E. IGNACZAK (Szczecin) A. PASZKIEWICZ (Łódź)

EXTENSIONS OF CONVEX FUNCTIONALS ON CONVEX CONES

Abstract. We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.

1. Introduction. Let M be any convex cone in a linear topological space X (i.e. $M + M \subset M$ and $\mathbb{R}^+M \subset M$). Assume that every convex functional π on M ($\pi(\lambda m) = \lambda \pi(m)$, $\pi(m + m_1) \leq \pi(m) + \pi(m_1)$ for $\lambda \in \mathbb{R}^+$, $m, m_1 \in M$) can be extended to a convex functional π^* on X. It is not difficult to notice that this condition on M is rather restrictive. In fact, we shall prove that it can be valid only for M being a linear subspace of X. But some auxiliary constructions are necessary. We also need some topological assumptions, e.g. that M has nonempty interior.

The possibility of extending any convex functional is a natural question important in a number of applications of functional analysis. We only point out that convex functionals appear in a natural way in the pricing of contingent claims on market with transaction costs [3], [4]. We explain this in the simple case of a finite set of trading times $(0, 1, \ldots, T)$ (cf. [1]). Let X_0, X_1, \ldots, X_T be random prices of a unit of one stock. Thus (X_t) is adapted to increasing σ -fields $F_0 = \{\emptyset, \Omega\} \subset F_1 \subset \ldots \subset F_T$. For any trading strategy, which is a predictable sequence $\theta_1, \ldots, \theta_T$ (that is, θ_t is F_{t-1} -measurable), and for the number V_0 denoting initial investments, one defines the payoff of the strategy by the formula $V_T = V_0 + \theta_1(X_1 - X_0) + \ldots + \theta_T(X_T - X_{T-1})$.

It was Harrison and Kreps [1] who showed the role of models of this type.

[381]

¹⁹⁹¹ Mathematics Subject Classification: 52A07, 46A22.

Key words and phrases: Hilbert space, convex cone, convex functional.

They proved that, for X_0, X_1, \ldots, X_T satisfying the so-called no arbitrage condition, all the payoffs V_T form a linear subspace. The initial investment V_0 is uniquely determined by V_T and V_0 is a linear functional of V_T .

To describe a more realistic case, one assumes that bid and ask prices of a stock are given by different (F_0, \ldots, F_T) -adapted processes (X_0, \ldots, X_T) , (X'_0, \ldots, X'_T) with $X_t \leq X'_t$. In such a case, one describes a trading strategy by two nonnegative, nondecreasing processes $(\theta_1, \ldots, \theta_T)$ and $(\theta'_1, \ldots, \theta'_T)$, predictable with respect to the filtration (F_1, \ldots, F_T) . At each trading time t, the investor sells $\theta_{t+1} - \theta_t$ units of the stock and buys $\theta'_{t+1} - \theta'_t$ units. Therefore θ_t and θ'_t are respectively the cumulative long position and cumulative short position in the stock just before time $t = 0, \ldots, T$.

Denote by V_t the amount of the investor's money (in a bank or riskless bonds) just before trading time t = 0, ..., T. We assume that $\theta_0 = \theta'_0 = 0$ and, moreover, that after time T, our net position in the stock should be equal to zero. More precisely, $\theta_{T+1} - \theta_T = \theta'_T$, $\theta'_{T+1} - \theta'_T = \theta_T$. The final payoff is given by the formula

(1)
$$V = V_0 + [\theta_1 X_0 - \theta'_1 X'_0] + [(\theta_2 - \theta_1) X_1 - (\theta'_2 - \theta'_1) X'_1] + \dots + [(\theta_T - \theta_{T-1}) X_{T-1} - (\theta'_T - \theta'_{T-1}) X'_{T-1}] + \theta'_T X_T - \theta_T X'_T.$$

This example is, in fact, a special case of the model described in [3].

We assume that prices are discounted in such a way that the interest rate of a bank deposit (bond) equals zero (and that the short position in a bond is possible with no restrictions). The investor cumulates all his income in the bank and the self-financing condition is satisfied automatically.

Obviously, V_0 still describes an initial investment. Assume that V is a possible final payoff. Then $\pi(V) = \inf V_0$, where the infimum is taken over all θ', θ, V_0 satisfying (1), is a necessary initial investment, uniquely determined by V. In this situation the V's form a convex cone M with π being a convex functional on M. Extension of this functional has a very important interpretation as the pricing of all possible "contingent claims" (see [4] for general explanations).

From this point of view, our result is negative. Extension of pricing functionals cannot be obtained by general (geometrical) methods dealing with all cones and functionals.

2. Extensions in linear topological spaces. We use the following terminology. A *convex cone* means any set M contained in a real linear space X, satisfying $M + M \subset M$ and $\mathbb{R}^+M \subset M$. A *convex functional* means a function $\pi: M \to \mathbb{R}$ satisfying $\pi(\lambda x) = \lambda \pi(x)$ and $\pi(x + y) \leq \pi(x) + \pi(y)$ for $\lambda \geq 0$ and $x, y \in M$ (see [5] for more information).

THEOREM 2.1. Let X be a linear space, $M \subset X$ a convex cone, ψ a linear functional on X, and let a, b be two elements of X such that:

(i) $\psi(x) \le 0 \text{ for } x \in M;$ (ii) $\psi(a) = 0, \ a \ne 0;$ (iii) $\psi(b) < 0;$ (iv) $a + t(b - a) \in M \text{ for } t \in (0, 1].$

Then there exists a convex functional $\pi : M \to \mathbb{R}$ without a convex extension to X. If X is a linear topological space and ψ is continuous, then π can be chosen continuous.

Proof. Define $L = \lim(a, b)$. Let $\overline{\varphi} : L \to \mathbb{R}$ be a linear functional with $\overline{\varphi}(a) = \overline{\varphi}(b) = 1$ and let $\varphi : X \to \mathbb{R}$ be a linear extension of $\overline{\varphi}$ on X, i.e. $\varphi_{|L} = \overline{\varphi}$. Define $D = M \cap \{x \in X : \varphi(x) = 1\}$. It is clear that $a, b \in D$. Let $f : (-\infty, 0] \to \mathbb{R}$ be given by

$$f(t) = \begin{cases} 1 - \sqrt{1 - (t+1)^2}, & -1 \le t \le 0, \\ 0, & t \le -1. \end{cases}$$

Notice that f is a convex non-decreasing function with non-negative values. Let π be the function on M given by

$$\pi(x) = \begin{cases} \lambda f(\psi(d)) & \text{for } x = \lambda d \text{ with some } \lambda > 0 \text{ and } d \in D, \\ 0 & \text{for the remaining } x \in M. \end{cases}$$

Observe that π is well defined and convex.

We prove that π cannot be extended to X. It is enough to show that there exists no convex functional π^* defined on $L = \lim(a, b)$ such that

(2)
$$\pi^*_{|L\cap M} = \pi_{|L\cap M}.$$

So, suppose that a convex functional π^* satisfies (2). Consider the function $g(t) = \pi^*(a + t(b - a)), t \in \mathbb{R}$. Note that g is convex. Moreover, for $t \in (0,1]$, we have $g(t) = \pi(a + t(b - a))$ because $\varphi(a + t(b - a)) =$ $\varphi(a) + t(\varphi(b) - \varphi(a)) = 1$, i.e. $a + t(b - a) \in L \cap M$. Hence g(t) = $f(\psi(a + t(b - a))) = f(t\psi(b))$, which means that

(3)
$$g(t) = 1 - \sqrt{1 - (t\psi(b) + 1)^2}, \quad t \in (0, -1/\psi(b)].$$

This is impossible because the function (3) cannot be extended to a convex function on the whole real line. \blacksquare

THEOREM 2.2. Let X be a real linear topological space and M a cone in X with nonempty interior. The following conditions are equivalent:

(i) M = X;

(ii) every convex functional $\pi : M \to \mathbb{R}$ can be extended to a convex functional π^* on X;

(iii) every continuous convex functional $\pi: M \to \mathbb{R}$ can be extended to a convex functional π^* on X.

Proof. It is enough to prove the implication $(iii) \Rightarrow (i)$.

Let $M \subset X$ be a convex cone with nonempty interior such that $M \neq X$. Suppose that $b \in \text{int } M$, and $c \notin M$ (i.e. $c \neq 0$). We may assume that b, c are linearly independent. Let

$$a = b + \sup\{t \in [0, 1] : b + t(c - b) \in M\}(c - b).$$

Then $a \neq 0$ and $a \in \overline{M} \setminus \operatorname{int} M$. If $-a \in \operatorname{int} M$, then $a - a = 0 \in \operatorname{int} M$, i.e. M = X. Thus $\lim a \cap \operatorname{int} M = \emptyset$. By the Mazur theorem [5], there exists a linear functional such that $\psi(a) = 0$ and $\psi(x) < 0$ for each $x \in \operatorname{int} M$. To complete the proof, it is now enough to apply the previous theorem.

COROLLARY 2.3. If M is a convex cone in \mathbb{R}^n containing at least two linearly independent vectors, then the following conditions are equivalent:

(i) *M* is a linear subspace;

(ii) every continuous convex functional π defined on M can be extended to a convex functional on \mathbb{R}^n .

Proof. It suffices to prove (ii) \Rightarrow (i). Let x_1, \ldots, x_k be a maximal system of linearly independent vectors in M. Observe that (ii) is equivalent to

(ii') every continuous convex functional on M can be extended to a convex functional on $\lim(x_1,\ldots,x_k)$.

First we prove that (ii') implies (ii). Let π^* be a convex functional on $\ln(x_1,\ldots,x_k)$ and let $x \in \mathbb{R}^n$. Then $x = \alpha_1 x_1 + \ldots + \alpha_k x_k + \alpha_{k+1} x_{k+1} + \ldots + \alpha_n x_n$ for some linear basis $x_1,\ldots,x_k,\ldots,x_n$. Define a functional $\pi^{**}(x) = \pi^*(\alpha_1 x_1 + \ldots + \alpha_k x_k)$. Since π^* is convex, so is π^{**} . In view of (ii'), without loss of generality we may assume that k = n. So, it remains to show that $M = \mathbb{R}^n$. This, however, follows from Theorem 2.2 since int $M \neq \emptyset$.

3. Extensions in a Hilbert space

THEOREM 3.1. Let H be a Hilbert space and let $M \subset H$ be a closed convex cone containing at least two linearly independent vectors. Then the following conditions are equivalent:

(i) *M* is a closed linear subspace;

(ii) every continuous convex functional π defined on M can be extended to a convex functional π^* on H.

Proof. (i) \Rightarrow (ii) is obvious; it is sufficient to take $\pi^*(x) = \pi(P_M x)$, $x \in H$, where P_M is the orthogonal projection onto M.

(ii) \Rightarrow (i). Suppose that (i) does not hold. Let $H_1 = \overline{\lim M}$. There exist vectors $c \in H_1 \setminus M$ and $b \in M$, $b \neq 0$. We may assume b, c to be linearly independent. Let $a = b + t_0(c-b)$ where $t_0 = \sup\{t \in (0,1] : b + t(c-b) \in M\}$.

384

There exists $t_1 \in (t_0, 1]$ such that, for $y = b + t_1(c - b) \in H_1$, we have

(4)
$$0 < \|y - a\| < \min_{t \in [0,1]} \|b + t(c - b)\| \le \|y\|.$$

Denote by $P_M y$ the orthogonal projection of y onto the closed convex set M (see [2]). From (4) we have $P_M y \neq 0$. Let $\psi = y - P_M y$.

Then $\psi x := (x, \psi) \leq 0$ for $x \in M$. Hence $\psi P_M y = (P_M y, y - P_M y) = 0$. Since $H_1 = \overline{\lim M}$, there exists $\tilde{b} \in M$ such that $\psi \tilde{b} < 0$. It is now enough to take $\tilde{a} = P_M y$ and apply Theorem 2.1.

DEFINITION 3.1. A real function π on a topological space X satisfying the condition

$$\limsup_{x \to x_0} \pi(x) \le \pi(x) \quad \text{ for any } x_0 \in X$$

is said to be *upper semicontinuous* (u.s.c.).

THEOREM 3.2. Let H be a Hilbert space and let $M \subset H$ be a convex cone containing at least two linearly independent vectors. Then the following statements are equivalent:

(i) \overline{M} is a linear subspace;

(ii) every continuous convex functional $\pi: M \to \mathbb{R}$ can be extended to a convex functional π^* which is u.s.c.

Proof. We prove that (ii) \Rightarrow (i) ((i) \Rightarrow (ii) is obvious). The idea of the proof is similar to that of Theorem 2.1. Assume that \overline{M} is not a linear subspace and let $H_1 = \overline{\lim M}$. Then there exists some $y \in H_1 \setminus \overline{M}$. Let $P_{\overline{M}}y$ be the orthogonal projection of y onto \overline{M} and let $\psi := y - P_{\overline{M}}y$, $\psi x := (x, \psi), x \in M$. Note that

$$\forall x \in M : \psi(x) \le 0; \quad \exists b \in M : \psi(b) < 0.$$

Let $a = P_{\overline{M}}y$. There exists a function φ' such that $\varphi' = kb + (1 - k)a$ for some k and $\varphi' \perp (b - a)$. Notice that $(\varphi', a) = (\varphi, b)$. As $a \in \overline{M}$, there is a sequence $(a'_n) \subset M$ such that $a'_n \to a$. Hence $\varphi(a'_n) \to \varphi(a) = 1$. Now, consider the sequence $a_n = a'_n/\varphi(a'_n)$. It is obvious that $(a_n) \subset M$ and $\varphi(a_n) = 1$. As in the proof of Theorem 2.1, consider the set $L = M \cap$ $\{x \in H_1 : \varphi(x) = 1\}$ (obviously, $a_n, b \in L$) and let $\pi : M \to \mathbb{R}$ be given by

$$\pi(x) = \begin{cases} \lambda f(\psi(l)) & \text{if } x = \lambda l \text{ for some } \lambda > 0, \\ 0 & \text{for other } x \in M, \end{cases}$$

where

$$f(t) = \begin{cases} 1 - \sqrt{1 - (t+1)^2}, & -1 \le t \le 0, \\ 0, & t < -1. \end{cases}$$

Let $\pi^* : H \to \mathbb{R}$ be a convex u.s.c. functional with $\pi^*_{|M} = \pi$. Define $g_n(\tau) = \pi^*(a_n + \tau(a_n - b)), \ \tau \in \mathbb{R}$.

Notice that for all $\tau \in [-1,0]$, $a_n + \tau(a_n - b) \in M \cap L$ and $g_n(\tau) =$ $\pi(a_n + \tau(a_n - b)) = f(\psi(a_n) + \tau\psi(a_n - b)), \ \psi(a_n) \to 0.$ From the existence of $g'_n(0^-)$ and from the convexity of g_n we obtain $g_n(\tau) \ge g_n(0) + g'_n(0^-)\tau$ for all $\tau \in \mathbb{R}$. In particular, for $\tau = 1$, we have $g_n(1) \ge g_n(0) + g_n(0) \ge g_n' =$ $f'(\psi(a_n))\psi(a_n-b) \xrightarrow{n} \infty$, contrary to the assumption that π^* is u.s.c.

EXAMPLE 3.1 The functional $\pi(m) = \sup m$ defined on some convex cone of functions bounded from above is an elementary example of a convex functional (for example in L_2) for which the lack of a convex extension is possible.

Let $(\Omega, F, P) = ((0, 1), B_{(0,1)}, \lambda)$ and

$$M = \left\{ \alpha (1 - \sqrt{1 - \varpi^2}) - \beta \frac{1}{1 - \varpi^2} : \varpi \in (0, 1), \ \alpha, \beta \ge 0 \right\}.$$

For $\alpha = 1$,

$$\begin{aligned} f(\beta) &= \sup_{\varpi \in (0,1)} \left(\alpha (1 - \sqrt{1 - \varpi^2}) - \beta \frac{1}{1 - \varpi^2} \right) \\ &= 1 - [2^{1/3} + 2^{-2/3}] \beta^{1/3}, \quad \text{when } 0 \le \beta \le 1/2 \end{aligned}$$

Thus $f(\beta)$ cannot be extended to a convex function for $\beta \in \mathbb{R}$, and $\pi(x) =$ $\sup_{\varpi \in (0,1)} x(\varpi)$ cannot be extended from M to $\lim(1-\sqrt{1-\varpi^2}, 1/(1-\varpi^2))$.

References

- J. M. Harrison and D. M. Kreps, Martingales and arbitrage in multiperiod secu-[1]rities markets, J. Econom. Theory 20 (1979), 381-408.
- [2]R. B. Holmes, Geometric Functional Analysis and its Applications, Springer, Berlin, 1975.
- [3] E. Jouini, Market imperfections, equilibrium and arbitrage, in: Financial Mathematics, Lecture Notes in Math. 1656, Springer, Berlin, 1997, 247-307.
- M. Musiela and M. Rutkowski, Martingale Methods in Financial Modeling, [4]Springer, Berlin, 1997.
- S. Rolewicz, Functional Analysis and Control Theory, PWN-Polish Sci. Publ., [5]Warszawa, 1971.

Institute of Mathematics	Institute of Mathematics
Technical University of Szczecin	University of Łódź
Piastów 17	Banacha 22
70-310 Szczecin, Poland	90-238 Łódź, Poland
E-mail: epignacz@sz.onet.pl	E-mail: adampasz@math.uni.lodz.pl

Received on 15.12.1997