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A NOTE ON POISSON APPROXIMATION BY
w -FUNCTIONS

Abstract. One more method of Poisson approximation is presented and
illustrated with examples concerning binomial, negative binomial and hy-
pergeometric distributions.

1. Introduction. Let X be a non-negative integer-valued random
variable with distribution F and let Pλ denote the Poisson distribution
with mean λ. It is well known that the distributions of some types of X’s
can be approximated by Pλ provided natural conditions concerning their
parameters are satisfied. To measure how close the distributions of X and
Pλ are, the total variation distance is usually applied. It is defined by

(1) d(F ,Pλ) = sup
A
|F(A)− Pλ(A)|,

where A runs over subsets of non-negative integers.
The investigation of Poisson convergence and approximation has a long

history and enormous bibliography. Numerous methods have been devel-
oped or adapted to deal with the problem. The aim of this paper motivated
by Cacoullos et al. (1994) studying the normal case is to present still an-
other way of considering Poisson approximation which allows checking, in a
unified and simple manner, Poisson convergence in the class of discrete dis-
tributions as well as provides upper bounds for the total variation distance.

The main tools are the so-called w-functions which we introduce and
describe in Section 2. In Section 3 we use the w-functions to formulate
and prove a Poisson characterization and a convergence theorem. An upper
bound for the total variation distance in terms of the w-functions is given
in Section 4. To obtain it we apply the Stein–Chen identity (see Barbour
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et al . (1992), pp. 5ff) according to which for every positive constant λ, every
subset A of non-negative integers and some function h = hλ,A,

(2) F(A)− Pλ(A) = E[λh(X + 1)−Xh(X)].

The explicit formula for the function h can be found e.g. in Barbour et
al . (1992), p. 7, but what we really need are the following estimates valid
uniformly for all A:

(3) sup
k
|h(k)| ≤ min(1, λ−1/2), |∆h| = sup

k
|∆h(k)| ≤ λ−1(1− e−λ),

where ∆h(k) = h(k + 1)− h(k), given by Barbour and Eagleson (1983).
Finally, in Section 5 we present some examples concerning basic discrete

distributions.

2. The w-functions. Let a non-negative integer-valued random vari-
able X with distribution F = {p(k), k = 0, 1, . . .} have mean µ and variance
σ2. Define a function w associated with the random variable X (the distri-
bution F) by the relation

σ2w(k)p(k) =
k∑

i=0

(µ− i)p(i), k = 0, 1, . . .

Immediately from the above we have

(4) w(0) =
µ

σ2
, w(k + 1) =

p(k)
p(k + 1)

w(k) +
µ− (k + 1)

σ2
, k = 0, 1, . . . ,

and

(5) w(k) ≥ 0, k = 0, 1, . . .

The next relation was stated by Cacoullos and Papathanasiou (1989): if a
function g satisfies

E|w(X)∆g(X)| < ∞, E|(X − µ)g(X)| < ∞,

then

(6) Cov(X, g(X)) = σ2E[w(X)∆g(X)].

Note that putting g(x) = x we obtain at once

(7) E[w(X)] = 1.

3. Poisson characterization and convergence theorem. It is easy
to see that the relation (4) and elementary properties of the Poisson dis-
tribution yield the following characterization of the Poisson distribution in
terms of the w-functions:

F is Poisson if and only if w(k) = 1, k = 0, 1, . . .
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It turns out that the characterization remains valid also in, roughly speaking,
“limit situations”, providing thus another necessary and sufficient condition
for Poisson convergence. More precisely, we have

Theorem 1. Let {Xn, n = 1, 2, . . .} be a sequence of non-negative inte-
ger-valued random variables, each Xn having a distribution Fn, mean µn,
variance σ2

n and the associated function wn, n = 1, 2, . . . , such that for some
positive constant λ,

lim
n→∞

µn = lim
n→∞

σ2
n = λ.

Then

d(Fn,Pλ) → 0 as n →∞ if and only if wn(Xn) P.1−→ 1 as n →∞.

P r o o f. First assume that

wn(Xn) P.1−→ 1 as n →∞.

From (5) and (7) we have for n = 1, 2, . . . ,

wn(k) ≥ 0, k = 0, 1, . . . , and E[wn(Xn)] = 1.

Thus by Scheffe’s theorem (see e.g. Billingsley (1979))

E|wn(Xn)− 1| → 0 as n →∞.

Now we use the inequality (8) which will be given and independently proved
in the next section, the triangle inequality and the assumptions to get

d(Fn,Pλ) → 0 as n →∞.

To show the converse, set pλ(k) = Pλ({k}) for k = 0, 1, . . . , and recall
that in the discrete case

d(Fn,Pλ) =
∞∑

n=0

|pn(k)− pλ(k)|.

So by the assumptions pn(k) → pλ(k) as n → ∞, for k = 0, 1, . . . This
means that

pn(k)
pn(k + 1)

→ k + 1
λ

as n →∞, for k = 0, 1, . . . ,

which in turn implies

wn(0) = µn/σ2
n → 1 as n →∞.

Hence wn(1) → 1 as n →∞ in view of (4), and proceeding in the same way
we obtain wn(k) → 1 as n →∞, for k = 2, 3, . . .

The proof of the theorem is thus complete.

4. Upper bounds for the total variation distance. Using Theo-
rem 1 we can easily test whether Poisson convergence holds for the dis-
tributions considered but from the practical point of view some quantities
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measuring the distance between the distributions and a Poisson one are
more desirable. In the result below we express estimates of the total varia-
tion distance in terms of the w-functions (compare Cacoullos et al . (1994)
and Papathanasiou and Utev (1995)).

Theorem 2. The following inequality holds:

(8) d(F ,Pλ) ≤ λ−1(1− e−λ)E|σ2w(X)− λ|+ min(1, λ−1/2)|µ− λ|.

If additionally µ = σ2 = λ, then

d(F ,Pλ) ≤ (1− e−λ)E|w(X)− 1|.

P r o o f. In view of (2) and (6), for every subset A of non-negative integers
we get

|F(A)− Pλ(A)| = |E[Xh(X)]− λE[h(X + 1)]|
= |Cov(X, h(X)) + µE[h(X)]− λE[h(X + 1)]|
= |σ2E[w(X)∆h(X)] + (µ− λ)E[h(X)]− λE[∆h(X)]|
≤ E|σ2w(X)− λ| · |∆h(X)|+ |µ− λ|E[h(X)].

Now, (1) and (3) prove the result.

5. Examples. 1. Let F be the binomial distribution

B(n, p) =
{

p(k) =
(

n

k

)
pkqn−k, q = 1− p, k = 0, 1, . . . , n

}
.

Then µ = np and σ2 = npq and it is easily seen from (4) that

w(k) =
1
q
− k

nq
.

If we now let npn → λ as n →∞, for λ > 0, then

wn(k) → 1 as n →∞, k = 0, 1, . . . ,

and from Theorem 1 we obtain the classical Poisson Theorem:

d(B(n, pn),P(λ)) → 0 as n →∞.

To find the accuracy of the above convergence we apply Theorem 2. Com-
puting

E|σ2w(X)− np| = np2

and writing henceforth P(λ) instead of Pλ, we get in view of (8),

d(B(n, p),P(np)) ≤ (1− enp)p.

This is precisely the best known result in the literature (see e.g. Barbour et
al . (1992), p. 8).
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2. Let F be the negative binomial distribution

NB(n, p) =
{

p(k) =
(

n + k − 1
n− 1

)
pnqk, q = 1− p, k = 0, 1, . . .

}
.

Then µ = nq/p and σ2 = nq/p2 and simple calculations based on (4) lead
to

w(k) = p(1 + k/n).

If nqn → λ as n →∞, for λ > 0, then wn(k) → 1 as n →∞ for k = 0, 1, . . . ,
and so in view of Theorem 1 we have the Poisson Theorem for negative
binomial distributions. Because

E
∣∣∣∣σ2w(X)− nq

p

∣∣∣∣ =
nq2

p2
,

using (8) we get more, i.e.

d(NB(n, p),P(nq/p)) ≤ (1− e−nq/p)q/p.

This estimate was also given in Papathanasiou and Utev (1995). For com-
parison, Vervaat (1969) proved that

d(NB(n, p),P(nq/p)) ≤ q/p.

3. Let F be the hypergeometric distribution

H(n, m, r) =
{

p(k) =

(
m
k

)(
n−m
r−k

)(
n
r

) , max(0, r − n + m) ≤ k ≤ min(r, m)
}

.

Then

µ =
mr

n
and σ2 =

mr(n− r)(n−m)
n2(n− 1)

and using (4) it is not difficult to compute that

w(k) =
n(n− 1)(m− k)(r − k)

(n−m)(n− r)mr
.

If we let the parameters vary according to the conditions mn/n → 0 and
mnrn/n → λ as n, mn, rn → ∞, for λ > 0, we see that wn(k) → 1 as
n → ∞ for k = 0, 1, . . . , which in view of Theorem 1 means that the
Poisson Theorem holds for hypergeometric distributions. Bounds for the
total variation distance are obtained by computing as before

E
∣∣∣∣σ2w(X)− mr

n

∣∣∣∣ =
mr

n

[
m + r

n
− 1

n

(
mr

n
+

(n− r)(n−m)
n(n− 1)

)]
and using once more the relation (8). Then
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d

(
H(n, m, r),P

(
mr

n

))
≤ (1− e−mr/n)

[
m + r

n
− 1

n

(
mr

n
+

(n− r)(n−m)
n(n− 1)

)]
.

The same was proved in a different manner by Barbour et al . (1992), p. 112.
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