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A GENERALIZATION OF UENO’S INEQUALITY

FOR n-STEP TRANSITION PROBABILITIES

Abstract. We provide a generalization of Ueno’s inequality for n-step
transition probabilities of Markov chains in a general state space. Our re-
sult is relevant to the study of adaptive control problems and approxima-
tion problems in the theory of discrete-time Markov decision processes and
stochastic games.

Let (S,F) be a measurable space and let P and Q be transition proba-
bilities from S into S. The composition of P and Q, denoted by PQ, is the
transition probability defined by

PQ(s,B) =
\
S

Q(z,B)P (s, dz),

where s ∈ S, B ∈ F . For any integer n ≥ 2, we write Qn to denote the
n-step transition probability QQn−1 from S into S, induced by Q1 = Q.
By ‖ · ‖, we denote the total variation norm in the vector space of all finite
signed measures on (S,F). Recall that if µ1 and µ2 are probability measures
on (S,F), then

‖µ1 − µ2‖ = 2 sup
B∈F

|µ1(B)− µ2(B)|.

In the sequel, we prove the following result.

Theorem. Let P and Q be transition probabilities from S into S and

let

ε = sup
s∈S

‖P (s, ·)−Q(s, ·)‖.
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Then for s, z ∈ S and n ≥ 1 we have

(1) ‖Pn(s, ·)−Qn(z, ·)‖ ≤ ε (1 + β + . . .+ βn−1) + 2βn,

where

(2) β = 1

2
supx,y∈S ‖P (x, ·) − P (y, ·)‖.

Remark 1. If ε = 0, then (1) is exactly Ueno’s inequality [9].

Corollary 1. If β < 1, then (1) implies that for n sufficiently large we

have

‖Pn(s, ·)−Qn(z, ·)‖ ≤
2ε

1− β

for each s, z ∈ S.

Suppose that S is the state space for Markov chains having transition
probabilities P and Q respectively. If there exists a probability measure πP

on (S,F) such that

sup
s∈S

‖Pn(s, ·)− πP (·)‖ → 0 as n → ∞,

at a geometric rate, then the Markov chain with transition probability P is
called uniformly ergodic and πP is the unique invariant probability measure

for P .

Corollary 2. Let πP and πQ be the invariant probability measures for

P and Q respectively. Assume that the Markov chains with transition prob-

abilities P and Q are uniformly ergodic. If β < 1, then

‖πP − πQ‖ ≤
ε

1− β
.

It is well known that the Markov chain with transition probability T
is uniformly ergodic if and only if there exist a constant c ∈ (0, 1) and a
positive integer m such that

(3) ‖Tm(s, ·)− Tm(z, ·)‖ ≤ 2c

for every s, z ∈ S. For a proof see, e.g., [2].

Put P = Tm and fix a transition probability Q. Define

ε = sup
s∈S

‖Tm(s, ·)−Q(s, ·)‖.

Assume that (3) holds and consider β defined by (2). Then β < 1, and using
Corollary 1, we infer that for n sufficiently large, we have

‖Qn(s, ·)−Qn(z, ·)‖ ≤ ‖Qn(s, ·)−Tmn(s, ·)‖+‖Tmn(s, ·)−Qn(z, ·)‖ ≤
4ε

1− β
.

This enables us to state the following result.
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Corollary 3. If (3) holds and 2ε/(1 − β) < 1, then the Markov chain

with transition probability Q is also uniformly ergodic. Moreover ,

(4) ‖πT − πQ‖ ≤
ε

1− β

where πT (πQ) is the unique invariant probability measure for the transition

probability T (Q).

Remark 2. Our main result and Corollaries 1–3 may have applications
to approximation problems or adaptive control problems as studied in [3], [5],
[6], [7] and [8]. A result closely related to Corollary 2 was proved by Stettner
in [8], but our inequality (5) has a more elementary form. Also, our proof
is quite elementary while the method of proof in [8] is based on the theory
of bounded transition operators considered in [4]. However, Stettner’s proof
[8] can be used for studying some uniform convergence problems of n-step
transition probabilities in different norms on the state space [6].

Proof of Theorem. We proceed by induction on n. It is easy to see that
(1) holds for n = 1. Suppose it holds for a positive integer n. Note that

(5) ‖Pn+1(s, ·)−Qn+1(z, ·)‖

= ‖PnP (s, ·)−QnQ(z, ·)‖

≤ ‖PnP (s, ·)−QnP (z, ·)‖ + ‖QnP (z, ·) −QnQ(z, ·)‖

≤ ‖PnP (s, ·)−QnP (z, ·)‖ + ε.

Moreover, we have

(6) ‖PnP (s, ·) −QnP (z, ·)‖ = 2 sup
B∈F

|L(B)|,

where

L(B) =
\
S

P (x,B)µ(s, z)(dx)

for any B ∈ F and µ(s, z)(·) = Pn(s, ·) −Qn(z, ·).
Define

ϕ(x) = P (x,B)− inf
y∈S

P (y,B).

Note that ϕ ≥ 0 on S and

L(B) =
\
S

ϕ(x)µ(s, z)(dx).

Fix B ∈ F . Without loss of generality, we can assume that |L(B)| =
L(B) (otherwise, use −µ(s, z)(dx) instead of µ(s, z)(dx)). By the Hahn
decomposition theorem [1], there exists a set D ∈ F such that

µ(s, z)(E) ≥ 0 for all E ∈ F , E ⊂ D,

µ(s, z)(E) ≤ 0 for all E ∈ F , E ⊂ S \D.
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Note that

|L(B)| = L(B) =
\
D

ϕ(x)µ(s, z)(dx) +
\

S\D

ϕ(x)µ(s, z)(dx)

≤
\
D

ϕ(x)µ(s, z)(dx) ≤ µ(s, z)(D) sup
x∈S

ϕ(x)

≤ 1

2
µ(s, z)(D) sup

x,y∈S

2|P (x,B)− P (y,B)|.

Hence,

(7) L(B) ≤ µ(s, z)(D) · 1

2
sup
x,y∈S

‖P (x, ·) − P (y, ·)‖ = µ(s, z)(D) · β.

But

µ(s, z)(D) = Pn(s,D)−Qn(z,D) ≤ 1

2
2 sup
F∈F

|Pn(s, F )−Qn(z, F )|

= 1

2
‖Pn(s, ·)−Qn(z, ·)‖.

This and (7) imply that

(8) |L(B)| = L(B) ≤ 1

2
‖Pn(s, ·)−Qn(z, ·)‖ · β.

By (6) and (8) we obtain

‖PnP (s, ·)−QnP (z, ·)‖ ≤ ‖Pn(s, ·) −Qn(z, ·)‖ · β.

Applying this inequality, (5) and our induction hypothesis we finally get

‖Pn+1(s, ·)−Qn+1(z, ·)‖ ≤ ε+ ‖Pn(s, ·)−Qn(z, ·)‖ · β

≤ ε+ β(ε+ εβ + . . .+ εβn−1 + 2βn)

= ε(1 + β + . . . + βn) + 2βn+1,

which we wanted to prove.
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