that t9 > #5(t9) (the other case being
analogous). Also t9 = £5(t9) > t9 and hence by Bolzano’s theorem applied
to to(t) — t there exists t* such that t* = f5(¢*) and therefore M (t*,t*) = 0.

But, as we have seen in the computations for Example 1, M (¢1,¢1) never
vanishes. This shows that the Melnikov vector cannot be zero. Hence Fy, if
¢ is small, does not have heteroclinic intersections.

Now we consider another perturbation

hS(x’U,y’v) =u; = (Bu +()é)/(,8 —|—OZU),
h4(x’U,y’v) =T = (Bx +a)/(/8 —|—Oé$)
For it we have

Z tanh(nt + t3)
x ) U )
0, o) — (:osh2 (nT+t1)

Z tanh(n7 +¢1)
(o, u
0, o) — cosh®(nt +t3)

A closed form for M; and My can be obtained from the results in the
Appendix, but here it is easier to work directly with the series. If zg = ug
= 0, which corresponds to t; = t; = 0, it is easily seen that M (0,0) = 0.
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Since 222(0,0) = 242(0,0) = 1 and %22(0,0) = 942(0,0) = 0 we have

_9 OO, tanhj(nT) ooi i
det DM (0,0) = ‘ 2’“‘“ coshnm) z";j“ o )
n=—o00 cosh?(nt) —2 Zn:—oo cosh?(nT)
_|—2(A-DB) B _ B B
= ‘ B o(A-B)| (2A - 3B)(2A — B),
where A = 3°°° _ 1/cosh®(n7) and B = 00 _ 1/cosh®(nr). Clearly

2A — B > 0. In the Appendix it is shown that 2A — 3B < 0. Then, if ¢ is
small enough, the perturbed invariant manifolds intersect transversally near

(0,0,0,0).
EXAMPLE 3. Now we consider the map (z1,y1,¢1) = F(x,y, ¢) defined
by
1= (Bz+a)/(B+az), y=yB+ax)?
=9+,

where o = sinh7, 3 =coshr, 7 > 0, 2,y € R and v, ¢ € T*.
This map has two normally hyperbolic invariant manifolds

Pr = {(+1,0,¢) : ¢ € T*},
joined by a heteroclinic manifold
S={(z,0,0): —1 <z <1, ¢ T}
First we take k = 1. Let © = x¢p = tanh tg, yo = 0, ¢ = ¢o and (zy, Yn, dn) =
F"(z0, Y0, ¢0). Then
(5.5) x, = tanh(tn +tg),  ¢n = nv+ ¢o.
We consider the perturbed map F. defined by

z1=(Br+a)/(B+ax), y=yB+oaox)+esing,

o1 =0+ .

It is the projection onto the variables (z,y,¢) of the time 7 map of the
Hamiltonian H(x,¢,y,I) = y(1 — x*) 4+ 21, so that we can apply Theorem
4.4. The vector (0,1 — z2,0) generates a basis of the orthogonal space to
T,S. In this case the Melnikov function in the basis given by this vector is

(5.4)

[ee]

M(z,¢) = Z sin ¢, _1(1 — 22)

n=—oo

so that substituting (5.5) we get

n=—oo

sin(nv + ¢g — v)
cosh?(nt +ty)
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We have M (0,v) = 0. Using the fact that dxg/dto(0) =1 we obtain
DM(0,v) = <_ 9 i sin(nv) sinh(m‘)’ i %ny)))

cosh®(nr) - cosh?(nt

n=—oo

whose rank is 1 if 7 is large enough. Indeed,

o, 7) = i cos(nv) 22 cos(nv)

i cosh2 (n1) (:osh2 (nT)
> 1
>1-2 >1-8) e 7
; coshQ(nT Z

— 727— /( 727—)
So, if 7> (In9)/2 then <p(1/, 7) > 0.

The function ¢ is 2m-periodic with respect to v. From numerical com-
putations we believe that for fixed 7 # 0 it has a global minimum at v = 7,
where indeed (Op/0v)(m,7) = 0. We can compute ¢(m,v) explicitly and
check that it is positive, which would guarantee the transversality in all
cases, if € is small enough:

IR S W GV < NS DR < SR S
o(m,7) = Z Coshz(m') Z coshQ(nQT) Z COShQ(’I’LQ’T—i—T).

n=—oo n=—oo n=—oo

Using formulas (6.8) and (6.9) of the Appendix adapted to this case and
choosing m such as K'(m)/K(m) = n/(271) we get

() (oo ()
(5 a-a-m= (£ m=o

More generally, we consider the map defined by

= (Bz + a)/(B + ax),
y1 = y(B + ax)? + e(ay sin @' + ... + ay sin @),
(bl :¢+V7

with v, ¢ = (¢',...,¢") € T*, k > 1. Now

i aysin(nvy + ¢y — v1) + ... + ag sin(nvy, + ¢f — vy)

M (xg, =
(0, ¢o) cosh? (nT + to)

n=-—oo

with ¢o = (¢, ..., d5) and tg = arctanh x.
As before, if to = 0 and ¢} = v;, then M(zo,¢o) = 0. If at least one
of the derivatives of M is different from zero then, if ¢ is small, we have

transversal intersection of the invariant manifolds associated with the tori.
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EXAMPLE 4. Finally, we consider the map (z1, ¢1,vy1) = F(z,0,y), (z,y)
€ R2 ¢ € TF, |u| > 1, defined by
1 =Y, ¢1:¢+V+€h(1',¢,y),

W
T 2 eg(z, 9,y).

For k = 0 it is called the McMillan map and has been studied in [10] and
[5]. For e = 0 we consider the normally hyperbolic invariant manifold {z =
y = 0}. Its stable and unstable manifolds form two homoclinic manifolds

I'* ={(zt(t—1),¢0,25@1)): ¢ € T*, t € R}

y1=-c+2y

where

+.,. VuE—1  sinh7
e (t) ==+ =+ .
cosh ¢ cosh ¢

and 7 = In(u + /p? — 1) or equivalently \/u? —1 = sinh7. We consider
S =TI'7". Fy restricted to S coincides with the projection onto the variables

x, y, ¢ of the time 7 map corresponding to the Hamiltonian

14
H(z,¢,y,1) = (2% = 2pay +y* +2%y%) + — 1.

1
2/ p? —1
According to Remark 4.5 we can write the Melnikov function associated

with the basis IT grad H, with II(z,¢,y,I) = (x,®,y). The flow associated
with H on the homoclinic manifold is

w(t) = <x+(t T to), b0 + ;t,:ﬁ(t T o), Ig>.

If z(t) = ITw(t) then IT grad H(z(t)) = (=27 (t +t0),0,27(t — T + to)). We
define z,, = z(n7). Then

M(z0) = D {(0,h(zn-1),9(zn-1)), I grad H(zy))
= — Z 9(zn )it (nT — T+ ty) = — Z g(zn)at (nT + to).
In the case k = 1 and g(z, ¢, y) = cos ¢ we have
) > sinh(nt + o)
M = sinh s(nv + ¢g) ————.
(z9) = sinh T nzzoo cos(nv + ¢g) R Tm—

When tg = 0 and ¢9 = 0 we have M (zy) = 0, that is to say, the stable and
unstable manifolds intersect. To study the transversality we have to look at
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rk (d%)(M(zo)), d%o(M(ZO)O

:rk< 3 cos(n) 2SO (T) i sin(nl/)M>

cosh®(nr) cosh?(nr)

n=—oo n=—oo

(sinh 7 # 0) at to = 0 and ¢9 = 0. Proceeding as in the previous example we
find that if 7 > In 5 the first component of the vector is different from zero
for all v. This implies the transversal intersection of the invariant manifolds.

6. Appendix. We devote this Appendix to some technical computa-
tions which provide closed formulas for some series which we have obtained
as Melnikov functions or their derivatives. For that we shall use a method
developed in [5].

LEMMA 6.1. The sum

i tanh(n7 + t1)
cosh?(n7 + t5)

n=—oo

takes the value

o (25020025 e (20) (54)

2K\ 2 2K\ 2 2K
+ coth(t — t2)<<1 _ —E> 2, <_> dn? (—t2>>
T T T T
iftl 7& tg, and

3
(6.2) m(?) sn(?t)cn(?t)dn(?t)
if t1 = to, with m satisfying K'(m)/K(m) = w/T.

Proof. First we recall some definitions concerning elliptic functions.
See [1]. Let m € (0,1). The complete elliptic integrals of first and second
kind are defined by

1

K(m) = [ (1 = y*)(1 —my?)) /2 dy

0
and
1 1/2
1 — my?
E(m) = | <71 — ) dy.
0
Also one introduces the following quantities: m; = 1 — m, K = K(m),

K'= K(my), E = E(m) and E' = E(mq). The incomplete elliptic integral
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of second kind is defined by
E(ulm) = Sdnz(v\m) dv,
0
where dn is the Jacobian elliptic function.

Now we collect some properties of the above functions which will be used
in the computations. The function E satisfies E(—u) = —E(u), E(z+2K) =
E(z)+2F and E(2+2iK') = E(z) 4+ 2i(K’ — E’). The Legendre equality is

(6.3) EK'+ F'K - KK' =x/2.
The functions sn, cn and dn have two periods. The periods of dn(v) are 2K,

4K’i. In a fundamental domain dn(v) has two poles at K'i and 3K'i with
residues —i and 7 respectively, and they are of order 1.

We shall also use the following properties of the elliptic functions: sn(—u)
= —sn(u), ecn(—u) = en(u), dn(—u) = dn(u), sn(u + 2K'i) = sn(u), cn(u +
2K'i) = —cn(u), dn(u + 2K'i) = —dn(u), dn’ = —msnen (see [1]).
Following [5] we introduce
x(2) =2(r —2KE)z + 2KE(2Kz + K'i|m).

where the parameter m satisfies

(6.4)

The function y has the following properties:
e X is Tu-periodic,
e \’ is 1-periodic,
e the singularities of x on {|Im z| < 7/7} are poles located at z = n,
n € Z, they are simple and their residues are 1.

Let

tanh(z7 + t1)
9(2) = —5 ———=.

cosh” (27 + t3)

Clearly g is Zi-periodic.

Now we consider the rectangle R,, with vertices +(n+1/2)+ (£x/(27)+
e)i, 0 <e < m/(27). If 0 < e < w/(27) then for any ¢1,t; € R there exists
ng such that if n > ng then xg does not have singularities on the border
of R,. Let R = lim,, .o, R,, and P = {poles of yg on R}. By the residue
theorem we have

(6.5) lim — S X(2) g(z)dz = Z res(xg, ).

OR,, z€EP
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On the other hand,

because xg is Ti-periodic, and the integrals on the vertical paths go to zero
as n — oo since g decreases exponentially and y increases at most linearly
because x’ is 1-periodic.

We have the following table:

Function Poles in the interior of R |Laurent series
1
x(z) Z ) =+, NEZL
tanh(z1 + ¢1) z21 = g9=1— =+ %272 +1T(z—z1)+ .
—2 _ . to 1
cosh™ (27 + t2) 20 = g-i— 2 I 22)2 + +.
-2 _om._t 1 1
tanh(z7 + t) cosh™ “ (27 + t) 20 = g-1— 1 fT—BWJrﬁ 7(2 fzo)Jr...

From (6.5) we deduce that if t; # to then
> " res(xg,n) + res(xg, z1) + res(xg, 22) = 0,

neZ
which gives
= 1
(6.6) Z_: g(n) + ;X(zl)/coshQ(le +t2)

1 1
—ﬁx’(@) tanh(zom +t1) — ;X(ZQ)/COShQ(ZQT +1t1) =0,

and if ¢, = to =t then ), res(xg,n) + res(xg, z0) = 0, which gives

(6.7) 3 g(n) - 1),

73 2!

n=—oo

We need the following computations:

2K 2K
x(21) = 2EK' —7)i — 2<1 - —E>t1 - 2KE<—t1>,

T T

X' (%) = 2(r — 2KE) + (2K )?dn? (?h),

) )
:
)

cosh? (217 + to — sinh? (t1 — ta),
tanh(zo7 + t1 coth(t; — ta),
cosh? (22T +t1) = — sinh? (t1 — ta).
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Finally, substituting the previous calculations into formulas (6.6) and
(6.7) we get (6.1) and (6.2). =

LEMMA 6.2. If A=3Y"° _ 1/cosh®(n7) and B =32 _ 1/cosh*(nr)
we have

2A - 3B = -m(2K/7)* < 0.
Proof. To compute A we consider the function g(z) = 1/cosh?(z7 +1).
It has a pole at

with Laurent series

= e e s

As in the previous example we have ), res(xg,n) + res(xg, z0) = 0 and

therefore
o0

(6.9) A= Z g(n)|i=0 = T—lgxl(zo)\tzo-

n=—oo

To compute B we consider g(z) = 1/cosh*(z7 + t). The function g has a
pole at

with Laurent series

Using the fact that

X" (20) = 2m(2K)3 sn <%t> cn <¥t> dn(?t)

:
and that
d dt 2K )4
o)l = Lo o) | = 2m B (= omer)t,
dt dZ() =0 T
we obtain

oKk \* 2
PRETCS
3 T

and hence 24 — 3B = —m(2K/7)* < 0. m
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