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A GENERALIZATION OF UENO’S INEQUALITY
FOR n-STEP TRANSITION PROBABILITIES

Abstract. We provide a generalization of Ueno’s inequality for n-step
transition probabilities of Markov chains in a general state space. Our re-
sult is relevant to the study of adaptive control problems and approxima-
tion problems in the theory of discrete-time Markov decision processes and
stochastic games.

Let (S, F) be a measurable space and let P and @ be transition proba-
bilities from S into S. The composition of P and @, denoted by PQ, is the
transition probability defined by

PQ(37B) = S Q(Za B) P(s,dz),
s
where s € S, B € F. For any integer n > 2, we write Q™ to denote the
n-step transition probability QQ™~! from S into S, induced by Q! = Q.
By || - ||, we denote the total variation norm in the vector space of all finite

signed measures on (S, F). Recall that if 1 and ps are probability measures
on (S,F), then

1 = p2ll = 2 sup |1 (B) — pa(B)]-
BeF

In the sequel, we prove the following result.

THEOREM. Let P and @) be transition probabilities from S into S and
let

e =sup [|P(s,-) — Q(s,")]-
seS
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Then for s,z € § and n > 1 we have

(1) [1P"(s,) = Q" (2, )| <e(T+B+...+ 5" 1) + 287,
where
(2) /8 - %SUPz,yeS HP(%’, ) - P(y7)H

REMARK 1. If € = 0, then (1) is exactly Ueno’s inequality [9].

COROLLARY 1. If 8 < 1, then (1) implies that for n sufficiently large we

have
2e

127 (s,) = @™z )l < T—5

for each s,z € S.

Suppose that S is the state space for Markov chains having transition
probabilities P and @ respectively. If there exists a probability measure 7p
on (S, F) such that

sup [|[P"(s,) —mp(-)]| =0 asn— oo,
seS
at a geometric rate, then the Markov chain with transition probability P is

called uniformly ergodic and wp is the unique invariant probability measure
for P.

COROLLARY 2. Let mp and mg be the invariant probability measures for
P and Q respectively. Assume that the Markov chains with transition prob-
abilities P and Q are uniformly ergodic. If B < 1, then

€

1-5

It is well known that the Markov chain with transition probability T’
is uniformly ergodic if and only if there exist a constant ¢ € (0,1) and a
positive integer m such that

3) [T (s,-) = T™(2,-)]| < 2¢

lmp = moll <

for every s,z € S. For a proof see, e.g., [2].
Put P =T" and fix a transition probability (). Define

e=sup [|[T™(s,-) — Q(s,")]-
ses

Assume that (3) holds and consider 8 defined by (2). Then 8 < 1, and using
Corollary 1, we infer that for n sufficiently large, we have

1Q" (5,-)=Q" (2, )| < Q" (s,-)=T"" (s, ) I+[IT™" (5,-)=Q" (2, )| < =

1-p8

This enables us to state the following result.
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COROLLARY 3. If (3) holds and 2¢/(1 — ) < 1, then the Markov chain
with transition probability Q is also uniformly ergodic. Moreover,
< €
(®) I = moll <
where p (mq) is the unique invariant probability measure for the transition
probability T (Q).

REMARK 2. Our main result and Corollaries 1-3 may have applications
to approximation problems or adaptive control problems as studied in [3], [5],
[6], [7] and [8]. A result closely related to Corollary 2 was proved by Stettner
in [8], but our inequality (5) has a more elementary form. Also, our proof
is quite elementary while the method of proof in [8] is based on the theory
of bounded transition operators considered in [4]. However, Stettner’s proof
[8] can be used for studying some uniform convergence problems of n-step
transition probabilities in different norms on the state space [6].

Proof of Theorem. We proceed by induction on n. It is easy to see that
(1) holds for n = 1. Suppose it holds for a positive integer n. Note that

(B) P (s, = QM (=)l
= [P"P(s,) = Q"Q(z, )|
<|[P"P(s,) = Q"P(z, )| + 1Q"P(2,-) = Q"Q(z, )]
< |IP"P(s,) = Q"P(z, )| +e.

Moreover, we have

(6) [P"P(s,) = Q" P(z,-)|| = 2 sup |L(B)],
BeF

P
P(

where
L(B) = SP(@',B) M(S,Z)(dm')
S
for any B € F and pu(s,2)(-) = P™(s, ) — Q"(z,").
Define

pla) = P(a, B) - inf P(y. B)

Note that ¢ > 0 on S and
L(B) = \¢(z) (s, 2)(dz).
S

Fix B € F. Without loss of generality, we can assume that |L(B)| =
L(B) (otherwise, use —pu(s,z)(dx) instead of pu(s,z)(dx)). By the Hahn
decomposition theorem [1], there exists a set D € F such that

u(s,z)(E) >0 forall E€eF, ECD,

(s, z)(E) <0 forall Ee F, ECS\D.
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Note that
IL(B)| = L(B) = { () u(s, 2)(dzx) + | (@) p(s, z)(d)
D S\D
< | o) uls, 2)(dx) < (s, 2)(D) sup ()
D xE
< %M(‘S? Z)(D) xsg;lepsz‘P(x7B) - P(y7 B)’
Hence,
(1) L(B) < u(s,2)(D) - %f;lgs |P(z,-) = Py, )|l = pu(s,z)(D) - B.
But
p(s,z)(D) = P"(s,D) = Q"(z,D) < 32 sup |[P"(s,F) = Q" (2, F)|

FeF
=3P (s,)) = Q™).

This and (7) imply that

(8) |L(B)| = L(B) < || P"(s,) = Q"(z,")] - B.

By (6) and (8) we obtain

[P"P(s,-) = Q"P(z, )| < [[P"(s,-) = Q"(2, )l - B.
Applying this inequality, (5) and our induction hypothesis we finally get
“PnJrl(S? ) - Qn+1(27 )H Se+ HPn($7 ) - Qn('zv )” ’ /8

<e+Be+ef+...+ep 426
=e(l+B+...+8") +25",

which we wanted to prove.
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