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CONVERGENCE ACCELERATION
BY THE F,,-ALGORITHM

Abstract. A new algorithm which generalizes the E-algorithm is pre-
sented. It is called the E,-algorithm. Some results on convergence accel-
eration for the I/, -algorithm are proved. Some applications are given.

1. Introduction. Many convergent sequences (s, ) of complex numbers
are of the form
(1) sn:3+algl(n)+"-+aigi(n)+rna
where (g;(n)), ¢ = 1,...,k, are known sequences satisfying for each i,
git1(n) = o(gi(n)) (ie. gi+1(n)/gi(n) — 0 as n — o0), the limit s of
(sn) and the coefficients a;, i = 1,...,k, are unknown and r, = o(gx(n)).
When the sequences (g;(n)), i = 1,...,k, satisfy g;(n + 1)/g;(n)
— b; as n — oo, with some additional assumptions, the F-algorithm with
(gi(n)), i =1,...,k, as auxiliary sequences is effective for accelerating (s,,)
(see [2, 3, 5]). However, in general, the E-algorithm cannot accelerate (s,,)
when the sequences (g;(n+1)/g;(n)),i = 1,...,k, are not convergent. This
is, for example, the case of the sequence

Spn = gl(n) + T,

where
1 1 1 1
91(2”):377 91(2n+1):3—n+5—n7 Ton = Topt1 =0
forn=0,1,...
We have
2 1 2 2 1 2 1
91(2n + )_)1, 91(2n + )_}_’ gi(n+ )_}_‘
g1(2n) n g(2n+1) »n 3 g1(n) n 3
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The convergence of (s,,) is linear periodic of period 2. One can easily check
that (s,,) is not accelerated by the sequence transformation

(s g1(n+1)s, — g1(n)sny1
E1(n)—>< P e )

which is the first step of the F-algorithm. However, the sequence transfor-
mation

g1(n+2)s, —gi1(n)spt2
E+2712(Sn)—>< ( )n ()n—i—)
g1(n +2) — g1(n)
does accelerate (sy,).
The sequence transformation E 5 is a particular case of the sequence

transformation

(s g1(n+p)sp — g1(n)Snip
Epr n)—>< L i )

where p is a positive integer, p > 1 and (g1(n)) is an auxiliary sequence. It
includes the sequence transformation 7, of Gray and Clark (g1 (n) = Asy,)
[7] and the process (AZ) of Delahaye (g1(n) = sn1p — 55) [4].

In order to accelerate convergence of sequences (s, ) of complex numbers
of the form (1), where the g; are such that

gi((n+1)p+Jj)
gi(np +7)
(p is a fixed positive integer), we present in Section 2 a new algorithm called
the F,p-algorithm. Its first step is the preceding sequence transformation
E. 1. It is a generalization of the E-algorithm.

In Section 3 we establish some results on convergence acceleration for
the Fp-algorithm. Section 4 is devoted to some applications of the E,-
algorithm. Numerical examples are given for illustrating the theoretical
results.

—>bj,i fOI'jZO,...,p—l

2. The E,-algorithm. Let us begin with the following notations:

e N: the set of positive integers.

e N* =N — {0}.

e C: the set of complex numbers.

e Re z: real part of the complex number z.

e Conv(C): the set of convergent sequences of complex numbers.
o If (s,,) € Conv(C), then s denotes its limit.

e u, = o(v,) means that u, /v, — 0 as n — co.

Let p € N*. Let (s,) € Conv(C) be such that for all n € N,
(2) sn=s+ag1(n) +...+aigi(n) +...,
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where the g; are some known sequences. We have
Spn=84+a1g1(n)+...+a;g;(n)+ ...,
Snip =S+t argi(n+p)+...+aigi(n+p)+...

Thus
9N+ p)sn = 91 (W)snsp _ i , 91 +)gi(n) — g1(n)gi(n + p)
g1(n+p) —g1(n) —~ g1(n+p) —g1(n)
Set
g _ 91+ P)sn = 1(n)sn4p
+p,1 ™ _
g1(n+p) — g1(n)

) _ 91 +p)gi(n) —gi(n)gi(n+p) o

b g1(n+p) — g1(n) ’ R
Thus

E—(&—T;)),l =s+ agggg) +...+ aiggfl») +...

The sequence (ES:?I) is of the form (2). Consequently, the process can be
repeated. Thus, we obtain the following F ,-algorithm:

ES:;{O = Sn, g((JTLi) = gi(n), n>0,1>1,
(ntp) p(n) _ ™ gt
E(n)k _ -1, 61 p k-1~ -1,k +p,k—17 n>0 k> 1,
tP, (n+p) _ _(n)
gkfl,k gk717k
n+ n n n+
(n) _ g’(f—lz,)lggl(c—)l,j - gl(s—)l,kgl(c—lz,)]?

kJj — (n+p) _ (n) ’ nz0, k=1 7>k
-1k — Ik-1,k

The sequences (g;(n)), @ > 1, are called the auziliary sequences of the E -
algorithm.

REMARKS. 1. When p = 1, we obtain the E-algorithm.

2. For each j > k, the sequence (g,inj))n is obtained by applying the

sequence transformation E,, j : (sp) — (Eg;))k) to the sequence (g;(n)).

3. If the sequences (g1(n)),...,(gx(n)) do not depend (respectively de-
pend) on (s,,), then the sequence transformation E,, 1, is linear (respectively
nonlinear).

4. The Ep-algorithm can be generalized by replacing p by an integer
p(n, k) (depending on n and k) in the rules of the E ,-algorithm.

THEOREM 1. Let j € {0,...,p—1} and k > 0. Let E\}), k>0, n>0, be
the quantities obtained by applying the E-algorithm (i.e. the Eyi-algorithm)
t0 (Snp+j)n with (h;i(n)) = (gi(np+7)), i =1,2,..., as auziliary sequences.

Then EJ(Z) = Ei’;’j;j) for allm > 0.
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Proof. By induction on k£ with the help of Remarks 1 and 2.

DEFINITION. Let m € N*. Let (s,,) be a sequence of complex numbers.
We say that (s,) is m-periodic if s;4pm = s, for n =10,1,...

DEFINITION. Let T be a sequence transformation. The set of sequences
(s,) such that the sequence (T(™) obtained by applying T to (s,) is
1-periodic is called the kernel of T.

THEOREM 2 (see [2]). The kernel of the sequence transformation Eiq j
is the set of sequences (sy) such that

Sn=s8+ag1(n)+ ... +argr(n), n=0,1,...

THEOREM 3. The kernel of the sequence transformation E, \ is the set
of sequences (s,) of the form

Sn=s+ai(n)gi(n)+...+ar(n)gr(n), n=>0,
where the sequences (a;(n)), i =1,...,k, are p-periodic.
Proof. This follows immediately from Theorems 1 and 2.
REMARK. The kernel of E, ; contains the kernel of F j.
THEOREM 4 (see [2]). If for all n,
Spn=84+a1g1(n)+...+a;g;(n)+ ...,
then for all k and n,
E(fl)k =s+ ak+1g,(:,2+1 +...F aig,(:i) + ...
An immediate consequence of Theorems 1 and 4 is
THEOREM 5. If for all n,
sn =5+ a1(n)gi(n) + ... +ai(n)gi(n) + ...,
where the sequences (a;(n)),i > 1, are p-periodic, then for all k and n,
Ei’?k =s+ akH(n)g,(:,zH +...+ ai(n)g,(:i) + ...

Let us now establish some results on convergence acceleration for the
E ,-algorithm.

3. Convergence acceleration. Let (s,,) € Conv(C). Let k € N*.
THEOREM 6. Assume that:

1. E_(:;)k_lés as n — o0o.

2. There are € > 0 and ng such that for all n > nyg,

+
|9;(€n_1f)13/91(€n_)17k -1 >e.

Then Ei’?k — 8 asn — 0.
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Proof. We have

(n) (n+p)
EM 5= (E(n) —s)+ (Bypr—1 —8) = (Eypimy — 5)
+p,k‘ - —'rp,k—l n4+ n .
91(671?12/9127)1,k -1
Thus
n 2 n -
B sl < <1 TR ) max((E®),_, — o, [ECP) | ),
|gk—1,k Ie-1k — 1]

and from assumptions 1 and 2 we get the assertion. m

THEOREM 7. Assume that:

1. E(J;),k_l — S asn — oo.

2. For each j € {0,...,p— 1}, g,i(f;r’,i)pﬂ)/g,(ﬁpfg) —1; #1 asn — oc.
Then:

(i) Esrn)k — § asn — oo.

D,
(i) BY —s=o(B), | —s) iff
((nznm) s
. +p7 -1 .
VjG{O,,p—l}, E("p"!‘]) I T)l]
+p,k—1

Proof. (i) follows from Theorem 6.
(ii) We have
(ntp)  p(n+p)

-1k Papk-1 75
(n) (n) (n)
3) EJ:;,k -5 ngiLk Eﬁo,kq -
(n) o (n+p) ’
E—&-T;),k—l -8 gkn—ll,)k 1
(n)
Ik 1,k
4) Esgk —s= O(E(i;)’kil —s) iff
Vie{0,....p—1}, BV —s=oEIT) ).

From (3)—(4) and assumption 2 we get the assertion. m

REMARK. If Hﬁ.’*l l; # 0, then

E(+T;))k — 5= O(Eiz—j_]le —s) iff Eg;)k — 5= O(E(i;)’kil —s).

Let L, be the set of sequences (s,) € Conv(C) such that for every
j€{0,...,p—1},

S 1 i — S
Sty © % g5 e [—1,1].
Snp+j —S "
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Then L, contains the set P, of sequences (s,) € Conv(C) such that for all
j€{0,...,p—1},

p—1
Snpti+tl — S
%—sz;él With0<‘Haj‘<1
Snpt+j —S T i
7=0
(i.e. the convergence of (s,) is linear periodic of period p). The sequence
transformation (A?2) accelerates P, (i.e. (A2) accelerates the convergence

of each sequence (s,,) € P,; see [4]).

THEOREM 8. The sequence transformation (AZQ,) accelerates L,. The
sequence transformation Ty, accelerates the set of sequences (s,) € L, such

that for all j € {0,...,p—1},
St ptitl T S4lpts _ g, S(ndlpri — S
L SDpti+ (tDpty _ g5y 20D 2
n—o00 Snp+i+l — Snp+j n=oo Sppty — S

In particular, T, accelerates P,.

Proof. This follows from Theorem 7.

DEFINITION. We say that the auxiliary sequences (g;(n)), ¢ > 1, of the
E, p-algorithm satisfy the condition (bs,) if for all ¢ > 1 and j € {0,...

.,p— 1},
gi((n+p +7)
9i(np+J)

REMARKS. 1. The condition (by;) is a condition due to Brezinski,
under which some results on convergence acceleration for the F-algorithm
are proved in [2].

2. If the g; satisfy the condition (b41), then the condition (by,) is satis-
fied in the following cases:

(i) |bo,| # [bo,s| for all i # j;
(ii) the numbers b; are real and by ;b ; > 0 for all i # j;
(iii) the numbers by ; are real and p is odd.

— bj,i #1 with bj,i #* bj7k for k # i.

We assume in the sequel that the condition (by,) is satisfied.
LEMMA. Let j € {0,...,p— 1}. For each k >0 and i > k,

](€(n+1)p+j)

71 ..

Gt Y
Ik i

Proof. By induction on k.
With the help of Theorem 7 and the Lemma, we can easily prove
THEOREM 9. Let (s,) € Conv(C), k > 1. Then:

1. E(ﬁo)k—>sasn—>oo.



Convergence acceleration by the Ep-algorithm 333

2. E(!;)k — 5= O(E(J;)’kil — ) iff for all j € {0,...,p— 1},

B+ Dp) _

+p,k—1
(np+7) s
Eer,kfl - "
DEFINITION. Let (f;(n)), i = 1,2,..., be some sequences of complex
numbers. Then (fi,..., fi,...) is called an asymptotic sequence if for each i,

fixr(n) = o(fi(n)).
Let (f1,..., fi,...) be an asymptotic sequence. Let (¢,) be a sequence
of complex numbers. The notation

tn = ar(n)fi(n) + ...+ ax(n) fu(n) + ...,
where for each i, (a;(n)) is a p-periodic sequence, means that for all k > 1,
tn = a1(n) f1(n) + ...+ ax(n) fr(n) + o(fr(n)) asn — oo

(i.e. for each j € {0,...,p — 1}, (typ+;) has an asymptotic expansion with
respect to (hy,...,h;,...) where (h;(n)) = (fi(np+j)), i =1,2,...).

By using the previous Lemma, we can easily prove

THEOREM 10. If (g1,...,9i,...) is an asymptotic sequence, then so is
(Gk,k+15 -+« s Ghyiy - - ) for each k > 1.

THEOREM 11. Let (sy,) € Conv(C). Assume that:

1. (g1, Gis--.) is an asymptotic sequence.
2. sp—s=~ai(n)gi(n)+...+a;i(n)gi(n)+... where (a;(n)) is p-periodic
for each i.

For each k > 1, we have:

(i) BY = s = aren (Mg + -+ ai(n)gl +

(ii) If a;(n) =0 for all i >k and n, then E(ﬁa)k = s for all n.

(iii) Let 7 € {0,...,p—1}. If a;(j) = 0 for all i > k, then E(ﬁffzj) =s
for all n. If the coefficients a;(j), ¢ > k, are not all zero, then

(np+j)
Bl —s bjk — bj,
; b
B s v b

where i; is the smallest index such that i; > k and a;;(j) # 0.

(iv) If TI'Zg ax(j) # 0 then B, — s = o(BVSHY | — ).

Proof. (i) By induction on k.
(ii), (iii) and (iv) follow from (i). m

REMARK. If Hf;é ar(j) # 0 for each £k > 1, then E(ﬁg)k -5 =

O(ES::,?EI —s) for all k> 1.
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An immediate consequence of Theorem 11 is

COROLLARY. Let (s,) € Conv(C). Assume that (g1,...,¢i,...) is an
asymptotic sequence. If

Sn—s~aygri(n)+...+agi(n)+...,
where a; # 0 for all i > 1, then E_(:;{k —s= O(E_([;T,fll — ) for all k > 1.
THEOREM 12. Let (sy,) € Conv(C). Assume that:
1. For each j € {0,...,p— 1},

aj,1

' Qi
(5) snpﬂ—sz)\;bn%(amjt : +...+i+...>,

n%i1 ni,i
where 0 < |A\;| <1, ajo#0, 0<Reaj; <Reajs<...<Rea,;; <...

2. The auxiliary sequences (gi(n)) of the Ey,-algorithm are such that
foralli>1 and j €{0,...,p—1},

. y Qajq aj,i
gi(np—i-j)%)\?nej’l<aj,i,g+#+...+]’—£+...>,

n%i,i,1 nii.k
with ;.0 7é 0, 0 < Re Q51 < Ream"g <...<Re ik < ...

Then for each k > 1 and each j € {0,...,p — 1}, either there exists ng

such that Ei’;’j;j) = s for all n > ng, or Ei’;’j;j) -5 = O(E_(,'_(;,Zi)f—’_j) —5)
and

s U Ty bjia bj,iik
E+p,k’ —SN)\?TL Jk(b]7k70+ nﬁj,i,l + ...+ nﬁj,i,k + ... s
with bj,k,() 7é 0, Reﬁng < Re a; — k, 0 < Reﬁjml < Reﬂj,i,g < ...
<Reﬁj7,;7k <...

Proof. By induction on k.

Theorem 12 generalizes a result for the E-algorithm (i.e. p = 1) given
in [5].

DEFINITION. The E ,-algorithm is called effective on (s,,) if for all &k > 1,
(n)
Jr

either £, 1 is exact on (s,) (i.e. there exists ng such that £ ok = s forall

n > mng) or E_(:;)k — 5= o(Ei’;T,f’ll —8).

THEOREM 13. Assume that (s,,) satisfies (5). The E,,-algorithm with
the following particular auxiliary sequences is effective on (sy,):

L gi(n) = sptip — Snt(i—1)ps 1> 1;
Il. g1(np + j) = A?’l’ﬂnﬁj, B; € C, j=0,....,p—1 and gi(n) =
Snt(i—1)p — Sn+(i—2)p JOT © = 2;
1L gy(n) = ($n — $n_p)/mi~", i > 1
IV. gi(n) = (s — sn,p)/n’;_Q, 1> 1;
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B B 2
V. gi(n) = (Sn+p 5n)(Sn = Sn—p) P> 1

(Sntp = 285 + Sp—p)ni=t’
VL gi(np+4) = XiP (n+4i)%, g, €C, i>1,j=0,....,p— 1.

Proof. This follows immediately from Theorem 12.

Let us mention that in the cases considered in Theorem 13 the E -
algorithm is a generalization of the e-algorithm (case I), the process p
(case II), the transformation T' of Levin (case III), the transformation U of
Levin (case IV), the transformation V of Levin (case V), and the
G-transformation (case VI).

4. Applications. Let (s,,) be a convergent sequence such that the error
S$n — s has an asymptotic expansion of the form

Sp—s=~aygi(n)+...+a;g;(n)+ ...,
where for all ¢ > 1 and j € {0,...,p — 1},

gi(np + ) b,
gilnp+j—1) n
with

p—1 p—1 p—1

I tmi#01 and ] bmi # [] bms fori#k.
m=0 m=0 m=0

The auxiliary sequences (g;(n)),7 > 1, satisfy the condition (b,). Conse-
quently, we can use the E,-algorithm for accelerating (s,).

If there exist i9g > 1 and 7, s € {0,...,p — 1} such that b, ;, # b, then
(Gio(n+1)/Gio(n)) is not convergent. Hence, we cannot use Brezinski’s result
[2] and Fdil’s result [5] for the E-algorithm.

Assume that the auxiliary sequences (g;(n)), i > 1, of the E-algorithm
are such that for all £ > 0 and 7 > k,

If some numbers b; are close to 1, the F-algorithm is numerically unstable.
Choose a positive integer p* (odd if there exists i such that b; = —1) such
that B¢ is not close to 1 (for example, B < 0.8). Then the condition
(byp-) is satisfied and the E,p--algorithm with (g;(n)), i > 1, as auxil-
iary sequences is numerically stable. Consequently, we can use the E, -
algorithm instead of the E-algorithm for accelerating the convergence. For
illustration, consider the sequence
n
sn=> (k+1)(k+2)(9* n=01,...
k=0
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It is convergent to s = 2000. From a result due to Wimp [14, p. 19], we get

A. Fdil

Sp—s~ajgi(n)+...+a;gi(n)+...

with g;(n) = (.9)"(n+1)27+1 i > 1, n > 0.

Applying the FE-algorithm and the F,4-algorithm to (s,), with g;(n),
1 > 1, as auxiliary sequences, we obtain

n

B

(0)
E+4,n/4

4
8
12
16
20
24

2000.00000000115

2000.0000000014:32
2000.000000010298
2000.000000096219
2000.000060098672
1999.999887612695

2.934258724233079
28.04921739106413
1999.999999999997
2000.000000000004
2000.000000000002
1999.999999999999

Let us now give another application of the E,-algorithm.

The use of some quadrature formulas for computing the integral s

S(l] . S(l] f(xy,...,2k)dxy ... drg, where f does not have a logarithmic sin-
gularity, often leads to an asymptotic expansion of the form

(6)

where T'(h) is an approximate value of s, associated with the step length h
([0,1] is divided into 1/h subintervals of length h), 0 < v < ... <7 < ...
(see, for example, [6, 8-12]).

Let (h,) be a sequence of step lengths. Set s, = T'(h,), n > 0, and
gi(n) = h)i for i > 1, n > 0. Thus

T(h)—s%alh”—l—...—i—akh'y’“—i—...,

Spn—s~aigi(n) +...+aigi(n)+...

For the choice h,, = 1/2", n > 0 (geometric sequence), the auxiliary
sequences (g;(n)), ¢ > 1, satisfy the condition (by1) (b; = 1/2%) and the
FE-algorithm is numerically stable. Consequently, we can compute s with
high accuracy. The disadvantage of this choice is that the number of function
evaluations is doubled from one step to the next.

The choice h, = 1/(n + 1), n > 0 (harmonic sequence), is the most
economic in terms of the number of function evaluations. However, the
E-algorithm with (g;(n)), ¢ > 1, as auxiliary sequences is numerically un-
stable.

Havie [9] proposed the following general choice:

1 o1
- O'UMn’ ntl = 0'1]\4n7

hQTL n Z 07
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where 0g,01, M € N* with 1 <09 <01, 2< M.

oo o1 M (ha)
21 ()

Bauer

1 2 3
2 3 2 DBulirsch

For this general choice, we have, for all ¢ > 1 and n > 0,
gi(2n+1) <@>% gi(2n+2) < o1 >%
gi(2n) o1 gi(2n+1) ooM )

The sequences (g;(n)), i > 1, satisfy the condition (b;2). Consequently, the
Eo-algorithm can be used for accelerating (sy,).

Let p be a positive integer, p > 2. Put

1 1

h]:2—J, hp(n+1)+j:2”T—|—j’ j:O,...,p—l,n:O,l,...

This choice is more economical than Havie’s choice. We have, for all i > 1,

gi(np) (}) v gi(np + j)
gilnp—1) n \2) 7 gi(np+j—1)

The condition (b)) is satisfied and the E,-algorithm is numerically stable.
Thus, we can use the E,-algorithm for computing s with high accuracy.
Note that the E-algorithm with g;(n) = k), i > 1, as auxiliary sequences
is numerically unstable because for all ¢ > 1, the sequence (g;(n+1)/g;(n))

has 1 as an accumulation point.

—1 forj=1,...,p—1,
n

dr = 2.

1
EXAMPLE: S
0 X

-

Let T'(h) be the approximate value of s = Sé(l /+/x) dx computed by the
rectangular method:
1/h—1
T(h)=h > ((k+1/2)h)~"/>
k=0
The function T'(h) has an asymptotic expansion of the form (6), with v, =
(2i—1)/2 fori=1,2,...
Let (h,,) be the preceding sequence of step lengths with p = 4. Applying

the E-algorithm and the E.4-algorithm to the sequence s, = T'(h,), we
obtain
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(0) (0)
n En E'Jr41n/4

8 2.000005028488225 2.000267155507016
16 2.000000047703804  2.000001670788114
24 2.000002619190568  2.000000068392044
32 1.99977686651984  2.000000003881382
40 2.203733445234798  2.00000000023691
48 0.5596855849893074 2.000000000014719

We see that the E4-algorithm is more effective than the E-algorithm for
accelerating (sy,).
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