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ESTIMATORS OF g-MONOTONE

DEPENDENCE FUNCTIONS

Abstract. The notion of g-monotone dependence function introduced in
[4] generalizes the notions of the monotone dependence function and the
quantile monotone dependence function defined in [2], [3] and [6]. In this
paper we study the asymptotic behaviour of sample g-monotone dependence
functions and their strong properties.

1. Introduction. The g-monotone dependence function, introduced in
[4], measures the monotone dependence, i.e. the tendency to associate large
values of the first random variable with large values of the second, according
to the nondecreasing but nonconstant real function g. The second parameter
of this class, as in the case of the quantile monotone dependence function (cf.
[5]), is q ∈ (0, 1), the “level of association”. The main field of applications
of the g-monotone dependence function is in investigation of dependence in
statistics. This paper investigates statistical properties of the g-monotone
dependence function. We introduce the estimators of this notion and study
their strong asymptotic behaviour. First, however, we recall their definition.

Let G be a set of real-valued nondecreasing but nonconstant functions
and let Cg (g ∈ G) be the class of pairs of random variables (X,Y ) satisfy-
ing E|g(X)| < ∞. For an arbitrary pair of random variables (X,Y ) with
marginal distribution functions FX , FY , we define

F (1)
p (x) :=

P [X < x, Y > yp] + (1− p− P [Y > yp])P [X < x |Y = yp]

1− p
,

F (2)
p (x) :=

P [X < x, Y < yp] + (p − P [Y < yp])P [X < x |Y = yp]

p
,
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F (3)
p (x) :=

P [X < x]− p

1− p
I(xp,∞)(x),

F (4)
p (x) :=

P [X < x]

p
I(−∞,xp)(x) + I[xp,∞)(x),

where I[·] denotes the indicator function, IA(x) = I[x ∈ A], and xp =
Qp(FX) and yp = Qp(FY ) stand for a pth quantile of FX and FY , respec-
tively. By convention, we assume that E(X |A) = 0 and P [X < x |A] = 0
if P [A] = 0.

For g ∈ G, (q, p) ∈ (0, 1)2 and an arbitrary real function F such that\
R

|g(x)| dF (x) < ∞

we define

(1.1) φg(F, x) =
\
R

g(u− x) dF (u), x ∈ R.

Definition 1. The g-monotone dependence functions µ
(j)
X,Y (g, q; ·),

j = 1, 2, for g ∈ G, (X,Y ) ∈ Cg, q ∈ (0, 1), are defined as follows:

µ
(1)
X,Y (g, q; p) =





x(1)(g, q; p) − xq

x(3)(g, q; p) − xq

if x(1)(g, q; p) − xq ≥ 0,

x(1)(g, q; p) − xq

xq − x(4)(g, q; 1 − p)
otherwise,

(1.2)

µ
(2)
X,Y (g, q; p) =





x(2)(g, q; p) − xq

x(4)(g, q; p) − xq

if xq − x(2)(g, q; p) ≥ 0,

x(2)(g, q; p) − xq

xq − x(3)(g, q; 1 − p)
otherwise,

(1.3)

where

(1.4) x(i)(g, q; p) = λ sup{x : φg(F
(i)
p , x) ≥ φg(FX , xq)}

+ (1− λ) inf{x : φg(F
(i)
p , x) < φg(FX , xq)},

i = 1, 2, 3, 4,

xq = Qq(FX) and λ ∈ [0, 1] is a parameter constant throughout this paper.

The properties of this notion are listed in [4].

2. Sample g-monotone dependence functions. Let (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) be a sequence of pairs of independent identically dis-
tributed random variables belonging to Cg for some g ∈ G, and let (X,Y )
denote a pair of random variables with the same distribution function. Fix
(q, p) ∈ (0, 1)2.
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Let Xk:n, Yk:n, k = 1, . . . , n, be the kth order statistics of the sequences
{Xi, 1 ≤ i ≤ n} and {Yi, 1 ≤ i ≤ n}, respectively. We additionally define
Xn+1:n = Xn:n and Yn+1:n = Yn:n, n ≥ 1. Then the pth quantiles may be
chosen as

x̂(n)
p = Xk:n, ŷ(n)p = Yk:n,

where k = [np] + 1 (for full discussion cf. [1]). The two-dimensional sample
distribution function and the boundary sample distribution functions may
be defined as

F̂X,Y (x, y) = P̂ [X < x, Y < y] =

n∑

j=1

I[Xj < x, Yj < y]/n

and

F̂X(x) = P̂ [X < x] =
n∑

j=1

I[Xj < x]/n,

F̂Y (y) = P̂ [Y < y] =
n∑

j=1

I[Yj < y]/n,

respectively. Let us define the sample distribution functions F̂
(k)
p,n(·), k =

1, 2, 3, 4, by

F̂ (1)
p,n(x) =

∑n
j=1 I[Xj < x, Yj > ŷ

(n)
p ]

n(1− p)

+

(
1− p−

∑n
j=1 I[Yj > ŷ

(n)
p ]

n

)∑n
j=1 I[Xj < x, Yj = ŷ

(n)
p ]

(1− p)
∑n

j=1 I[Yj = ŷ
(n)
p ]

,

F̂ (2)
p,n(x) =

∑n
j=1 I[Xj < x, Yj < ŷ

(n)
p ]

np

+

(
p−

∑n
j=1 I[Yj < ŷ

(n)
p ]

n

)∑n
j=1 I[Xj < x, Yj = ŷ

(n)
p ]

p
∑n

j=1 I[Yj = ŷ
(n)
p ]

,

F̂ (3)
p,n(x) =

∑n
j=1 I[Xj < x]− np

n(1− p)
I[x̂(n)

p < x],

F̂ (4)
p,n(x) =

∑n
j=1 I[Xj < x]

np
I[x < x̂(n)

p ] + I[x ≥ x̂(n)
p ].

The appropriate sample function φ̂ may be defined as follows:

φ̂g(F̂
(1)
p,n , x) =

∑n
j=1 g(Xj − x)I[Yj > ŷ

(n)
p ]

n(1− p)

+

(
1−

∑n
j=1 I[Yj > ŷ

(n)
p ]

n(1− p)

)∑n
j=1 g(Xj − x)I[Yj = ŷ

(n)
p ]

∑n
j=1 I[Yj = ŷ

(n)
p ]

,
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φ̂g(F̂
(2)
p,n , x) =

∑n
j=1 g(Xj − x)I[Yj < ŷ

(n)
p ]

np

+

(
1−

∑n
j=1 I[Yj < ŷ

(n)
p ]

np

)∑n
j=1 g(Xj − x)I[Yj = ŷ

(n)
p ]

∑n
j=1 I[Yj = ŷ

(n)
p ]

,

φ̂g(F̂
(3)
p,n , x) =

∑n
j=1 g(Xj − x)I[Xj > x̂

(n)
p ]

n(1− p)

+
g(x̂

(n)
p − x)

∑n
j=1(I[Xj ≤ x̂

(n)
p ]− p)

n(1− p)
,

φ̂g(F̂
(4)
p,n , x) =

∑n
j=1 g(Xj − x)I[Xj < x̂

(n)
p ]

np

−
g(x̂

(n)
p − x)

∑n
j=1(1− p− I[Xj ≥ x̂

(n)
p ])

np
,

φ̂g(F̂X , x) =

∑n
j=1 g(Xj − x)

n
.

Note that when observations are unique (i.e. Xj 6= Xi and Yj 6= Yi, j 6= i,
1 ≤ i, j ≤ n, a.s.), then

φ̂g(F̂
(1)
p,n, x) =

∑n
j=1 g(Xj − x)(I[Yj ≥ ŷ

(n)
p ]− {np}I[Yj = ŷ

(n)
p ])

n(1− p)
,

φ̂g(F̂
(2)
p,n, x) =

∑n
j=1 g(Xj − x)(I[Yj < ŷ

(n)
p ] + {np}I[Yj = ŷ

(n)
p ])

np
,

where {x} = x− [x] is the fractional part of x.

Define the integer-valued random variables Θ
(j)
n = Θ

(j)
n (g, q; p), 1 ≤ j

≤ 4, by the inequalities

φ̂g(F̂
(j)
p,n,XΘ

(j)
n :n

) ≥ φ̂g(F̂X , x̂(n)
q ) > φ̂g(F̂

(j)
p,n,XΘ

(j)
n +1:n

),

and the random variables Z
(j)
n = Z

(j)
n (g, q; p), V

(j)
n = V

(j)
n (g, q; p), 1 ≤ j ≤ 4,

as follows:

Z(j)
n (g, q; p) = λ sup{x : φ̂g(F̂

(j)
p,n, x) ≥ φ̂g(F̂X , x̂(n)

q )}

+ (1− λ) inf{x : φ̂g(F̂
(j)
p,n, x) < φ̂g(F̂X , x̂(n)

q )},

V (j)
n (g, q; p) = λX

Θ
(j)
n (g,q;p):n

+ (1− λ)X
Θ

(j)
n (g,q;p)+1:n

, j = 1, 2, 3, 4.

Now we introduce two estimators of the g-monotone dependence functions.

Definition 2. For (X,Y ) ∈ Cg (g ∈ G) and q ∈ (0, 1), we define the

estimators µ̂
(k)
n (g, q; p) and µ̃

(k)
n (g, q; p), k = 1, 2, as follows:
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µ̂(1)
n (g, q; p) =





Z
(1)
n (g, q; p) − x̂

(n)
q

Z
(3)
n (g, q; p) − x̂

(n)
q

if Z
(1)
n (g, q; p) − x̂

(n)
q ≥ 0,

Z
(1)
n (g, q; p) − x̂

(n)
q

x̂
(n)
q − Z

(4)
n (g, q; 1 − p)

otherwise,

(2.1)

µ̂(2)
n (g, q; p) =





Z
(2)
n (g, q; p) − x̂

(n)
q

Z
(4)
n (g, q; p) − x̂

(n)
q

if x̂
(n)
q − Z

(2)
n (g, q; p) ≥ 0,

Z
(2)
n (g, q; p) − x̂

(n)
q

x̂
(n)
q − Z

(3)
n (g, q; 1 − p)

otherwise,

(2.2)

µ̃(1)
n (g, q; p) =





V
(1)
n (g, q; p)− x̂

(n)
q

V
(3)
n (g, q; p)− x̂

(n)
q

if V
(1)
n (g, q; p) − x̂

(n)
q ≥ 0,

V
(1)
n (g, q; p) − x̂

(n)
q

x̂
(n)
q − V

(4)
n (g, q; 1 − p)

otherwise,

(2.3)

µ̃(2)
n (g, q; p) =





V
(2)
n (g, q; p)− x̂

(n)
q

V
(4)
n (g, q; p)− x̂

(n)
q

if x̂
(n)
q − V

(2)
n (g, q; p) ≥ 0,

V
(2)
n (g, q; p) − x̂

(n)
q

x̂
(n)
q − V

(3)
n (g, q; 1 − p)

otherwise.

(2.4)

In general, µ̂
(k)
n (g, q; p) is a better estimator than µ̃

(k)
n (g, q; p), although

the second is easier in computations.

3. The main results. In this section we give conditions under which

(3.1) µ̂(k)
n (g, q; p) → µ

(k)
X,Y (g, q; p) a.s.

and

(3.2) µ̃(k)
n (g, q; p) → µ

(k)
X,Y (g, q; p) a.s.,

as n → ∞, k = 1, 2. We begin with some auxiliary definitions.
For every random variable X and distribution function F we denote by

VX and VF the sets of points of continuity of FX and F , respectively. Let
H be the class of distribution functions F such that if x0 6∈ VF then there
exist δ1, δ2 > 0 such that x0 − δ1 ≤ x < x0 implies F (x) = F (x0), and
x0 < x ≤ x0 + δ2 implies F (x) = F (x0 + 0).

Let K be the class of nondecreasing functions such that:

(i) ∀a∈R I(a,∞)(·), I[a,∞)(·) ∈ K;
(ii) If g is a continuous nondecreasing Lipschitz function then g ∈ K;
(iii) ∀a∈R exp{a·} ∈ K;
(iv) If g1, . . . , gk ∈ K then ∀λ1,...,λk∈R λ1g1 + λ2g2 + . . .+ λkgk ∈ K;
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(v) If g ∈ K, a, b ∈ R, a < b then g(a)I(−∞,a](·) + g(x)I(a,b)(·) +
g(b)I[b,∞)(·) ∈ K.

Let us now pass to the main results of this section.

Theorem 1. Assume

(i) φg(F
(k)
p , ·) and φg(F

(k)
1−p, ·) are nonconstant and continuous in a suf-

ficiently small neighbourhood of x(k)(g, q; p), k = 1, 2, 3, 4, and x(k)(g, q; 1−
p), k = 3, 4, respectively ;

(ii) φg(FX , ·) is nonconstant in a sufficiently small neighbourhood of xq

and FX is strictly increasing in xq;
(iii) FX , FY ∈ H;
(iv) g ∈ K;
(v) xq 6= x(k)(g, q; p) and xq 6= x(k)(g, q; 1 − p), k = 3, 4.

Then for k = 1, 2,

(3.3) µ̂(k)
n (g, q; p) → µ

(k)
X,Y (g, q; p) a.s. as n → ∞.

For three special cases of the function g the convergence (3.3) will be
considered in the following propositions:

Proposition 1. Assume g(u) = I[u > 0] and

(i) F
(k)
p (·) and F

(k)
1−p(·) are nonconstant and continuous in a sufficiently

small neighbourhood of x(k)(g, q; p), k = 1, 2, 3, 4, and x(k)(g, q; 1 − p), k =
3, 4, respectively ;

(ii) FX is strictly increasing in xq;
(iii) FX , FY ∈ H;
(iv) xq 6= x(k)(g, q; p) and xq 6= x(k)(g, q; 1 − p), k = 3, 4.

Then for k = 1, 2,

(3.4) µ̂(k)
n (g, q; p) → µ

(k)
X,Y (g, q; p) a.s. as n → ∞.

Proposition 2. Assume g(u) = u or g(u) = eλu and FX , FY ∈ H. Then
for k = 1, 2,

(3.5) µ̂(k)
n (g, q; p) → µ

(k)
X,Y (g, q; p) a.s. as n → ∞.

It is easy to see that this result improves Theorem 2 of [2].

Theorem 2. In addition to the assumptions of Theorem 1 (or Proposi-

tions 1, 2) assume that

(vi) FX(·) is continuous in a sufficiently small neighbourhood of

x(k)(g, q; p), k = 1, 2, 3, 4, and x(k)(g, q; 1 − p), k = 3, 4.

Then

(3.6) µ̃(k)
n (g, q; p) → µ

(k)
X,Y (g, q; p) a.s. as n → ∞.
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4. The proofs. We begin with the following auxiliary results.

Proposition 3. For every g ∈ G and sample {(Xj , Yj) : j ≥ 1} drawn

from the probability law from Cg the processes {φ̂g(F̂
(k)
p,n , x)}x∈R, k = 1, 2, 3, 4,

and {φ̂g(F̂X , x)}x∈R have nonincreasing paths. Furthermore, for every pair

(X,Y ) ∈ Cg of random variables the function φg(FX , ·) is nonincreasing.

The proof is an easy consequence of g(X − ·) being nonincreasing, for
every random variable X.

Proposition 4 [7, §2.3.2]. Let 0 < p < 1 be such that xp and yp are

unique pth quantiles of FX and FY , respectively. Then for every ε > 0 and

n ∈ N,

P [|x̂(n)
p − xp| > ε] ≤ 2e−2nδ2ε(X)

and

P [|ŷ(n)p − yp| > ε] ≤ 2e−2nδ2ε(Y )

where

δε(X) = min{FX(xp + ε)− p, p − FX(xp − ε)},

δε(Y ) = min{FY (yp + ε)− p, p− FY (yp − ε)}.

The following results are a generalization of the well-known Glivenko–
Cantelli Theorem (cf. [7, §2.1.4]).

Proposition 5. Let {f̂n(x) : x ∈ R} be a sequence of nonincreasing

left-continuous random processes such that for some nonrandom function f
and every x ∈ R we have

f̂n(x) → f(x) a.s. as n → ∞.

If K is a compact subset of R, then

sup
x∈f−1(K)

|f̂n(x)− f(x)| → 0 a.s. as n → ∞.

Corollary 1. We have

sup
x∈R

|F̂X(x)− FX(x)| → 0 a.s. as n → ∞,

sup
x∈R

|F̂Y (x)− FY (x)| → 0 a.s. as n → ∞.

If additionally FY ∈ H, then for every k = 1, 2, 3, 4,

sup
x∈R

|F̂ (k)
p,n (x)− F (k)

p (x)| → 0 a.s. as n → ∞.

The first part of Corollary 1 (the Glivenko–Cantelli Theorem) is an easy
consequence of Proposition 5 and of the strong law of large numbers, but
the proof of the second part is not so easy, mainly because in the definition
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of F̂
(k)
p,n we use ŷ

(n)
p instead of yp and in consequence EF̂

(k)
p,n may be differ-

ent from F
(k)
p . To prove the second part of Corollary 1 we must use the

techniques developed later in the proof of Proposition 6.

Proof of Proposition 5. By a linear change of variables we may and do
assume that K = [0, 1]. Furthermore, for every r, k ∈ N, r < k, we let xr,k

be a solution of the inequalities

f(x− 0) = f(x) ≥ r/k ≥ f(x+ 0),

and let Ar,k = [fn(xr,k) → f(xr,k)]. From our assumptions we get

P
( ⋂

k∈N

⋂

1≤r≤k

Ar,k

)
= 1

so that

sup
k∈N

max
1≤r≤k

|fn(xr,k)− f(xr,k)| → 0 a.s. as n → ∞.

On the other hand, for every k ∈ N,

sup
x∈f−1(K)

|fn(x)− f(x)| ≤ max
1≤r≤k

|fn(xr,k)− f(xr,k)|+ 1/k,

and because K is arbitrary,

[ sup
x∈f−1(K)

|fn(x)− f(x)| → 0] ⊃
⋂

k∈N

⋂

1≤r≤k

Ar,k,

which completes the proof.

Proposition 6. Let (X,Y ) ∈ Cg (for some g ∈ G) and FX , FY ∈ H.

Let {(Xi, Yi) : i ≥ 1} be a sequence of independent random variables with

the same distribution function as (X,Y ). Then for every q, p ∈ (0, 1), k =
1, 2, 3, 4,

(4.1) φ̂g(F̂
(k)
p,n , x) → φg(F

(k)
p , x) a.s. as n → ∞.

Moreover , if g ∈ K and FX is strictly increasing in xq , then

(4.2) φ̂g(F̂X , x̂(n)
q ) → φg(FX , xq) a.s. as n → ∞.

P r o o f. Assume k = 1 and remark that φ̂g(F̂
(1)
p,n, x) and φg(F

(1)
p , x) may

be rewritten in the following way:

φ̂g(F̂
(1)
p,n, x) = αp,n(ŷ

(n)
p )

∑n
j=1 g(Xj − x)I[Yj > ŷ

(n)
p ]

n(1− p)

+ (1− αp,n(ŷ
(n)
p ))

∑n
j=1 g(Xj − x)I[Yj ≥ ŷ

(n)
p ]

n(1− p)
,

φg(F
(1)
p , x) = αp(yp)

Eg(X − x)I[Y > yp]

1− p

+ (1− αp(yp))
Eg(X − x)I[Y ≥ yp]

1− p
,
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where

αp,n(y) =





∑n
j=1(1− p− I[Yj > y])
∑n

j=1 I[Yj = y]
if
∑n

j=1 I[Yj = y] > 0,

1 otherwise,

αp(y) =

{
1− p− P [Y > y]

P [Y = y]
if P [Y = y] > 0,

1 otherwise.

It is easily seen that αp,n(y) and αp(y) are continuous and 0 ≤ αp,n(y), αp(y)
≤ 1.

In the proof we consider the following six cases:

(i) yp = yp = yp, yp ∈ VY ;

(ii) yp = yp = yp, yp 6∈ VY ;

(iii) yp < yp, yp, yp ∈ VY ;

(iv) yp < yp, yp ∈ VY , yp 6∈ VY ;

(v) yp < yp, yp 6∈ VY , yp ∈ VY ;

(vi) yp < yp, yp, yp 6∈ VY ;

here yp = sup{y : FY (y) < p} and yp = inf{y : FY (y) > p}.

Case (i). From Proposition 4, for every ε > 0 there exists n0 such that

ŷ
(n)
p ∈ (yp − ε, yp + ε) for every n > n0. Therefore for n > n0 we get

(4.3)

∣∣∣∣

∑n
j=1 g(Xj − x)I[Yj > ŷ

(n)
p ]

n
− Eg(X − x)I[Y > yp]

∣∣∣∣

≤

∑n
j=1 |g(Xj − x)|I[Yj ∈ (yp − ε, yp + ε)]

n

+

∣∣∣∣

∑n
j=1 g(Xj − x)I[Yj > yp]

n
− Eg(X − x)I[Y > yp]

∣∣∣∣.

From the strong law of large numbers the first term on the right-hand side of
(4.3) tends to E|g(X−x)|I[y ∈ (yp−ε, yp+ε)], whereas the second term tends
almost surely to 0. Because ε was chosen arbitrarily and E|g(X − x)| < ∞
we obtain

(4.4)

∑n
j=1 g(Xj − x)I[Yj > ŷ

(n)
p ]

n
→ Eg(X − x)I[Y > yp] a.s. as n → ∞,

and similarly

(4.5)

∑n
j=1 g(Xj − x)I[Yj ≥ ŷ

(n)
p ]

n
→ Eg(X − x)I[Y ≥ yp] a.s. as n → ∞.
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Hence from the equation

Eg(X − x)I[Y > yp] = Eg(X − x)I[Y ≥ yp]

we get the assertion, independently of the asymptotic behaviour of αp,n(ŷ
(n)
p ).

Case (ii). From Proposition 4 and the fact that FY ∈ H, there exists
n0 such that for every n > n0,

(4.6)

I[Yn > ŷ(n)p ] = I[Yn > yp],

I[Yn = ŷ(n)p ] = I[Yn = yp],

I[Yn < ŷ(n)p ] = I[Yn < yp].

Therefore, in this case (4.4) and (4.5) also hold, so that for (4.1) we must only

prove that αp,n(ŷ
(n)
p ) → αp(yp) a.s. as n → ∞. But this is a consequence of

(4.6) and of the strong law of large numbers applied to the numerator and

denominator of αp,n(ŷ
(n)
p ).

Case (iii). For ε > 0, we define two sets A1 and A2 of positive integers

such that n ∈ A1 ⇒ ŷ
(n)
p ∈ (yp − ε, yp] and n ∈ A2 ⇒ ŷ

(n)
p ∈ [yp, yp + ε).

The proof runs similarly to case (i). We now have

lim
n∈A1, n→∞

∑n
j=1 g(Xj − x)I[Yj > ŷ

(n)
p ]

n

= lim
n∈A1, n→∞

∑n
j=1 g(Xj − x)I[Yj ≥ ŷ

(n)
p ]

n

≥ Eg(X − x)I[Y ≤ yp] a.s.,

lim
n∈A2, n→∞

∑n
j=1 g(Xj − x)I[Yj > ŷ

(n)
p ]

n

= lim
n∈A2, n→∞

∑n
j=1 g(Xj − x)I[Yj ≥ ŷ

(n)
p ]

n

≤ Eg(X − x)I[Y ≥ yp] a.s.,

which concludes the proof of (iii), as P [yp ≤ Y ≤ yp] = 0.

Case (iv). It is possible to define, for every ε > 0, two infinite sets A1

and A2 of positive integers such that ŷ
(n)
p ∈ (yp − ε, yp] for every n ∈ A1,

and ŷ
(n)
p = yp for every n ∈ A2. From cases (i) and (ii) we have, a.s.,

lim
n∈A1, n→∞

φ̂g(F̂
(1)
p,n, x) = αp(yp)

Eg(X − x)I[Y > yp]

1− p
(4.7)

+ (1− αp(yp))
Eg(X − x)I[Y ≥ yp]

1− p
,
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lim
n∈A2, n→∞

φ̂g(F̂
(1)
p,n, x) = αp(yp)

Eg(X − x)I[Y > yp]

1− p
(4.8)

+ (1− αp(yp))
Eg(X − x)I[Y ≥ yp]

1− p
.

Now, taking into account the equalities

αp(yp) = 1, αp(yp) = 0,

Eg(X − x)I[Y > yp] = Eg(X − x)I[Y ≥ yp] = (1− p)φg(F
(1)
p , x),

we get (4.1).

Cases (v)–(vi) may be proved similarly to case (iv). We define A1 =

{n ∈ N : ŷ
(n)
p = yp}, A2 = {n ∈ N : ŷ

(n)
p ∈ [yp, yp + ε)} and A1 = {n ∈ N :

ŷ
(n)
p = yp}, A2 = {n ∈ N : ŷ

(n)
p = yp} in cases (v) and (vi), respectively, and

prove (4.7) and (4.8).
The proof in case k = 2 is similar. To prove (4.1) for k = 3, 4 it is enough

to put Yj = Xj , j ≥ 1, in (4.1) for k = 1, 2.
Now we prove (4.2). From our assumptions and Proposition 4 we have

(4.9) x̂(n)
q → xq a.s. as n → ∞.

We prove (4.2) separately for every type (i)–(iii) of g in the definition of
K. For g as in (i) it is enough to prove that for every a ∈ R and q ∈ (0, 1),

∑n
j=1 I[Xj > a+ x̂

(n)
q ]

n
→ P [X > a+ xq],

∑n
j=1 I[Xj ≥ a+ x̂

(n)
q ]

n
→ P [X ≥ a+ xq],

a.s. as n → ∞, which follows from Proposition 4 and Corollary 2.
In case g satisfies (ii), from Proposition 4, for every ε > 0 there exists

n0 ∈ N such that x̂
(n)
q ∈ (xq − ε, xq + ε) for every n > n0. We have

∣∣∣∣
∑n

i=1 g(Xi − x̂
(n)
q )

n
− Eg(X − xq)

∣∣∣∣

≤

∣∣∣∣
∑n

i=1 g(Xi − xq)

n
− Eg(X − xq)

∣∣∣∣

+

∑n
i=1 g(Xi − xq + ε)− g(Xi − xq − ε)

n
.

From the strong law of large numbers the first term on the right-hand side
tends to zero, and the second to Eg(X − xq + ε) − Eg(X − xq − ε). This
last expression tends to zero as ε → 0, because g is a Lipschitz function.

If g satisfies (iii) then from Proposition 4,

(4.10) e−λx̂(n)
q → e−λxq a.s. as n → ∞
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and

(4.11)

∑n
j=1 e

λXj

n
→ EeλX a.s. as n → ∞

imply

(4.12)

∑n
j=1 g(Xj − x̂

(n)
q )

n
→ Eg(X − xq) a.s. as n → ∞.

The properties (iv)–(vi) of the class K follow from the construction of
the function φg(F, x).

Proof of Theorem 1. From (v) it is enough to prove that for j = 1, 2, 3, 4,

(4.13) Z(j)
n (g, q; p) → x(j)(g, q; p) a.s. as n → ∞,

and for j = 3, 4,

(4.14) Z(j)
n (g, q; 1 − p) → x(j)(g, q; 1 − p) a.s. as n → ∞,

and

(4.15) x̂(n)
q → xq a.s. as n → ∞.

But (4.15) follows from Proposition 4 and (ii). To simplify notations, in this
proof we omit the arguments g, q; p and g, q; 1 − p. To prove (4.13) choose
ε > 0 and put

A1 = [φ̂g(F̂X , x̂(n)
q ) → φg(FX , xq)],

A2 = [ sup
x∈(x(j)−ε,x(j)+ε)

|φ̂g(F̂
(j)
p,n, x)− φg(F

(j)
p , x)| → 0].

Then by Propositions 6 and 4 and assumptions (iii) and (iv), P [A1] =
P [A2] = 1. Define

δ(ε) = min{|φg(Fp, x
(j) − ε)− φg(Fp, x

(j))|,

|φg(Fp, x
(j) + ε)− φg(Fp, x

(j))|}.

Then from Proposition 5 and (i),

ωn(ε) = sup
x∈(x(j)−ε,x(j)+ε)

|φ̂g(F̂
(j)
p,n, x+ 0)− φ̂g(F̂

(j)
p,n, x− 0)| → 0

a.s. as n → ∞.

On the other hand, putting

Z(j)
n = sup{x : φ̂g(F̂

(j)
p,n, x) ≥ φ̂g(F̂X , x̂(n)

q )},

Z(j)
n = inf{x : φ̂g(F̂

(j)
p,n, x) < φ̂g(F̂X , x̂(n)

q )},
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we prove that

Bn = [x(j) − ε < Z(j)
n ≤ Z(j)

n ≤ Zn(j) < x(j) + ε](4.16)

⊃ B1
n ∩B2

n ∩B3
n,

where

B1
n = [|φ̂g(F̂X , x̂(n)

q )− φg(FX , xq)| < δ(ε)/2],

B2
n = [ sup

x∈(x(j)−ε,x(j)+ε)

|φ̂g(F̂
(j)
p,n, x)− φg(F

j
p , x)| < δ(ε)/6],

B3
n = [ωn(ε) < δ(ε)/3].

Indeed, from Proposition 3 we get

Bn ⊃ [φ̂g(F̂
(j)
p,n, x

(j) − ε) > φ̂g(F̂
(j)
p,n, Z

(j)
n ) ≥ φ̂g(F̂

(j)
p,n, Z

(j)
n )

≥ φ̂g(F̂
(j)
p,n, Z

(j)
n ) > φ̂g(F̂

(j)
p,n, x

(j) + ε)]

⊃ [φg(F
(j)
p , x(j) − ε)− δ(ε)/6 > φ̂g(F̂

(j)
p,n, Z

(j)
n ) ≥ φ̂g(F̂

(j)
p,n, Z

(j)
n )

≥ φ̂g(F̂
(j)
p,n, Z

(j)
n ) > φg(F

(j)
p , x(j) + ε) + δ(ε)/6] ∩B2

n

⊃ [φg(F
(j)
p , x(j)) + 5δ(ε)/6 > φ̂g(F̂X , x̂(n)

q ) + δ(ε)/3

≥ φ̂g(F̂X , x̂(n)
q )− δ(ε)/3 ≥ φg(F

(j)
p , x(j))− 5δ(ε)/6] ∩B2

n ∩B3
n

⊃ B1
n ∩B2

n ∩B3
n.

Moreover, by the continuity of φg(F
(j)
p , ·) and the triangle inequality we have

B3
n ⊃ B2

n.

Furthermore,

lim
n→∞

lim
m→∞

P
[ m⋃

k=n

B1
k

]
= P [A1] = 1

and

lim
n→∞

lim
m→∞

P
[ m⋃

k=n

B2
k

]
= P [A2] = 1

imply

lim
n→∞

lim
m→∞

P
[ m⋃

k=n

Bk

]
= 1,

which gives (4.13). The proof of (4.14) is similar.

Proof of Propositions 1 and 2. To prove Proposition 1 we remark that
in this case φg(F, x) = F (x) for every distribution function F and x ∈ R.
For Proposition 2 it is easy to check (cf. [4]) that g-monotone dependence
functions do not depend on q and xq, so that we may omit the assumption
(ii) of Theorem 1 which deals with xq. Furthermore, because for every
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random variable X the equality EXI[X > x] = EXP [X > x] is possible
only when P [X > x] = 0 or P [X > x] = 1, the denominators of the g-
monotone dependence functions in these cases are always nonzero and we
may omit the assumption (v). The assumption (iv) is trivially satisfied and
the fact that we may omit the assumption (i) follows immediately from
Proposition 6.

Proof of Theorem 2. It is enough to prove that for j = 1, 2, 3, 4,

X
Θ

(j)
n (g,q;p)+1:n

→ x(j)(g, q; p) a.s. as n → ∞,

X
Θ

(j)
n (g,q;p):n

→ x(j)(g, q; p) a.s. as n → ∞,

and for j = 3, 4,

X
Θ

(j)
n (g,q;1−p)+1:n

→ x(j)(g, q; 1 − p) a.s. as n → ∞,

X
Θ

(j)
n (g,q;1−p):n

→ x(j)(g, q; 1 − p) a.s. as n → ∞;

but this follows from (vi) and Proposition 3.

5. An example of convergence. In practice, the computation of
g-monotone dependence functions is difficult, but for some functions, e.g.
g(x) = exp{x}, it is easier than for the monotone dependence function. On
the other hand, the numerical computations are almost always easy. The
computation time depends only on the size of the sample. In this section we
give an example of a pair (X,Y ) of random variables for which we compute
the g-monotone dependence functions. Moreover, for two samples drawn
from the (X,Y )-distribution we compute the sample g-monotone depen-
dence functions.

Example. Let X be uniformly distributed on [−1, 1] and let, for some
parameter km ∈ [−1, 1],

(5.1) Y =





−
X − km
1 + km

if −1 ≤ X ≤ km,

X − km
1− km

if km < X ≤ 1.

The pair (X,Y ) of random variables has the uniform distribution on the
support given in Figure 1.

Now we draw two samples of size N = 10 and N = 30, respectively,
from uniform distribution on [−1, 1], and compute the sample g-monotone
dependence functions.

Putting q = 0.5, km = −0.5, g(x) = sign(x)xs, s = 2, we obtain the
results illustrated in Figure 2. The thick lines show the “exact” g-monotone
dependence functions.
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Fig. 1. The support of (X,Y ) with parameter km ∈ [−1, 1]

If we consider the behaviour of Y with respect to X, we see that Y is
strictly decreasing for X < km and increasing for X > km. Therefore, the

g-monotone dependence functions µ
(i)
(Y,X)(g, q, p), i = 1, 2, are first negative

(decreasing tendency) but later positive (increasing tendency). The choice
of km greater than 0.5 moves the zero of those functions to the right. The
smaller values of q affect the beginning shape of the curves (they are more
extended in this region), whereas the greater values of q affect the ends of
the curves. If we consider the smaller s, the curves are vertically flattened,
whereas for greater s they are vertically extended.

Let us consider the behaviour of X with respect to Y . We see the con-
stant tendency to association of large values of X with large values of Y as
the line Y = (X − km)/(1 − km) takes 75% of the values of X whereas the
line Y = −(X − km)/(1+km) only 25%, irrespective of the interval of values

of Y which we are considering. If km = 0 then µ
(i)
(X,Y )(g, 0.5, p) ≡ 0, i = 1, 2.

This constant tendency is illustrated in Figure 2 by the line which is almost
straight. The choice of a different value of q does not affect the shape of
the curves in this case, whereas the choice of a different s results in vertical
translation.

The sample g-monotone dependence functions for N = 10 are drawn as
thin lines and for N = 30 we only show dots on continuous curves. We see
that the differences between the sample g-monotone dependence function for
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Fig. 2. The g-monotone dependence functions and sample g-monotone dependence func-
tions for the pair (X,Y ) defined in Figure 1

N = 10 and the exact g-monotone dependence function are visible, whereas
for N = 30 they are negligibly small.
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PWN, Warszawa, and Kluwer, Dordrecht, 1991.

Andrzej Krajka
Institute of Mathematics
Maria Curie-Sk lodowska University
Pl. Marii Curie-Sk lodowskiej 1
20-031 Lublin, Poland
E-mail: akrajka@klio.umcs.lublin.pl

Received on 5.3.1996;

revised version on 8.10.1997


