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EXTENSIONS OF CONVEX FUNCTIONALS ON
CONVEX CONES

Abstract. We prove that under some topological assumptions (e.g. if M
has nonempty interior in X), a convex cone M in a linear topological space
X is a linear subspace if and only if each convex functional on M has a
convex extension on the whole space X.

1. Introduction. Let M be any convex cone in a linear topological
space X (i.e. M + M ⊂ M and R+M ⊂ M). Assume that every convex
functional π on M (π(λm) = λπ(m), π(m + m1) ≤ π(m) + π(m1) for
λ ∈ R+, m,m1 ∈ M) can be extended to a convex functional π∗ on X. It
is not difficult to notice that this condition on M is rather restrictive. In
fact, we shall prove that it can be valid only for M being a linear subspace
of X. But some auxiliary constructions are necessary. We also need some
topological assumptions, e.g. that M has nonempty interior.

The possibility of extending any convex functional is a natural ques-
tion important in a number of applications of functional analysis. We only
point out that convex functionals appear in a natural way in the pricing
of contingent claims on market with transaction costs [3], [4]. We explain
this in the simple case of a finite set of trading times (0, 1, . . . , T ) (cf. [1]).
Let X0, X1, . . . , XT be random prices of a unit of one stock. Thus (Xt)
is adapted to increasing σ-fields F0 = {∅, Ω} ⊂ F1 ⊂ . . . ⊂ FT . For any
trading strategy, which is a predictable sequence θ1, . . . , θT (that is, θt is
Ft−1-measurable), and for the number V0 denoting initial investments, one
defines the payoff of the strategy by the formula VT = V0 + θ1(X1 −X0) +
. . .+ θT (XT −XT−1).

It was Harrison and Kreps [1] who showed the role of models of this type.
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They proved that, for X0, X1, . . . , XT satisfying the so-called no arbitrage
condition, all the payoffs VT form a linear subspace. The initial investment
V0 is uniquely determined by VT and V0 is a linear functional of VT .

To describe a more realistic case, one assumes that bid and ask prices of
a stock are given by different (F0, . . . , FT )-adapted processes (X0, . . . , XT ),
(X ′

0, . . . , X
′
T ) with Xt ≤ X ′

t. In such a case, one describes a trading strategy
by two nonnegative, nondecreasing processes (θ1, . . . , θT ) and (θ′1, . . . , θ

′
T ),

predictable with respect to the filtration (F1, . . . , FT ). At each trading time
t, the investor sells θt+1 − θt units of the stock and buys θ′t+1 − θ′t units.
Therefore θt and θ′t are respectively the cumulative long position and cumu-
lative short position in the stock just before time t = 0, . . . , T .

Denote by Vt the amount of the investor’s money (in a bank or riskless
bonds) just before trading time t = 0, . . . , T. We assume that θ0 = θ′0 = 0
and, moreover, that after time T , our net position in the stock should be
equal to zero. More precisely, θT+1 − θT = θ′T , θ′T+1 − θ′T = θT . The final
payoff is given by the formula

V = V0 + [θ1X0 − θ′1X
′
0] + [(θ2 − θ1)X1 − (θ′2 − θ′1)X

′
1] + . . .(1)

+ [(θT − θT−1)XT−1 − (θ′T − θ′T−1)X
′
T−1] + θ′TXT − θTX

′
T .

This example is, in fact, a special case of the model described in [3].
We assume that prices are discounted in such a way that the interest

rate of a bank deposit (bond) equals zero (and that the short position in a
bond is possible with no restrictions). The investor cumulates all his income
in the bank and the self-financing condition is satisfied automatically.

Obviously, V0 still describes an initial investment. Assume that V is
a possible final payoff. Then π(V ) = inf V0, where the infimum is taken
over all θ′, θ, V0 satisfying (1), is a necessary initial investment, uniquely
determined by V . In this situation the V ’s form a convex cone M with π
being a convex functional on M . Extension of this functional has a very
important interpretation as the pricing of all possible “contingent claims”
(see [4] for general explanations).

From this point of view, our result is negative. Extension of pricing
functionals cannot be obtained by general (geometrical) methods dealing
with all cones and functionals.

2. Extensions in linear topological spaces. We use the following
terminology. A convex cone means any setM contained in a real linear space
X, satisfying M +M ⊂ M and R+M ⊂ M . A convex functional means a
function π : M → R satisfying π(λx) = λπ(x) and π(x + y) ≤ π(x) + π(y)
for λ ≥ 0 and x, y ∈M (see [5] for more information).

Theorem 2.1. Let X be a linear space, M ⊂ X a convex cone, ψ a linear
functional on X , and let a, b be two elements of X such that :
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(i) ψ(x) ≤ 0 for x ∈M ;
(ii) ψ(a) = 0, a 6= 0;
(iii) ψ(b) < 0;
(iv) a+ t(b− a) ∈M for t ∈ (0, 1].

Then there exists a convex functional π : M → R without a convex extension
to X. If X is a linear topological space and ψ is continuous, then π can be
chosen continuous.

P r o o f. Define L = lin(a, b). Let ϕ : L→ R be a linear functional with
ϕ(a) = ϕ(b) = 1 and let ϕ : X → R be a linear extension of ϕ on X, i.e.
ϕ|L = ϕ. Define D = M ∩ {x ∈ X : ϕ(x) = 1}. It is clear that a, b ∈ D. Let
f : (−∞, 0] → R be given by

f(t) =
{

1−
√

1− (t+ 1)2, −1 ≤ t ≤ 0,
0, t ≤ −1.

Notice that f is a convex non-decreasing function with non-negative values.
Let π be the function on M given by

π(x) =
{
λf(ψ(d)) for x = λd with some λ > 0 and d ∈ D,
0 for the remaining x ∈M .

Observe that π is well defined and convex.
We prove that π cannot be extended to X. It is enough to show that

there exists no convex functional π∗ defined on L = lin(a, b) such that

(2) π∗|L∩M = π|L∩M .

So, suppose that a convex functional π∗ satisfies (2). Consider the func-
tion g(t) = π∗(a + t(b − a)), t ∈ R. Note that g is convex. Moreover,
for t ∈ (0, 1], we have g(t) = π(a + t(b − a)) because ϕ(a + t(b − a)) =
ϕ(a) + t(ϕ(b) − ϕ(a)) = 1, i.e. a + t(b − a) ∈ L ∩ M . Hence g(t) =
f(ψ(a+ t(b− a))) = f(tψ(b)), which means that

(3) g(t) = 1−
√

1− (tψ(b) + 1)2, t ∈ (0,−1/ψ(b)].

This is impossible because the function (3) cannot be extended to a convex
function on the whole real line.

Theorem 2.2. Let X be a real linear topological space and M a cone in
X with nonempty interior. The following conditions are equivalent :

(i) M = X;
(ii) every convex functional π : M → R can be extended to a convex

functional π∗ on X;
(iii) every continuous convex functional π : M → R can be extended to a

convex functional π∗ on X.
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P r o o f. It is enough to prove the implication (iii)⇒(i).
Let M ⊂ X be a convex cone with nonempty interior such that M 6= X.
Suppose that b ∈ intM , and c 6∈ M (i.e. c 6= 0). We may assume that

b, c are linearly independent. Let

a = b+ sup{t ∈ [0, 1] : b+ t(c− b) ∈M}(c− b).

Then a 6= 0 and a ∈M \ intM . If −a ∈ intM , then a− a = 0 ∈ intM , i.e.
M = X. Thus lin a ∩ intM = ∅. By the Mazur theorem [5], there exists a
linear functional such that ψ(a) = 0 and ψ(x) < 0 for each x ∈ intM . To
complete the proof, it is now enough to apply the previous theorem.

Corollary 2.3. If M is a convex cone in Rn containing at least two
linearly independent vectors, then the following conditions are equivalent :

(i) M is a linear subspace;
(ii) every continuous convex functional π defined on M can be extended

to a convex functional on Rn.

P r o o f. It suffices to prove (ii)⇒(i). Let x1, . . . , xk be a maximal system
of linearly independent vectors in M . Observe that (ii) is equivalent to

(ii′) every continuous convex functional on M can be extended to a
convex functional on lin(x1, . . . , xk).

First we prove that (ii′) implies (ii). Let π∗ be a convex functional on
lin(x1, . . . , xk) and let x ∈ Rn. Then x = α1x1+. . .+αkxk+αk+1xk+1+. . .+
αnxn for some linear basis x1, . . . , xk, . . . , xn. Define a functional π∗∗(x) =
π∗(α1x1 + . . .+αkxk). Since π∗ is convex, so is π∗∗. In view of (ii′), without
loss of generality we may assume that k = n. So, it remains to show that
M = Rn. This, however, follows from Theorem 2.2 since intM 6= ∅.

3. Extensions in a Hilbert space

Theorem 3.1. Let H be a Hilbert space and let M ⊂ H be a closed
convex cone containing at least two linearly independent vectors. Then the
following conditions are equivalent :

(i) M is a closed linear subspace;
(ii) every continuous convex functional π defined on M can be extended

to a convex functional π∗ on H.

P r o o f. (i)⇒(ii) is obvious; it is sufficient to take π∗(x) = π(PMx),
x ∈ H, where PM is the orthogonal projection onto M.

(ii)⇒(i). Suppose that (i) does not hold. Let H1 = linM . There exist
vectors c ∈ H1 \M and b ∈ M , b 6= 0. We may assume b, c to be linearly
independent. Let a = b+t0(c−b) where t0 = sup{t ∈ (0, 1] : b+t(c−b) ∈M}.
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There exists t1 ∈ (t0, 1] such that, for y = b+ t1(c− b) ∈ H1, we have

(4) 0 < ‖y − a‖ < min
t∈[0,1]

‖b+ t(c− b)‖ ≤ ‖y‖.

Denote by PMy the orthogonal projection of y onto the closed convex
set M (see [2]). From (4) we have PMy 6= 0. Let ψ = y − PMy.

Then ψx := (x, ψ) ≤ 0 for x ∈M . Hence ψPMy = (PMy, y−PMy) = 0.
Since H1 = linM , there exists b̃ ∈ M such that ψb̃ < 0. It is now

enough to take ã = PMy and apply Theorem 2.1.

Definition 3.1. A real function π on a topological space X satisfying
the condition

lim sup
x→x0

π(x) ≤ π(x) for any x0 ∈ X

is said to be upper semicontinuous (u.s.c.).

Theorem 3.2. Let H be a Hilbert space and let M ⊂ H be a convex cone
containing at least two linearly independent vectors. Then the following
statements are equivalent :

(i) M is a linear subspace;
(ii) every continuous convex functional π : M → R can be extended to a

convex functional π∗ which is u.s.c.

P r o o f. We prove that (ii)⇒(i) ((i)⇒(ii) is obvious). The idea of the
proof is similar to that of Theorem 2.1. Assume that M is not a linear
subspace and let H1 = linM . Then there exists some y ∈ H1 \M . Let
PMy be the orthogonal projection of y onto M and let ψ := y − PMy,
ψx := (x, ψ), x ∈M . Note that

∀x ∈M : ψ(x) ≤ 0; ∃b ∈M : ψ(b) < 0.

Let a = PMy. There exists a function ϕ′ such that ϕ′ = kb + (1 − k)a
for some k and ϕ′ ⊥ (b − a). Notice that (ϕ′, a) = (ϕ, b). As a ∈ M , there
is a sequence (a′n) ⊂ M such that a′n → a. Hence ϕ(a′n) → ϕ(a) = 1.
Now, consider the sequence an = a′n/ϕ(a′n). It is obvious that (an) ⊂ M
and ϕ(an) = 1. As in the proof of Theorem 2.1, consider the set L = M ∩
{x ∈ H1 : ϕ(x) = 1} (obviously, an, b ∈ L) and let π : M → R be given by

π(x) =
{
λf(ψ(l)) if x = λl for some λ > 0,
0 for other x ∈M,

where

f(t) =
{

1−
√

1− (t+ 1)2, −1 ≤ t ≤ 0,
0, t < −1.

Let π∗ : H → R be a convex u.s.c. functional with π∗|M = π. Define
gn(τ) = π∗(an + τ(an − b)), τ ∈ R.
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Notice that for all τ ∈ [−1, 0], an + τ(an − b) ∈ M ∩ L and gn(τ) =
π(an + τ(an − b)) = f(ψ(an) + τψ(an − b)), ψ(an) → 0. From the existence
of g′n(0−) and from the convexity of gn we obtain gn(τ) ≥ gn(0) + g′n(0−)τ
for all τ ∈ R. In particular, for τ = 1, we have gn(1) ≥ gn(0)+g′n(0) ≥ g′n =
f ′(ψ(an))ψ(an − b) n→∞, contrary to the assumption that π∗ is u.s.c.

Example 3.1 The functional π(m) = supm defined on some convex
cone of functions bounded from above is an elementary example of a convex
functional (for example in L2) for which the lack of a convex extension is
possible.

Let (Ω,F, P ) = ((0, 1), B(0,1), λ) and

M =
{
α(1−

√
1−$2)− β

1
1−$2

: $ ∈ (0, 1), α, β ≥ 0
}
.

For α = 1,

f(β) = sup
$∈(0,1)

(
α(1−

√
1−$2)− β

1
1−$2

)
= 1− [21/3 + 2−2/3]β1/3, when 0 ≤ β ≤ 1/2.

Thus f(β) cannot be extended to a convex function for β ∈ R, and π(x) =
sup$∈(0,1) x($) cannot be extended fromM to lin(1−

√
1−$2, 1/(1−$2)).
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