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WITH TIME-AVERAGED COST

Abstract. This paper considers Bayesian parameter estimation and an
associated adaptive control scheme for controlled Markov chains and diffu-
sions with time-averaged cost. Asymptotic behaviour of the posterior law of
the parameter given the observed trajectory is analyzed. This analysis sug-
gests a “cost-biased” estimation scheme and associated self-tuning adaptive
control. This is shown to be asymptotically optimal in the almost sure sense.

I. Introduction. A popular scheme for adaptive control is the so-called
“self-tuning” control wherein a parameterized family of system models is
presupposed and the parameter is estimated “on-line”. One then uses at
each time instant that control which would have been the optimal choice
for the current value of the system state if the current parameter estimate
were the true parameter. Also known as “certainty equivalence”, this arti-
ficial separation between estimation and control is expected to lead to an
asymptotically optimal behaviour in an appropriate sense.

In the context of controlled Markov chains, such a scheme was first in-
troduced in [22] and was shown to be asymptotically optimal for the time-
averaged (or “ergodic”) cost under a certain “identifiability condition”. (See
[10] for some extensions.) The latter condition essentially ensures complete
model discrimination under arbitrary control policies. It is an extremely
strong condition and the scheme may not be optimal in its absence, as was
clearly brought out in [12]. This led to various modifications of the basic
scheme, such as randomization of the control or estimate [13], [17] and in-
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troduction of an explicit cost bias in estimation [19], [20], [23]. The latter
methodology, which artificially biases the estimation scheme in favour of
parameters leading to lower optimal cost, was introduced in [19], [20] and
extended in [6] to a very general class of Markov chains. A variant appeared
in [23], [8]. Extensions of the results to controlled diffusion processes appear
in [11], [7], [9]—the extensions of Mandl’s scheme (assuming the “identifia-
bility condition”) in [11], extensions of the scheme of [19], [20], [6] in [7] and
that of [23], [8] in [9].

Yet another important development in this direction is the work on
“asymptotically efficient” control policies [1] wherein one seeks to meet in
an asymptotic sense certain precomputed lower bounds on the difference
between the actual cost and the true optimum (the “loss”), whatever be
the value of the time parameter. This analysis, however, is confined to the
finite parameter space and does not seem to extend easily to more general
situations.

All these works consider a non-Bayesian framework. However, Bayesian
set-up may be more attractive in some circumstances. One reason is the
possibility of incorporating to advantage any prior knowledge through one’s
choice of the prior probability measure on the parameter space. For ergodic
cost, this certainly will not affect the ergodic or “long-run average” be-
haviour of the estimation scheme and hence the cost. But it should improve
the transient behaviour of the algorithm.

Secondly, Bayesian schemes offer a naturally recursive structure since
the conditional law of the parameter after an additional observation can be
computed from that at the preceding instance and the new data via Bayes
rule, the very reason why Bayesian formalism is standard in nonlinear fil-
tering. Conventional wisdom suggests that one should convert the problem
into a problem with “complete observations” simply by appending the con-
ditional law of the parameter given the observed trajectory as an extra state
variable. This works fine for the “expected integral / sum of running cost”
kind of problems (finite horizon, infinite horizon discounted cost etc.—see,
e.g., [25] or [21], Ch. 11).

For the ergodic cost, however, this is not appealing. The reason is that at
least one component of the extended state, i.e. the posterior law of the pa-
rameter given the observed trajectory, does not exhibit suitable “recurrence”
properties on which the conventional analysis of the ergodic cost problem
crucially depends. In fact, it exhibits the opposite kind of asymptotic be-
haviour, viz., it gets absorbed into a random limit state (i.e., converges).
The conventional dynamic programming-based analysis of the ergodic cost
problem, if possible at all, prescribes at best the optimal behaviour on the
positive recurrent (here, absorbing) part of the state space. Thus it does
not tell one what to do in transient states, i.e., in this special set-up, at any
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time except in the limit! Add to this the difficulty of pushing through such
analysis to continuum state spaces in absence of any Doeblin-type strong
recurrence conditions. This suggests that one should try instead an ad hoc
self-tuning scheme as in the case of the non-Bayesian framework. The aim
of this paper is to propose one such scheme and to prove its almost sure
asymptotic optimality.

In a related work, Di Masi and Stettner [16] consider Bayesian adaptive
control where they work around the lack of “identifiability” by means other
than the use of a cost bias. Specifically, they consider two classes of controls,
controls with forcing and controls with randomization, that ensure adequate
model discrimination without affecting optimality or near-optimality.

The paper is organized as follows: The next section describes the hy-
potheses and the adaptive control scheme for discrete Markov chains. Sec-
tion III provides an analysis of the asymptotic behaviour of the posterior
law, which is of independent interest (and is, in fact, the major component of
this work). Section IV proves the a.s. asymptotic optimality of the adaptive
control scheme. Both these sections and Section II depend on [6] for con-
siderable detail. This, unfortunately, cannot be avoided since the inclusion
in toto thereof would make the present paper extremely unwieldy, requiring
essentially the reproduction of [6] here almost in its entirety.

Section V gives a brief account of the corresponding results for controlled
diffusions. This discussion relies heavily on [7] for details, for the same reason
as above.

We conclude this section with some remarks concerning the implementa-
tion aspects of this work. It shares with other cost-biased schemes [18], [19],
[23] one basic difficulty, viz., its requirement that the optimal cost as a func-
tion of parameter be precomputed and stored. Although this computation
is “off-line” in principle, it still can be a considerable overhead. A more real-
istic approach would be to have an “on-line” approximation scheme for the
same. One promising possibility is to merge this adaptive control scheme
with a stochastic approximation-based “perturbation analysis” as in [14].
We propose this as a promising direction for future research, the present
work then just becomes a key step in this larger programme. It should be
remarked in this context that stochastic approximation has been effectively
used in adaptive control in the recent work on Q-learning [24], where it
approximates a variant of the value function rather than the optimal cost.
This work, however, is confined to finite action sets.

II. Control scheme in the discrete case. We follow the notation of
[5], [6]. Let Xn, n = 1, 2, . . . , be a controlled Markov chain on the state
space S = {1, 2, . . .} with transition matrix

P θ
u = [[p(i, j, ui, θ)]], i, j ∈ S,
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indexed by the control vector u = [u1, u2, . . .] and the unknown parameter θ.
Here ui ∈ D(i) for some prescribed compact metric space D(i), i ∈ S. By
replacing each D(i) by

∏
kD(k) and p(i, j, ·, θ) by its composition with the

projection
∏

kD(k) → D(i) for each i, j, θ, we may (and do) assume that
all D(i)’s are replicas of a fixed compact metric space D. The parameter
θ takes values in a compact subset A of Rm, m ≥ 1, containing a distin-
guished element θ0, the true parameter. The actual system is assumed to
correspond to θ0 which is unknown. Denote by P θ(·), Eθ(·) the probabilities
and expectations under θ ∈ A, dropping the subscript θ when θ = θ0. The
functions p(i, j, ·, ·) are assumed to be continuous and Lipschitz in the last
argument uniformly with respect to the rest. Fix θ ∈ A for the time being.
We now introduce the key terminology to be followed throughout.

(1) P (Y ): For any Polish (i.e., separable and metrizable with a complete
metric) space Y , P (Y ) will denote the Polish space of probability measures
on Y with the topology of weak convergence.

(2) CS: A control strategy (CS for short) is a sequence {ξn}, ξn =
[ξn(1), ξn(2), . . .], of D

∞-valued random variables such that for i ∈ S and
n ≥ 0,

(2.1) Pθ(Xn+1 = i |Xm, ξm,m ≤ n) = p(Xn, i, ξn(Xn), θ).

We say that {Xn} is governed by the control strategy {ξn} whenever (2.1)
holds.

(3) SRS γ[Φ]: If ξn is independent of Xm, m ≤ n, and of ξm,m < n,
for each n, and {ξn} are identically distributed, call the CS a stationary

randomized strategy (SRS). If the common law of each ξn therein is Φ ∈
P (D∞), we denote the SRS as γ[Φ]. As argued in [6] we may take Φ to be

a product measure
∏

i φ̂i with φ̂i ∈ P (D) for each i. Conversely, each such
measure can be identified with an SRS.

(4) SS γ{ξ}: If Φ is a Dirac measure at ξ ∈ D∞, call the corresponding
SRS a stationary strategy (SS), denoted by γ{ξ}.

(5) P θ[Φ], P θ{ξ}: Under an SRS (resp. SS), {Xn} is a Markov chain
with stationary transitions, the transition matrix being given by

P θ[Φ] = [[pθΦ(i, j)]] =
[[\

p(i, j, ξ, θ) φ̂i(dξ)
]]
, i, j ∈ S

[resp. P θ{ξ} = P θ
ξ ].

We assume throughout that S is a single communicating class under each
γ[Φ].

(6) SSRS, SSS: If the resulting chain is positive recurrent, we call the
SRS a stable SRS (SSRS ) or if it is a SS, we call it a stable SS (SSS ).
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(7) Π[Φ],Π{ξ}: Under an SSRS (resp. SSS), the chain will have a unique
invariant probability measure denoted by

Πθ[Φ] = [Πθ[Φ](1),Πθ [Φ](2), . . .]

[resp. Πθ{ξ} = [Πθ{ξ}(1),Πθ{ξ}(2), . . .]].

(8) Π̂[Φ], Π̂{ξ}: Define Π̂θ[Φ] ∈ P (S ×D) by\
f dΠ̂θ[Φ] =

∑

i∈S

\
f(i, ξ) φ̂i(dξ)Π

θ[Φ](i), f ∈ Cb(S ×D).

Π̂θ{ξ} is defined analogously.

In the foregoing and in what follows, we may drop the subscript θ when
θ = θ0.

Let k : S × D → R
+ be a continuous “cost” function. The ergodic or

long run average cost control problem is to a.s. minimize over all the CS the
quantity

(2.2) lim sup
n→∞

1

n

n∑

m=1

k(Xm, ξm(Xm)).

Under an SSRS γ[Φ] or an SSS γ{ξ} and with θ as the operative parameter,
(2.2) a.s. equals

(2.3)
\
k dΠ̂θ[Φ]

in the former case and the same with Π̂θ{ξ} replacing Π̂θ[Φ] in the latter.
If θ were known, this would be the classical ergodic control problem. Since
it is not, one has to take recourse to some adaptive control scheme such as
the self-tuning. Our variant in the Bayesian set-up is as follows.

Under the hypotheses we shall be making later on in this section, it is
possible to find a measurable ν : A×S → D such that the SS γ{ξ} given by
ξ(·) = ν(θ, ·) is an optimal SSS when θ is the operative parameter (Lemma
2.1 below). Let β(θ) be the corresponding, i.e. the optimal, cost (2.3).
Then θ → β(θ) is continuous (Lemma 2.1 below). Let µ0(dθ) be the prior
probability on A, with θ0 ∈ supp(µ0). In other words, we view θ0 as the
actual realization of an A-valued random variable η with law µ0, such that
the regular conditional law of {Xn, n ≥ 0} given η = θ is the law of the
controlled Markov chain described above with θ as the operative parameter.
(This is precisely the Bayesian paradigm.) Let Xn = [X0,X1, . . . ,Xn] for
0 ≤ n <∞, and X∞ = [X0,X1, . . .].

Let µn(dθ |X
n), 0 ≤ n ≤ ∞, be the posterior law of η given the observed

trajectory Xn. We shall see below (equation (3.2)) that µn ≪ µ0 a.s. with
Radon–Nikodym derivative, say, αn(·) for n = 0, 1, . . . Let

An = {θ ∈ A | αn(θ) ≥ 1/n}, n = 1, 2, . . . ,
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θ̃n = argminAn
β(·)

with any tie for the argmin resolved according to some fixed priority rule.
Let {y(n)} be a prescribed increasing sequence of positive integers such that∑

n y(n)
−l <∞ for some l ≥ 1. Define the stopping times τn, n ≥ 1, by

τ1 = 0,

τn = (min{m > τn−1 | Xm = 1}) ∧ (τn−1 + y(n)).

Define θ̂n = θ̃[n] where [n] = the largest τi not exceeding n, for n ≥ 0. Our
adaptive control strategy {ξn} will be

(2.4) ξn(i) = ν(θ̂n, i), i ∈ S,

where ν(·, ·) is as described earlier. We shall prove its a.s. asymptotic
optimality under suitable assumptions.

Our first assumption will be the following.

Assumption A1. There exist ∆ij > 0, i, j ∈ S, such that for all ξ, θ
either p(i, j, ξ, θ) = 0 or p(i, j, ξ, θ) > ∆ij . Assume that I{p(i, j, ξ, θ0) > 0}
× ln[p(i, j, ξ, θ)/p(i, j, ξ, θ0)] for θ ∈ A, ξ ∈ D, i, j ∈ S is bounded uniformly
in i, j, ξ, θ and Lipschitz continuous in θ uniformly with respect to i, j, ξ.

As remarked in [6], this assumption is rather restrictive as it stands, but
could be relaxed to a good extent at the expense of a lot more technicalities
in the proofs of [6] and here. Consider the following two conditions.

Condition C1. For each i ∈ S, there exists a finite Ri ⊂ S such that
p(i, j, ·, ·) ≡ 0 for j 6∈ Ri.

Condition C2. For any finite S1 ⊂ S and M ≥ 1, there exists an
integer N ≥ 1 such that for i ≥ N the length of the minimum path from i
to any state in S1 exceeds M under any SRS.

Our second assumption is the following.

Assumption A2. At least one of the following two sets of alternative
hypotheses holds.

(A2a) Lyapunov condition: Condition (C1) holds and there is an ω :
S → R

+ such that

(i) ω(i) → ∞ as i→ ∞.
(ii) There exist a, ε > 0 such that under any CS and any θ,

(2.5) Eθ[(ω(Xn+1)− ω(Xn) + ε)I{ω(Xn) > a} |Fn] ≤ 0

for n ≥ 1 where Fn = σ(Xi, ξi, i ≤ 1).
(iii) There exists a random variable Z and a scalar λ > 0 such that

E[exp(λZ)] <∞ and for any c ∈ R and CS and any θ ∈ A,

P θ(|ω(Xn+1)− ω(Xn)| > c) ≤ P (Z > c), n ≥ 1.
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(A2b) Near-Monotonicity Condition: Conditions (C1), (C2) hold and k
is near-monotone; i.e.,

lim inf
i→∞

inf
ξ
k(i, ξ) > sup

θ
β(θ).

In addition there exist ω1 : S → R
+, a1, ε1, λ1 > 0 and a random

variable Z1 such that ω1, a1, ε1, λ1, Z1 satisfy the analog of (i)–(iii)
above except that (2.5) is now required to hold only when the CS
is an SS γ{ξ} of the type ξ(·) = ν(θ, ·) for some θ ∈ A.

Conditions (i)–(iii) above are fashioned after [18]. See [18], [6], [10] for
a further discussion.

The conditions above are essentially motivated by queuing applications.
Consider, e.g., the simple example of a routing problem wherein packets
(customers) arrive in discrete time slots, independently, at most one at a
time, with the probability of a packet being present in a given slot being
p > 0. These are to be routed each to one of two servers. The ith server,
i = 1, 2, when busy, completes service in a given time slot with probability
qi > 0. Assume q1, q2 > p, ensuring stability. The problem is to find the
optimal routing scheme for ergodic control with running cost = the sum of
queue lengths at the two servers. The adaptive element enters if we suppose
that qi’s are unknown except for the information that p < a < q1, q2 < b < 1
for some prescribed a, b. This problem satisfies both (A2a), (A2b), the latter
with the Lyapunov function w being the sum of queue lengths.

We list below without proof some of the consequences of our assumptions.

Lemma 2.1. An optimal SSS exists under any θ. Furthermore, there

exists a measurable map ν : A × S → D such that ξ(·) = ν(θ, ·) is an

optimal SSS under θ for each θ ∈ A. Also the map θ → β(θ) is continuous.

See [6], p. 296 and p. 306 for details. Let θ0 be the operative parameter
from now on. Define the P (S ×D ×A)-valued random sequence {µn} by

µn(A1 ×A2 ×A3) =
1

n

n∑

m=1

I{Xm ∈ A1, ξm(Xm) ∈ A2, θ̂m ∈ A3}

for A1, A2, A3 Borel in S,D,A respectively. Let νn ∈ P (S×D) be the image
of µn under the projection S ×D ×A→ S ×D.

Lemma 2.2. Almost surely , {µn}, {νn} are tight sequences and any limit

point of {νn} is of the type Π̂[Φ] for some SRS γ[Φ].

The first claim for {µn} (which implies that for {νn}) is Lemma 4.1 of
[6] and the second claim is Lemma 10.3 of [5].

III. Asymptotic behaviour of Bayes estimates. Recall the defi-
nition of µn(dθ |X

n), n = 1, 2, . . . ,∞. Elementary martingale convergence
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arguments show that

(3.1) µn(dθ |X
n) → µ∞(dθ |X∞) a.s. in P (A).

In this section we characterize the support of µ∞(dθ |X∞), almost surely.
Define the following random subsets of A:

B1(X
∞)

=
{
θ ∈ A

∣∣∣
∑

j∈S

p(Xk, j, ξk, θ0) ln(p(Xk, j, ξk, θ)/p(Xk, j, ξk, θ0)) → 0
}
,

B2(X
∞)

=

{
θ ∈ A

∣∣∣∣
1

n

n−1∑

k=0

∑

j∈S

p(Xk, j, ξk, θ0) ln(p(Xk, j, ξk, θ)/p(Xk, j, ξk, θ0)) → 0

}
.

A simple application of the Bayes rule gives

(3.2) µn(dθ |X
n) = αn(θ)µ0(dθ), n ≥ 1,

where

(3.3) αn(θ) = Λn(θ)/
\
Λn(θ

′)µ0(dθ
′)

with

Λn(θ) =

n−1∏

k=0

p(Xk,Xk+1, ξk(Xk), θ)/p(Xk,Xk+1, ξk(Xk), θ0)

being the likelihood ratio. Let

Mk(θ) = ln(p(Xk,Xk+1, ξk(Xk), θ)/p(Xk,Xk+1, ξk(Xk), θ0))

for k ≥ 0. Then

B1(X
∞) = {θ ∈ A | E[Mk(θ) |X

k] → 0},

B2(X
∞) =

{
θ ∈ A

∣∣∣∣
1

n

n−1∑

k=0

E[Mk(θ) |X
k] → 0

}
.

Lemma 3.1.

(3.4) sup
θ

∣∣∣∣
1

n

n−1∑

k=0

(Mk(θ)− E[Mk(θ) |X
k])

∣∣∣∣ → 0 a.s.

P r o o f. (A1) implies that supk,θ E[Mk(θ)
2 |Xk] <∞ a.s., leading to

sup
k,θ

E[(Mk(θ)−E[Mk(θ) |X
k])2 |Xk] <∞ a.s.

Thus the strong law for large number of martingales ([15], p. 244) can be
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used to deduce

1

n

n−1∑

k=0

(Mk(θ)−E[Mk(θ) |X
k]) → 0 a.s.

for each θ ∈ A. The claim now follows from the uniform Lipschitz continuity
part of (A1).

Lemma 3.2. E[Mk(θ) |X
k] ≤ 0 a.s., θ ∈ A, k ≥ 0.

P r o o f. From conditional Jensen’s inequality applied to the convex func-
tion x→ x ln(x), one has

E[Mk(θ) |X
k] =

∑

j∈S

p(Xk, j, ξk, θ0) ln(p(Xk, j, ξk, θ)/p(Xk, j, ξk, θ0))

= −
∑

j∈S

p(Xk, j, ξk, θ)[p(Xk, j, ξk, θ0)/p(Xk, j, ξk, θ)]

× ln(p(Xk, j, ξk, θ0)/p(Xk, j, ξk, θ))

≤ −
[∑

j∈S

p(Xk, j, ξk, θ)[p(Xk, j, ξk, θ0)/(p(Xk, j, ξk, θ)]
]

× ln
[∑

j∈S

p(Xk, j, ξk, θ)[p(Xk, j, ξk, θ0)/p(Xk, j, ξk, θ)]
]

= − 1 ln(1) = 0.

In particular, we have

(3.5) lim sup
n→∞

1

n

n−1∑

k=0

E[Mk(θ) |X
k] ≤ 0 a.s.

Theorem 3.1. µ∞(B2(X
∞) |X∞) = 1 a.s.

P r o o f. It suffices to prove that a.s.

θ 6∈ B2(X
∞) ⇒ θ 6∈ supp(µ∞).

Consider a sample point outside the zero probability set where (3.1), (3.4),
(3.5) fail. Suppose θ 6∈ B2(X

∞). Then by (3.5) there exist ε > 0 and a
subsequence {n(m)} of {n} such that

1

n(m)

n(m)−1∑

k=0

E[Mk(θ) |X
k ] < −3ε, m ≥ 1,

By (A1) there exists an open neighbourhood O1 of θ such that

(3.6)
1

n(m)

n(m)−1∑

k=0

E[Mk(θ) |X
k] < −2ε, θ ∈ O1.
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SinceMn(θ0) is identically zero for all n, there exists an open neighbourhood
O2 of θ0 such that

(3.7)
1

n

n−1∑

k=0

E[Mk(θ) |X
k] > −ε, θ ∈ O2.

Since θ0 ∈ supp(µ0), µ0(O2) = δ > 0. Hence for θ ∈ O1,

Λn(m)(θ)
/\
Λn(m)(θ

′)µ0(dθ
′)

= exp
[ n(m)−1∑

k=0

Mk(θ)
]/\

exp
[ n(m)−1∑

k=0

Mk(θ
′)
]
µ0(dθ

′)

≤ exp

(
sup
θ

∣∣∣∣
1

n(m)

n(m)−1∑

k=0

(Mk(θ)− E[Mk(θ) |X
k])

∣∣∣∣n(m)

)
exp(−2εn(m))

×

[
exp

(
− sup

θ

∣∣∣∣
1

n(m)

n(m)−1∑

k=0

(Mk(θ)− E[Mk(θ) |X
k])

∣∣∣∣n(m)

)

× exp(−εn(m))δ

]−1

.

From (3.4), (3.6), (3.7) it is clear that RHS decreases to zero exponentially,
uniformly on O1. In view of (3.1) it follows that θ 6∈ supp(µ∞).

Thus µ∞(B2(X
∞) |X∞) = 1 a.s.

Theorem 3.2. For finite A, µ∞(B1(X
∞) |X∞) = 1 a.s.

P r o o f. Since A is finite and θ0 ∈ supp(µ0), we have µ0({θ0}) = a > 0.
Since Λn(θ0) is identically one,

(3.8)
\
Λn(θ

′)µ0(dθ
′) ≥ a > 0.

For each θ, {Λn(θ), n ≥ 0} is a nonnegative martingale with respect to
σ(Xn), n ≥ 0. Thus it converges a.s. to some Λ∞(θ) ≥ 0. In view of (3.2),
(3.3) and (3.8), supp(µ∞) = {θ ∈ A | Λ∞(θ) > 0} a.s. But when Λ∞(θ) > 0,

Mn(θ) = ln(Λn+1(θ)/Λn(θ)) → ln(Λ∞(θ)/Λ∞(θ)) = 0.

Thus

Mn(θ)Λn(θ) → 0 a.s. for θ ∈ A.

Consider

E[Mn(θ)Λn(θ) |X
n] = E[Mn(θ)Λn(θ)I{Mn(θ)Λn(θ) ≤ N} |Xn]

+E[Mn(θ)Λn(θ)I{Mn(θ)Λn(θ) > N} |Xn]
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for n ≥ 1 and N ≥ 1. The first term on the right goes to zero a.s. as n→ ∞
by Theorem 2, p. 883 of [9]. The second term on the right equals

E[Mn(θ)I{Mn(θ)Λn(θ) > N} |Xn]Λn(θ)

≤ E[M2
n(θ) |X

n]1/2P (Mn(θ)Λn(θ) > N |Xn)1/2Λn(θ)

≤ KP (Mn(θ)Λn(θ) > N |Xn)1/2Λn(θ)

for some K <∞. Now

P (Mn(θ)Λn(θ) > N |Xn) ≤ E[|Mn(θ)|Λn(θ) |X
n]/N(3.9)

≤ E[M2
n(θ) |X

n]1/2Λn(θ)/N

≤ KΛn(θ)/N.

Since Λn(θ) → Λ∞(θ) a.s., one has from (3.9),

lim sup
N→∞ n≥0

E[Mn(θ)Λn(θ)I{Mn(θ)Λn(θ) > N} |Xn] = 0 a.s.

Thus

E[Mn(θ)Λn(θ) |X
n] = E[Mn(θ) |X

n]Λn(θ) → 0 a.s.,

implying

E[Mn(θ) |X
n] → 0 a.s. on {Λ∞(θ) > 0}.

Equivalently, µ∞(B1(X
∞) |X∞) = 1 a.s.

We conclude this section with some relevant remarks.

Remark 1. Consider the “identifiability condition”: for each ξ ∈ D
and θ 6= θ0 in A, p(i, j, ξ, θ) 6= p(i, j, ξ, θ0) for some i, j ∈ S. Under this
condition, if Xn = i i.o. for all i ∈ S, a.s. (which incidently can be shown to
be true under our hypotheses), then B1(X

∞) = B2(X
∞) = {θ0} a.s. Thus

the Bayes estimation scheme is consistent in the strong sense. This follows
easily from the fact that under the above conditions,

∑

j∈S

p(i, j, ξk, θ0) ln(p(i, j, ξk, θ)/p(i, j, ξk , θ0)) = 0

if and only if θ = θ0. (Compare with [22], [10].) One may then mimick
the arguments of [10] to deduce that the “raw” self-tuning rule ξn(i) =
ν(µn(· |X

n), i), i ∈ S, where ν(µ, ·) is the optimal SSS under the transition
matrix P

µ
= [[

T
p(i, j, ξ, θ) µ(dθ)]], is optimal. We shall not go into the

details of this as they are routine and we are more concerned with the
situation where the identifiability condition fails.

Remark 2. The above scheme extends to more general situations as well.
Consider, for example, an R

d-valued sequence {Xn} of random variables.
With {Xn} defined as before, let the law of X∞ belong to a parametrized
family {Pθ, θ ∈ A} ⊂ P (Rd). Let θ0 ∈ supp(µ0). Define µn(dθ |X

n), n =
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1, 2, . . . ,∞ as before. Let qθ(dx |X
n) be the regular conditional law of Xn+1

given Xn under Pθ. We assume this to have a density p(n, θ, x |xn) > 0 for
x ∈ R

d, xn ∈ (Rd)n, for each n, θ. Furthermore, the functions

θ → ln(p(n, θ, x |xn)/p(n, θ0, x |x
n))

are assumed to be continuous uniformly with respect to n, x, xn and the
following bound is assumed to hold:

(3.10) sup
n,xn,θ

\
p(n, θ0, x |x

n)[ln(p(n, θ, x |xn)/p(n, θ0, x |x
n))]2 dx <∞.

Let

B1(X
∞)

=
{
θ∈A

∣∣∣∣
\
p(n, θ0, x |X

n) ln(p(n, θ, x |Xn)/p(n, θ0, x |X
n)) dx→0

}
,

B2(X
∞)

=

{
θ∈A

∣∣∣∣
1

n

n∑

m=1

\
p(n, θ0, x |X

n) ln(p(n, θ, x |Xn)/p(n, θ0, x |X
n)) dx→0

}
.

One may then mimick the foregoing to deduce that µ∞(B2(X
∞) |X∞) = 1

a.s. and if A is finite, this improves to µ∞(B1(X
∞) |X∞) = 1 a.s. Condition

(3.10) here facilitates the application of the martingale strong law of large
numbers at the appropriate juncture.

These results have interesting interpretations. From the definition of
B2(X

∞), what they do imply is that even when the estimation scheme is
not consistent, it asymptotically correctly predicts the one step future (in the
sense that the Kullback–Leibler mutual information between the estimated
one step regular conditional law and the true one approaches zero) along a
sequence of time instants that exclude at most a “rare” set thereof in the
sense of [13]. The intuitive content of this statement should be clear. We
omit a precise statement to avoid a major digression. Suffice it to say that
this is reminiscent of “merging of opinions” à la [4] (also, the “consistency
in information” of [2]).

Remark 3. It is also interesting to compare these results with the
corresponding results for maximum likelihood estimates given in [12], [10].
The latter are defined as θ′n = argminΛn(θ) with any tie for the argmin
being settled according to some fixed priority rule. As shown in [13],

θ′n →

{
θ ∈ A

∣∣∣∣ lim inf
n→∞

1

n

n−1∑

k=0

E[Mk+1(θ) |X
k] = 0

}
a.s.

Compare this with Theorem 3.1.
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IV. Asymptotic optimality of the adaptive control scheme. In
this section we prove the a.s. asymptotic optimality of the scheme proposed
in Section II. The treatment here closely imitates that of [6]. In fact, we
shall rely on [6] for some nontrivial details. We shall proceed through a
sequence of lemmas.

Lemma 4.1. Almost surely β(θ̂n) ≤ β(θ0) from some n onwards.

P r o o f. From the definition of {θ̃n}, it suffices to prove that θ0 ∈ An

from some n on, a.s. Let

Γn =
\
Λn(θ

′)µ0(dθ
′).

Thus αn(θ) = Λn(θ)/Γn, n ≥ 0. It is easily checked that (Γn, σ(X
n)) is

a nonnegative martingale. Thus Γn → Γ∞ a.s. for some Γ∞ ≥ 0. Since
Λn(θ0) is identically equal to 1, αn(θ0) → ∞ a.s. on {Γ∞ = 0} and thus
αn(θ0) ≥ 1/n from some n on. On {Γ∞ > 0}, αn(θ0) → 1/Γ∞ a.s. Since
Γ∞ < n for large n, αn(θ0) > 1/n and therefore θ0 ∈ An from some n on.

Lemma 4.2. Almost surely

lim
n→∞

1

n

n−1∑

k=0

∑

j∈S

p(Xk, j, ξk(Xk), θ0)

× ln(p(Xk, j, ξk(Xk), θ̃n)/p(Xk, j, ξk(Xk), θ0)) = 0.

P r o o f. Consider a sample point outside the set of zero probability where
the conclusions of Lemmas 3.1 and 3.2 fail. If the claim were false for this
sample point, there exist ε > 0 and a subsequence {n(m)} of {n} such that

1

n(m)

n(m)−1∑

k=0

∑

j∈S

p(Xk, j, ξk(Xk), θ0)

× ln(p(Xk, j, ξk(Xk), θ̃n(m))/p(Xk, j, ξk(Xk), θ0)) < −2ε.

As in the proof of Theorem 3.1 we have

αn(m)(θ̃n(m))

≤ exp

(
sup
θ

∣∣∣∣
1

n(m)

n(m)−1∑

k=0

(Mk(θ)− E[Mk(θ) |X
k])

∣∣∣∣n(m)

)
exp(−2εn(m))

×

[
exp

(
− sup

θ

∣∣∣∣
1

n(m)

n(m)−1∑

k=0

(Mk(θ)− E[Mk(θ) |X
k])

∣∣∣∣
)

× exp(−εn(m))δ

]−1

where δ > 0 is as in the proof of Theorem 3.1. Thus αn(m)(θ̃n(m)) ≤
k1 exp(−k2n(m)), m ≥ 1, for some k1, k2 > 0 depending on the sample
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path. Hence αn(m)(θ̃n(m)) < 1/n(m) from some m on, which contradicts

the definition of {θ̃n}. This proves the claim.

From now on we closely imitate the arguments of [6]. Call θ ∈ A a

frequent limit point of {θ̂n} along a given sample path if for any open neigh-
bourhood B of θ,

lim sup
n→∞

1

n

n∑

k=0

I{θ̂k ∈ B} > 0.

Consider a sample path outside the set Q of zero probability on which
the conclusion of any of the lemmas above fails. Let θ be a frequent limit
point of {θ̂n} along this sample path. Pick {n(k)} ⊂ {n} such that θ̂n(k) =

θ̃n(k) ∈ BN and (see [6], p. 303)

lim inf
k→∞

1

n(k)

n(k)∑

m=0

I{θ̃m ∈ BN} > 0,

BN being a ball of radius 1/N containing θ. Let µ be a limit point of {µn(k)}.

Lemma 4.3. µ(BN × {i} ×D) > 0 for i ∈ S.

This is proved exactly along the lines of (20), p. 303 of [6]. (It should
be remarked that strictly speaking, one may need to replace Q by a larger
set of zero probability. We assume that Q is suitably enlarged so that while
still having zero probability it also satisfies: Lemma 4.3 holds on Qc for all
BN in the collection of open balls with rational radii and rational centres in
A.) Let G(i, θ) = {u ∈ D | u is an optimal choice at state i under parameter
θ}, and

G =
⋃

i,θ

{θ} × {i} ×G(i, θ) ⊂ A× S ×D

with the relative topology. Note thatG(i, θ), i ∈ S, θ ∈ A, is well defined due
to the fact that the optimal choices at any given state do not depend on the
choices elsewhere by virtue of dynamic programming-based characterization
thereof—see pp. 295–296 of [6]. It is proved in Lemma 3.1 of [6] that G is
closed in A× S ×D.

Lemma 4.4. µ(G) = 1.

This is an easy consequence of the facts that µn(G) = 1, n ≥ 1, by our
choice of {ξn} and G is closed. (See Lemma 4.8 of [6].)

Lemma 4.5. There exist θi(N), θ′(N) ∈ BN and ξN ∈ D∞ such that for

i ∈ S,

ξN(i) ∈ G(i, θi(N)),

p(i, j, ξN (i), θ′(N)) = p(i, j, ξN (i), θ0), j ∈ S.
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P r o o f. Let θ′(N) be any limit point of {θ̂n(k)}. By Lemma 4.2, it follows
that

(4.1)
\

A×S×D

dµ
[∑

j∈S

p(·, j, ·, θ0) ln(p(·, j, ·, θ
′(N))/p(·, j, ·, θ0))

]
= 0.

From the strict convexity of the map x → x lnx, one easily checks that for
any i ∈ S, θ ∈ A, ξ ∈ D,

(4.2)
∑

j∈S

p(i, j, ξ, θ0) ln(p(i, j, ξ, θ
′(N))/p(i, j, ξ, θ0)) ≤ 0

with equality if and only if

p(i, j, ξ, θ′) = p(i, j, ξ, θ0), j ∈ S.

(Compare with the proof of Lemma 3.2.) From (4.1), it follows that (4.2)
holds with equality µ-a.s. The claim now follows from Lemmas 4.3 and 4.4.

Corollary 4.1. β(θ) = β(θ0).

P r o o f. As N → ∞ in the above, θi(N), θ′(N) → θ. Let ξ be a limit
point of {ξN} inD∞. From the preceding lemma, the continuity of p(·, j, ·, ·)
and the fact that G is closed, it then follows that

ξ(i) ∈ G(i, θ), i ∈ S,

p(i, j, ξ(i), θ) = p(i, j, ξ(i), θ0), i, j ∈ S.

These together imply that the cost of ν{ξ} under θ is β(θ), which in turn
equals its cost under θ0. As the latter must be greater than or equal to β(θ0),
we have β(θ) ≥ β(θ0). Lemma 4.1 completes the proof.

Corollary 4.2. G(i, θ) = G(i, θ0), i ∈ S.

This is precisely Corollary 5.1 of [6] and follows as there from Corollary
4.1 above.

Theorem 4.1. The control strategy {ξn} above is a.s. optimal.

P r o o f. Consider a sample path outsideQ. Let µ be a limit point of {µn}.
It is clear that any θ in the support of the image of µ under the projection
A × S × D → A will be a frequent limit point of {θ̂n}. By Corollary 4.2,
G(i, θ) = G(i, θ0) for all i ∈ S. Since {µn} are supported on G, so will be µ.
Also, the image ν of µ under the projection A×S×D→ S×D is of the form
Π̂[Φ] for some SSRS γ[Φ], Φ =

∏
φ̂i, by Lemma 2.2. It follows that φ̂i is

supported on G(i, θ0) for i ∈ S. The dynamic programming characterization
of an optimal SSRS (see [6], p. 295) then implies that ν[Φ] is an optimal
SSRS. Thus \

k dµ =
\
k dΠ̂[Φ] = β(θ0).

Since µ was an arbitrary limit point of {µn}, the claim follows.
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V. Extensions to continuous time. In this section we present results
analogous to the foregoing for the adaptive control of a diffusion process.
Since the details are rather straightforward given the foregoing and [7], we
shall only sketch the arguments.

Let D,A be as before. Our control system will be the controlled diffu-
sion X(·) = [X1(·), . . . ,Xd(·)]

T , d ≥ 1, satisfying the stochastic differential
equation

(5.1) X(t) = X0 +
\
m(X(s), u(s), θ) ds +

\
σ(X(s)) dW (s).

Here it is assumed that

(i) m(·, ·, ·) = [m1(·, ·, ·), . . . ,md(·, ·, ·)]
T : Rd×D×A→ R

d is bounded,
continuous and Lipschitz in its first and third arguments, uniformly with
respect to the second,

(ii) σ(·) = [[σi,j(·)]]1≤i,j≤d : Rd → R
d×d is bounded Lipschitz and satis-

fies ‖σT (x)z‖2 ≥ λ0‖z‖
2, λ0 > 0,

(iii) X0 is a random variable with a prescribed law,
(iv) W (·) = [W1(·), . . . ,Wd(·)]

T is a d-dimensional standard Wiener pro-
cess independent of X0,

(v) θ is the parameter whose true value is θ0 ∈ A,
(vi) u(·) is a D-valued control process with measurable paths satisfying

the following nonanticipativity condition: for t ≥ s ≥ y, W (t) − W (s)
is independent of u([0, s]) and W ([0, s]). (Here, f([0, t]) denotes the entire
trajectory f(y), 0 ≤ y ≤ t.)

Call such a u(·) an admissible control. If there exists a measurable map
v : R → D such that u(·) = v(X(·)) call u(·) (or, by abuse of notation,
v itself) a Markov control. Markov controls are admissible [7]. A Markov
control v is said to be stable if the resulting Markov process X(·) is positive
recurrent and thus has a unique invariant probability measure, denoted by
ηθv (see [3]). Let k ∈ Cb(R

d×D) be the “running cost” function. The ergodic
control problem is to a.s. minimize over all admissible u(·) the cost

lim sup
t→∞

1

t

t\
0

k(X(s), u(s)) ds.

Under a stable Markov control v, this a.s. equals

(5.2)
\
k(x, v(x)) dηθv

when θ is the operative parameter. Let β(θ) denote the infimum of (5.2)
over all stable v.

We shall assume that one of the following two sets of conditions hold:

(A1′) There exist w ∈ C2(Rd) and a, ε > 0 such that
(i) 0 ≤ w(x) → ∞ as ‖x‖ → ∞, uniformly in ‖x‖,
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(ii) w(·) and ‖∇w(·)‖ have polynomial growth,
(iii) for ‖x‖ > a,

(5.3) ‖∇w(x)‖2 > λ−1
0 and ψθw(x, u) < −ε, u ∈ D, θ ∈ A,

where for x = [x1, . . . , xd] ∈ R
d and f ∈ C2(Rd),

ψθf(x, u) =
1

2

∑

i,j,k

σikσjk
∂2f

∂xi∂xj
+ 〈∇f(x),m(x, u, θ)〉.

(A2′) k is monotone, i.e.,

(5.4) lim inf
‖x‖→∞

inf
u
k(x, u) > sup

θ
β(θ).

Also there exist w1 ∈ C2(Rd) and a1, ε1 > 0 such that (i)–(iii)
above hold with w1, a1, ε1 in place of w, a, ε except for (5.3) being
replaced by

ψθf(x, v(θ′, x)) < −ε, ‖x‖ > a1, θ, θ
′ ∈ A,

where v : A× R
d → D is a measurable map such that v(θ, ·) is an

optimal stable Markov control under θ.

Such a map is known to exist either under (A2′) or (5.4) ([7], p. 124).
Let µ0 ∈ P (A) be as before, thus viewing θ0 as the actual realization of an

A-valued random variable ζ with law µ0 and independent of (X0,W (·)). Let
Xt = X([0, t]), t ≥ 0, X∞ = X([0,∞)) and let µt(dθ |X

t) be the regular
conditional law of ζ given Xt for t ∈ [0,∞). As before, µt(dθ |X

t) →
µ∞(dθ |X∞) a.s. in P (A) as t → ∞. Let

Λt(θ) = exp
[ t\
0

〈σ−1(X(s))(m(X(s), u(s), θ) −m(x(s), u(s), θ0)), dW (s)〉

−
1

2

t\
0

‖σ−1(X(s))(m(X(s), u(s), θ) −m(x(s), u(s), θ0))‖
2
ds
]

for t ≥ 0. A simple Bayes rule argument using Girsanov’s theorem leads to

µt(dθ |X
t) = αt(θ)dθ, t ≥ 0,

with

αt(θ) = Λt(θ)
/\
Λt(θ

′)µt(dθ
′).

Let A0 = A and At = {θ ∈ A | αt(θ) ≥ 1/t}, t > 0. Let

θ̃t = argminAt
β(θ)

where any tie for the argmin is resolved according to some prescribed priority
rule, say lexicographic, which ensures a measurable version of t→ θ̃t. Let yn,
n > 0, be a prescribed deterministic sequence of positive numbers satisfying∑

n y
−l
n < ∞ for some integer l ≥ 1. Let 0 < r1 < r2 < ∞ and B1, B2 be
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balls of radii r1, r2 resp. in R
d with centre at the origin. Let ∂Bi, i = 1, 2,

be the respective boundaries. Define stopping times {τi} as follows: τ0 = 0
and

τn+1 = (inf{t > τn | X(t) ∈ ∂B1 and

X(s) ∈ ∂B2 for some s ∈ [τn, t]}) ∧ (τn + yn), n ≥ 0.

Let [t] = the τn for which τn ≤ t ≤ τn+1. Our adaptive control scheme will
be

u(t) = v(θ̂(t),X(t)), t ≥ 0,

where θ̂(t) = θ̃[t]. Let

Mt =

t\
0

〈σ−1(X(s))(m(X(s), u(s), θ) −m(X(s), u(s), θ0)), dW (s)〉,

〈M〉t(θ) =

t\
0

‖σ−1(X(s))(m(X(s), u(s), θ) −m(X(s), u(s), θ0))‖
2 ds.

For each θ, (Mt(θ), σ(X([0, t]))), t ≥ 0, is a zero mean square-integrable mar-
tingale with continuous paths and 〈M〉t(θ), t ≥ 0, the associated quadratic
variation process.

Lemma 5.1. The map (θ, t) → Mt(θ)/t has a jointly continuous version

which is uniformly continuous in θ, uniformly with respect to t, and

lim
t→∞

sup
θ

|Mt(θ)/t| = 0 a.s.

P r o o f. This follows exactly as in Lemmas 5.1 and 5.2, p. 134 of [7]. In
particular, it follows that Mt(θ) = o(〈M〉t(θ)) a.s. on {〈M〉∞(θ) = ∞}.

Define 〈M〉∞(θ) = limt→∞〈M〉t(θ) (possibly ∞) and

B1(X
∞) = {θ ∈ A | 〈M〉∞(θ) <∞},

B2(X
∞) = {θ ∈ A | 〈M〉t(θ)/t → 0}.

Theorem 5.1. Almost surely , µ∞(B2(X
∞) |X∞) = 1. For finite A, this

can be improved to µ∞(B1(X
∞) |X∞) = 1.

P r o o f. The first claim follows as in Theorem 3.1 in view of the preceding
lemma. For the second claim, as in Theorem 3.2, µ∞(· |X∞) is supported on
H = {θ | Λ∞(θ) = limt→∞ Λt(θ) > 0} a.s. Since for each θ,Mt(θ) converges
a.s. on {〈M〉∞(θ) <∞} (see Lemma 5.1 of [7]), it follows that

Λt(θ) = exp
[
− 1

2 〈M〉t(θ)(1− 2Mt(θ)/〈M〉t(θ))
]

→ exp
(
lim
t→∞

Mt(θ)−
1
2
〈M〉∞(θ)

)

a.s. on {〈M〉∞(θ) <∞} and tends to 0 a.s. on {〈M〉∞(θ) = ∞}.
Thus H = B1(X

∞) a.s.
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This describes the asymptotic behaviour of the Bayes scheme in contin-
uous time case along the lines of Section III. Coming back to the adaptive
control scheme we have:

Lemma 5.2.

lim
t→∞

1

t

t\
0

‖σ−1(X(s))(m(X(s), u(s), θ̃t)−m(X(s), u(s), θ0))‖
2 ds = 0 a.s.

This again follows along the lines of Lemma 4.2 using Lemma 5.1 above.
Finally, we have the following analog of Lemma 4.1.

Lemma 5.3. Almost surely , β(θ̃t) ≤ β(θ0) from some t onwards.

P r o o f. It suffices to prove that almost surely, θ0 ∈ At from some t
onwards. This follows as in Lemma 4.1.

The rest of the argument leading to a.s. optimality of our adaptive
control scheme imitates Section IV, the details being supplied by [7]. First,
one deduces as in Section 4 of [7] that almost surely β(θ) = β(θ0) for any

frequent limit point θ of {θ̂t}, Lemma 5.2 above playing the role of Lemma
4.2, p. 125 of [7]. In view of Lemma 5.3 above, one then has β(θ) = β(θ0),
which replaces Lemma 5.3, p. 135 of [7]. The rest of the proof is identical
to that of [7], pp. 135–136, leading to:

Theorem 5.2. The adaptive control scheme proposed here is a.s. optimal.
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