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CONVERGENCE ACCELERATION

BY THE E+p-ALGORITHM

Abstract. A new algorithm which generalizes the E-algorithm is pre-
sented. It is called the E+p-algorithm. Some results on convergence accel-
eration for the E+p-algorithm are proved. Some applications are given.

1. Introduction. Many convergent sequences (sn) of complex numbers
are of the form

(1) sn = s+ a1g1(n) + . . .+ aigi(n) + rn,

where (gi(n)), i = 1, . . . , k, are known sequences satisfying for each i,
gi+1(n) = o(gi(n)) (i.e. gi+1(n)/gi(n) → 0 as n → ∞), the limit s of
(sn) and the coefficients ai, i = 1, . . . , k, are unknown and rn = o(gk(n)).

When the sequences (gi(n)), i = 1, . . . , k, satisfy gi(n + 1)/gi(n)
→ bi as n → ∞, with some additional assumptions, the E-algorithm with
(gi(n)), i = 1, . . . , k, as auxiliary sequences is effective for accelerating (sn)
(see [2, 3, 5]). However, in general, the E-algorithm cannot accelerate (sn)
when the sequences (gi(n+1)/gi(n)), i = 1, . . . , k, are not convergent. This
is, for example, the case of the sequence

sn = g1(n) + rn,

where

g1(2n) =
1

3n
, g1(2n+ 1) =

1

3n
+

1

5n
, r2n =

1

4n
, r2n+1 = 0

for n = 0, 1, . . .

We have
g1(2n+ 1)

g1(2n)
−→
n

1,
g1(2n+ 2)

g1(2n+ 1)
−→
n

1

3
,

g1(n+ 2)

g1(n)
−→
n

1

3
.
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The convergence of (sn) is linear periodic of period 2. One can easily check
that (sn) is not accelerated by the sequence transformation

E1 : (sn) →
(

g1(n+ 1)sn − g1(n)sn+1

g1(n+ 1)− g1(n)

)

which is the first step of the E-algorithm. However, the sequence transfor-
mation

E+2,1 : (sn) →
(

g1(n+ 2)sn − g1(n)sn+2

g1(n+ 2)− g1(n)

)

does accelerate (sn).
The sequence transformation E+2,1 is a particular case of the sequence

transformation

E+p,1 : (sn) →
(

g1(n+ p)sn − g1(n)sn+p

g1(n+ p)− g1(n)

)

,

where p is a positive integer, p ≥ 1 and (g1(n)) is an auxiliary sequence. It
includes the sequence transformation T+p of Gray and Clark (g1(n) = ∆sn)
[7] and the process (∆2

p) of Delahaye (g1(n) = sn+p − sn) [4].

In order to accelerate convergence of sequences (sn) of complex numbers
of the form (1), where the gi are such that

gi((n + 1)p + j)

gi(np+ j)
−→
n

bj,i for j = 0, . . . , p − 1

(p is a fixed positive integer), we present in Section 2 a new algorithm called
the E+p-algorithm. Its first step is the preceding sequence transformation
E+p,1. It is a generalization of the E-algorithm.

In Section 3 we establish some results on convergence acceleration for
the E+p-algorithm. Section 4 is devoted to some applications of the E+p-
algorithm. Numerical examples are given for illustrating the theoretical
results.

2. The E+p-algorithm. Let us begin with the following notations:

• N: the set of positive integers.

• N
∗ = N− {0}.

• C: the set of complex numbers.

• Re z: real part of the complex number z.

• Conv(C): the set of convergent sequences of complex numbers.
• If (sn) ∈ Conv(C), then s denotes its limit.

• un = o(vn) means that un/vn → 0 as n → ∞.

Let p ∈ N
∗. Let (sn) ∈ Conv(C) be such that for all n ∈ N,

(2) sn = s+ a1g1(n) + . . .+ aigi(n) + . . . ,
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where the gi are some known sequences. We have

sn = s+ a1g1(n) + . . .+ aigi(n) + . . . ,

sn+p = s+ a1g1(n+ p) + . . . + aigi(n+ p) + . . .

Thus

g1(n+ p)sn − g1(n)sn+p

g1(n+ p)− g1(n)
= s+

∞
∑

i=2

ai
g1(n+ p)gi(n)− g1(n)gi(n+ p)

g1(n + p)− g1(n)
.

Set

E
(n)
+p,1 =

g1(n + p)sn − g1(n)sn+p

g1(n+ p)− g1(n)
,

g
(n)
1,i =

g1(n + p)gi(n)− g1(n)gi(n+ p)

g1(n+ p)− g1(n)
, n ≥ 0, i ≥ 2.

Thus

E
(n)
+p,1 = s+ a2g

(n)
1,2 + . . .+ aig

(n)
1,i + . . .

The sequence (E
(n)
+p,1) is of the form (2). Consequently, the process can be

repeated. Thus, we obtain the following E+p-algorithm:

E
(n)
+p,0 = sn, g

(n)
0,i = gi(n), n ≥ 0, i ≥ 1,

E
(n)
+p,k =

g
(n+p)
k−1,kE

(n)
+p,k−1 − g

(n)
k−1,kE

(n+p)
+p,k−1

g
(n+p)
k−1,k − g

(n)
k−1,k

, n ≥ 0, k ≥ 1,

g
(n)
k,j =

g
(n+p)
k−1,kg

(n)
k−1,j − g

(n)
k−1,kg

(n+p)
k−1,j

g
(n+p)
k−1,k − g

(n)
k−1,k

, n ≥ 0, k ≥ 1, j > k.

The sequences (gi(n)), i ≥ 1, are called the auxiliary sequences of the E+p-
algorithm.

Remarks. 1. When p = 1, we obtain the E-algorithm.

2. For each j > k, the sequence (g
(n)
k,j )n is obtained by applying the

sequence transformation E+p,k : (sn) → (E
(n)
+p,k) to the sequence (gj(n)).

3. If the sequences (g1(n)), . . . , (gk(n)) do not depend (respectively de-
pend) on (sn), then the sequence transformation E+p,k is linear (respectively
nonlinear).

4. The E+p-algorithm can be generalized by replacing p by an integer
p(n, k) (depending on n and k) in the rules of the E+p-algorithm.

Theorem 1. Let j ∈ {0, . . . , p−1} and k ≥ 0. Let E
(n)
j,k , k ≥ 0, n ≥ 0, be

the quantities obtained by applying the E-algorithm (i.e. the E+1-algorithm)
to (snp+j)n with (hj,i(n)) = (gi(np+j)), i = 1, 2, . . . , as auxiliary sequences.

Then E
(n)
j,k = E

(np+j)
+p,k for all n ≥ 0.
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P r o o f. By induction on k with the help of Remarks 1 and 2.

Definition. Let m ∈ N
∗. Let (sn) be a sequence of complex numbers.

We say that (sn) is m-periodic if sn+m = sn for n = 0, 1, . . .

Definition. Let T be a sequence transformation. The set of sequences
(sn) such that the sequence (T (n)) obtained by applying T to (sn) is
1-periodic is called the kernel of T .

Theorem 2 (see [2]). The kernel of the sequence transformation E+1,k

is the set of sequences (sn) such that

sn = s+ a1g1(n) + . . . + akgk(n), n = 0, 1, . . .

Theorem 3. The kernel of the sequence transformation E+p,k is the set

of sequences (sn) of the form

sn = s+ a1(n)g1(n) + . . .+ ak(n)gk(n), n ≥ 0,

where the sequences (ai(n)), i = 1, . . . , k, are p-periodic.

P r o o f. This follows immediately from Theorems 1 and 2.

Remark. The kernel of E+p,k contains the kernel of E+1,k.

Theorem 4 (see [2]). If for all n,

sn = s+ a1g1(n) + . . .+ aigi(n) + . . . ,

then for all k and n,

E
(n)
+1,k = s+ ak+1g

(n)
k,k+1 + . . .+ aig

(n)
k,i + . . .

An immediate consequence of Theorems 1 and 4 is

Theorem 5. If for all n,

sn = s+ a1(n)g1(n) + . . .+ ai(n)gi(n) + . . . ,

where the sequences (ai(n)), i ≥ 1, are p-periodic, then for all k and n,

E
(n)
+p,k = s+ ak+1(n)g

(n)
k,k+1 + . . . + ai(n)g

(n)
k,i + . . .

Let us now establish some results on convergence acceleration for the
E+p-algorithm.

3. Convergence acceleration. Let (sn) ∈ Conv(C). Let k ∈ N
∗.

Theorem 6. Assume that :

1. E
(n)
+p,k−1 → s as n → ∞.

2. There are ε > 0 and n0 such that for all n ≥ n0,

|g(n+p)
k−1,k/g

(n)
k−1,k − 1| ≥ ε.

Then E
(n)
+p,k → s as n → ∞.
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P r o o f. We have

E
(n)
+p,k − s = (E

(n)
+p,k−1 − s) +

(E
(n)
+p,k−1 − s)− (E

(n+p)
+p,k−1 − s)

g
(n+p)
k−1,k/g

(n)
k−1,k − 1

.

Thus

|E(n)
+p,k − s| ≤

(

1 +
2

|g(n+p)
k−1,k/g

(n)
k−1,k − 1|

)

max(|E(n)
+p,k−1 − s|, |E(n+p)

+p,k−1 − s|),

and from assumptions 1 and 2 we get the assertion.

Theorem 7. Assume that :

1. E
(n)
+p,k−1 → s as n → ∞.

2. For each j ∈ {0, . . . , p− 1}, g
((n+1)p+j)
k−1,k /g

(np+j)
k−1,k → lj 6= 1 as n → ∞.

Then:

(i) E
(n)
+p,k → s as n → ∞.

(ii) E
(n)
+p,k − s = o(E

(n)
+p,k−1 − s) iff

∀j ∈ {0, . . . , p− 1},
E

((n+1)p+j)
+p,k−1 − s

E
(np+j)
+p,k−1 − s

−→
n

lj .

P r o o f. (i) follows from Theorem 6.

(ii) We have

(3)
E

(n)
+p,k − s

E
(n)
+p,k−1 − s

=

g
(n+p)
k−1,k

g
(n)
k−1,k

−
E

(n+p)
+p,k−1 − s

E
(n)
+p,k−1 − s

g
(n+p)
k−1,k

g
(n)
k−1,k

− 1

,

(4) E
(n)
+p,k − s = o(E

(n)
+p,k−1 − s) iff

∀j ∈ {0, . . . , p− 1}, E
(np+j)
+p,k − s = o(E

(np+j)
+p,k−1 − s).

From (3)–(4) and assumption 2 we get the assertion.

Remark. If
∏p−1

j=0 lj 6= 0, then

E
(n)
+p,k − s = o(E

(n+p)
+p,k−1 − s) iff E

(n)
+p,k − s = o(E

(n)
+p,k−1 − s).

Let Lp be the set of sequences (sn) ∈ Conv(C) such that for every
j ∈ {0, . . . , p − 1},

s(n+1)p+j − s

snp+j − s
−→
n

aj ∈ [−1, 1[.
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Then Lp contains the set Pp of sequences (sn) ∈ Conv(C) such that for all
j ∈ {0, . . . , p − 1},

snp+j+1 − s

snp+j − s
−→
n

aj 6= 1 with 0 <
∣

∣

∣

p−1
∏

j=0

aj

∣

∣

∣
< 1

(i.e. the convergence of (sn) is linear periodic of period p). The sequence
transformation (∆2

p) accelerates Pp (i.e. (∆2
p) accelerates the convergence

of each sequence (sn) ∈ Pp; see [4]).

Theorem 8. The sequence transformation (∆2
p) accelerates Lp. The

sequence transformation T+p accelerates the set of sequences (sn) ∈ Lp such

that for all j ∈ {0, . . . , p − 1},

lim
n→∞

s(n+1)p+j+1 − s(n+1)p+j

snp+j+1 − snp+j
= lim

n→∞

s(n+1)p+j − s

snp+j − s
.

In particular , T+p accelerates Pp.

P r o o f. This follows from Theorem 7.

Definition. We say that the auxiliary sequences (gi(n)), i ≥ 1, of the
E+p-algorithm satisfy the condition (b+p) if for all i ≥ 1 and j ∈ {0, . . .
. . . , p − 1},

gi((n+ 1)p + j)

gi(np+ j)
−→
n

bj,i 6= 1 with bj,i 6= bj,k for k 6= i.

Remarks. 1. The condition (b+1) is a condition due to Brezinski,
under which some results on convergence acceleration for the E-algorithm
are proved in [2].

2. If the gi satisfy the condition (b+1), then the condition (b+p) is satis-
fied in the following cases:

(i) |b0,i| 6= |b0,j | for all i 6= j;
(ii) the numbers bi are real and b0,ib0,j > 0 for all i 6= j;
(iii) the numbers b0,i are real and p is odd.

We assume in the sequel that the condition (b+p) is satisfied.

Lemma. Let j ∈ {0, . . . , p− 1}. For each k ≥ 0 and i > k,

g
((n+1)p+j)
k,i

g
(np+j)
k,i

−→
n

bj,i.

P r o o f. By induction on k.

With the help of Theorem 7 and the Lemma, we can easily prove

Theorem 9. Let (sn) ∈ Conv(C), k ≥ 1. Then:

1. E
(n)
+p,k → s as n → ∞.
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2. E
(n)
+p,k − s = o(E

(n)
+p,k−1 − s) iff for all j ∈ {0, . . . , p− 1},

E
((n+1)p+j)
+p,k−1 − s

E
(np+j)
+p,k−1 − s

−→
n

bj,k.

Definition. Let (fi(n)), i = 1, 2, . . . , be some sequences of complex
numbers. Then (f1, . . . , fi, . . .) is called an asymptotic sequence if for each i,
fi+1(n) = o(fi(n)).

Let (f1, . . . , fi, . . .) be an asymptotic sequence. Let (tn) be a sequence
of complex numbers. The notation

tn ≈ a1(n)f1(n) + . . . + ak(n)fk(n) + . . . ,

where for each i, (ai(n)) is a p-periodic sequence, means that for all k ≥ 1,

tn = a1(n)f1(n) + . . .+ ak(n)fk(n) + o(fk(n)) as n → ∞
(i.e. for each j ∈ {0, . . . , p − 1}, (tnp+j) has an asymptotic expansion with
respect to (h1, . . . , hi, . . .) where (hi(n)) = (fi(np+ j)), i = 1, 2, . . .).

By using the previous Lemma, we can easily prove

Theorem 10. If (g1, . . . , gi, . . .) is an asymptotic sequence, then so is

(gk,k+1, . . . , gk,i, . . .) for each k ≥ 1.

Theorem 11. Let (sn) ∈ Conv(C). Assume that :

1. (g1, . . . , gi, . . .) is an asymptotic sequence.

2. sn−s ≈ a1(n)g1(n)+ . . .+ai(n)gi(n)+ . . . where (ai(n)) is p-periodic
for each i.

For each k ≥ 1, we have:

(i) E
(n)
+p,k − s ≈ ak+1(n)g

(n)
k,k+1 + . . .+ ai(n)g

(n)
k,i + . . .

(ii) If ai(n) = 0 for all i > k and n, then E
(n)
+p,k = s for all n.

(iii) Let j ∈ {0, . . . , p − 1}. If ai(j) = 0 for all i > k, then E
(np+j)
+p,k = s

for all n. If the coefficients ai(j), i ≥ k, are not all zero, then

E
(np+j)
+p,k − s

E
(np+j)
+p,k−1 − s

−→
n

bj,k − bj,ij
bj,k − 1

,

where ij is the smallest index such that ij ≥ k and aij (j) 6= 0.

(iv) If
∏p−1

j=0 ak(j) 6= 0 then E
(n)
+p,k − s = o(E

(n+p)
+p,k−1 − s).

P r o o f. (i) By induction on k.
(ii), (iii) and (iv) follow from (i).

Remark. If
∏p−1

j=0 ak(j) 6= 0 for each k ≥ 1, then E
(n)
+p,k − s =

o(E
(n+p)
+p,k−1 − s) for all k ≥ 1.
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An immediate consequence of Theorem 11 is

Corollary. Let (sn) ∈ Conv(C). Assume that (g1, . . . , gi, . . .) is an

asymptotic sequence. If

sn − s ≈ a1g1(n) + . . .+ aigi(n) + . . . ,

where ai 6= 0 for all i ≥ 1, then E
(n)
+p,k − s = o(E

(n+p)
+p,k−1 − s) for all k ≥ 1.

Theorem 12. Let (sn) ∈ Conv(C). Assume that :

1. For each j ∈ {0, . . . , p− 1},

(5) snp+j − s ≈ λn
j n

αj

(

aj,0 +
aj,1
nαj,1

+ . . .+
aj,i
nαj,i

+ . . .

)

,

where 0 < |λj | < 1, aj,0 6= 0, 0 < Reαj,1 < Reαj,2 < . . . < Reαj,i < . . .
2. The auxiliary sequences (gi(n)) of the E+p-algorithm are such that

for all i ≥ 1 and j ∈ {0, . . . , p− 1},

gi(np+ j) ≈ λn
j n

θj,i

(

aj,i,0 +
aj,i,1
nαj,i,1

+ . . .+
aj,i,k
nαj,i,k

+ . . .

)

,

with aj,i,0 6= 0, 0 < Reαj,i,1 < Reαj,i,2 < . . . < Reαj,i,k < . . .

Then for each k ≥ 1 and each j ∈ {0, . . . , p − 1}, either there exists n0

such that E
(np+j)
+p,k = s for all n ≥ n0, or E

(np+j)
+p,k − s = o(E

((n+1)p+j)
+p,k−1 − s)

and

E
(np+j)
+p,k − s ≈ λn

j n
βj,k

(

bj,k,0 +
bj,i,1
nβj,i,1

+ . . .+
bj,i,k
nβj,i,k

+ . . .

)

,

with bj,k,0 6= 0, Reβj,k ≤ Reαj − k, 0 < Re βj,i,1 < Reβj,i,2 < . . .
. . . < Re βj,i,k < . . .

P r o o f. By induction on k.

Theorem 12 generalizes a result for the E-algorithm (i.e. p = 1) given
in [5].

Definition. TheE+p-algorithm is called effective on (sn) if for all k ≥ 1,

either E+p,k is exact on (sn) (i.e. there exists n0 such that E
(n)
+p,k = s for all

n ≥ n0) or E
(n)
+p,k − s = o(E

(n+p)
+p,k−1 − s).

Theorem 13. Assume that (sn) satisfies (5). The E+p-algorithm with

the following particular auxiliary sequences is effective on (sn):

I. gi(n) = sn+ip − sn+(i−1)p, i ≥ 1;

II. g1(np + j) = λnp+j
j nβj , βj ∈ C, j = 0, . . . , p − 1 and gi(n) =

sn+(i−1)p − sn+(i−2)p for i ≥ 2;
III. gi(n) = (sn − sn−p)/n

i−1, i ≥ 1;
IV. gi(n) = (sn − sn−p)/n

i−2, i ≥ 1;
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V. gi(n) =
(sn+p − sn)(sn − sn−p)

2

(sn+p − 2sn + sn−p)ni−1
, i ≥ 1;

VI. gi(np+ j) = λnp+j
j (n+ i)βj , βj ∈ C, i ≥ 1, j = 0, . . . , p− 1.

P r o o f. This follows immediately from Theorem 12.

Let us mention that in the cases considered in Theorem 13 the E+p-
algorithm is a generalization of the ε-algorithm (case I), the process p
(case II), the transformation T of Levin (case III), the transformation U of
Levin (case IV), the transformation V of Levin (case V), and the
G-transformation (case VI).

4. Applications. Let (sn) be a convergent sequence such that the error
sn − s has an asymptotic expansion of the form

sn − s ≈ a1g1(n) + . . .+ aigi(n) + . . . ,

where for all i ≥ 1 and j ∈ {0, . . . , p− 1},
gi(np+ j)

gi(np+ j − 1)
−→
n

bj,i

with
p−1
∏

m=0

bm,i 6= 0, 1 and

p−1
∏

m=0

bm,i 6=
p−1
∏

m=0

bm,k for i 6= k.

The auxiliary sequences (gi(n)), i ≥ 1, satisfy the condition (b+p). Conse-
quently, we can use the E+p-algorithm for accelerating (sn).

If there exist i0 ≥ 1 and r, s ∈ {0, . . . , p − 1} such that br,i0 6= bs,i0 then
(gi0(n+1)/gi0(n)) is not convergent. Hence, we cannot use Brezinski’s result
[2] and Fdil’s result [5] for the E-algorithm.

Assume that the auxiliary sequences (gi(n)), i ≥ 1, of the E-algorithm
are such that for all k ≥ 0 and i > k,

g
(n+1)
k,i

g
(n)
k,i

−→
n

bi with 1 > b1 ≥ . . . ≥ bi ≥ . . .

If some numbers bi are close to 1, the E-algorithm is numerically unstable.
Choose a positive integer p∗ (odd if there exists i such that bi = −1) such

that bp
∗

1 is not close to 1 (for example, bp
∗

1 ≤ 0.8). Then the condition
(b+p∗) is satisfied and the E+p∗ -algorithm with (gi(n)), i ≥ 1, as auxil-
iary sequences is numerically stable. Consequently, we can use the E+p∗ -
algorithm instead of the E-algorithm for accelerating the convergence. For
illustration, consider the sequence

sn =

n
∑

k=0

(k + 1)(k + 2)(.9)k , n = 0, 1, . . .
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It is convergent to s = 2000. From a result due to Wimp [14, p. 19], we get

sn − s ≈ a1g1(n) + . . .+ aigi(n) + . . .

with gi(n) = (.9)n(n+ 1)2−i+1, i ≥ 1, n ≥ 0.

Applying the E-algorithm and the E+4-algorithm to (sn), with gi(n),
i ≥ 1, as auxiliary sequences, we obtain

n E
(0)
n E

(0)
+4,n/4

4 2000.00000000115 2.934258724233079
8 2000.000000001432 28.04921739106413
12 2000.000000010298 1999.999999999997
16 2000.000000096219 2000.000000000004
20 2000.000060098672 2000.000000000002
24 1999.999887612695 1999.999999999999

Let us now give another application of the E+p-algorithm.

The use of some quadrature formulas for computing the integral s =T1
0
. . .
T1
0
f(x1, . . . , xk) dx1 . . . dxk, where f does not have a logarithmic sin-

gularity, often leads to an asymptotic expansion of the form

(6) T (h)− s ≈ a1h
γ1 + . . . + akh

γk + . . . ,

where T (h) is an approximate value of s, associated with the step length h
([0, 1] is divided into 1/h subintervals of length h), 0 < γ1 < . . . < γi < . . .
(see, for example, [6, 8–12]).

Let (hn) be a sequence of step lengths. Set sn = T (hn), n ≥ 0, and
gi(n) = hγi

n for i ≥ 1, n ≥ 0. Thus

sn − s ≈ a1g1(n) + . . .+ aigi(n) + . . .

For the choice hn = 1/2n, n ≥ 0 (geometric sequence), the auxiliary
sequences (gi(n)), i ≥ 1, satisfy the condition (b+1) (bi = 1/2γi ) and the
E-algorithm is numerically stable. Consequently, we can compute s with
high accuracy. The disadvantage of this choice is that the number of function
evaluations is doubled from one step to the next.

The choice hn = 1/(n + 1), n ≥ 0 (harmonic sequence), is the most
economic in terms of the number of function evaluations. However, the
E-algorithm with (gi(n)), i ≥ 1, as auxiliary sequences is numerically un-
stable.

H̊avie [9] proposed the following general choice:

h2n =
1

σ0Mn
, h2n+1 =

1

σ1Mn
, n ≥ 0,
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where σ0, σ1,M ∈ N
∗ with 1 ≤ σ0 < σ1, 2 ≤ M .

σ0 σ1 M (hn)

1 2 4 ( 12 )
n

1 2 3 Bauer
2 3 2 Bulirsch

For this general choice, we have, for all i ≥ 1 and n ≥ 0,

gi(2n+ 1)

gi(2n)
=

(

σ0

σ1

)γi

,
gi(2n + 2)

gi(2n + 1)
=

(

σ1

σ0M

)γi

.

The sequences (gi(n)), i ≥ 1, satisfy the condition (b+2). Consequently, the
E+2-algorithm can be used for accelerating (sn).

Let p be a positive integer, p ≥ 2. Put

hj =
1

2j
, hp(n+1)+j =

1

2n+p + j
, j = 0, . . . , p− 1, n = 0, 1, . . .

This choice is more economical than H̊avie’s choice. We have, for all i ≥ 1,

gi(np)

gi(np− 1)
−→
n

(

1

2

)γi

,
gi(np+ j)

gi(np+ j − 1)
−→
n

1 for j = 1, . . . , p− 1,

gi(n+ p)

gi(n)
−→
n

bi =

(

1

2

)γi

.

The condition (b+p) is satisfied and the E+p-algorithm is numerically stable.
Thus, we can use the E+p-algorithm for computing s with high accuracy.
Note that the E-algorithm with gi(n) = hγi

n , i ≥ 1, as auxiliary sequences
is numerically unstable because for all i ≥ 1, the sequence (gi(n+1)/gi(n))
has 1 as an accumulation point.

Example:

1\
0

1√
x
dx = 2.

Let T (h) be the approximate value of s =
T1
0
(1/

√
x) dx computed by the

rectangular method:

T (h) = h

1/h−1
∑

k=0

((k + 1/2)h)−1/2.

The function T (h) has an asymptotic expansion of the form (6), with γi =
(2i− 1)/2 for i = 1, 2, . . .

Let (hn) be the preceding sequence of step lengths with p = 4. Applying
the E-algorithm and the E+4-algorithm to the sequence sn = T (hn), we
obtain
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n E
(0)
n E

(0)
+4,n/4

8 2.000005028488225 2.000267155507016
16 2.000000047703804 2.000001670788114
24 2.000002619190568 2.000000068392044
32 1.99977686651984 2.000000003881382
40 2.203733445234798 2.00000000023691
48 0.5596855849893074 2.000000000014719

We see that the E+4-algorithm is more effective than the E-algorithm for
accelerating (sn).
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