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Introduction. The ordinary Nielsen number N(f) of a self map f : X → X of a
compact connected ANR X is a lower bound for the minimum number M(f) of fixed
points within the homotopy class of f . Under certain mild assumptions this lower bound
is known to be sharp, that is, there is a map g homotopic to f with exactly N(f) fixed
points. The Nielsen periodic point theory referred to in the title of this paper concerns
the generalization of the above to the Nielsen type theory which attempts to determine,
for a fixed n, a lower bound for the least number of periodic points within the homotopy
class of f .

For the study of periodic points for fixed period n there are two numbers to consider
rather than one. Since for m|n, if fm(x) = x, then fn(x) = x too, we want firstly,
for fixed n, to consider all periodic points with period dividing n. Secondly we want to
consider those periodic points of period exactly n. We denote the corresponding numbers
due originally to Jiang [20], by NΦn(f) and NPn(f) respectively. They are homotopy
invariant lower bounds for the respective number of periodic points.

There are three aspects to ordinary Nielsen theory, firstly there is the computation
of N(f) (which is in general very hard); secondly there is the ‘Wecken’ question, that is,
the question of when N(f) and M(f) coincide; and finally there are the extensions of
ordinary Nielsen theory to the various restricted classes (relative Nielsen theory, fibred
Nielsen theory etc.). In the same way there are parallel considerations for the Nielsen
type numbers NΦn(f) and NPn(f), and in this survey we outline the progress made in
these areas.

Since the definitions are rather complicated we spend time motivating them both
geometrically and algebraically. The reader might find it helpful as a first run at this
material to aim to understand the two fundamental examples 1.15 and 1.16 in section
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1.3. The latter example shows clearly why NPn(f) (and hence NΦn(f)) can be unrelated
to N(fm) for any m, and why we need to use orbits rather than classes. An understanding
of lemma 1.13 (and 1.6) is also essential in this regard. Examples 1.15 and 1.2 help us to
understand why we can sometime relate NΦn(f) to N(fm) for the collection of m with
m|n, and so motivates us to look for conditions and algorithms for such considerations.
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1. Definitions, examples and properties. Since the definitions of the numbers
NΦn(f) and NPn(f) are not entirely straightforward we spend this section giving and
motivating the definitions, giving examples and the elementary properties of these num-
bers. We indicate clearly, for example, why the ordinary Nielsen number N(fn) of the
nth iterate of f is not in general a lower bound that would have any chance of satisfying
appropriate Wecken properties. We will see that part of the solution to the problems is
to work with orbits rather than classes.

In contrast to the original definitions due to Jiang [20], we follow the philosophy
from [7] (and taken up in [5] and [18]) that separates the algebraic from the topological
(geometric) ingredients, and does this using a modified fundamental group approach.

1.1. Geometric definitions. Our context is a map f : X → X of a compact connected
ANR X. For such an f the fixed point set is denoted by Φ(f), that is, Φ(f) = {x ∈
X|f(x) = x}. We will assume the reader has some familiarity with the ordinary Nielsen
number N(f) and its properties, i.e. that N(f) ≤ M(f) := {#(Φ(g))|g ∼ f}, and that
N(f) is a homotopy invariant, homotopy type invariant etc. Our aim in this subsection
is to motivate and give the geometric definitions. We develop such geometric concepts as
classes, orbits, reducibility etc. The next subsection will replace the geometric definitions
by their algebraic counterparts, and relate the algebra to the geometry.
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A periodic point of a self map f : X → X is simply a fixed point of the nth iterate fn

of f , i.e. an element of Φ(fn). The periodic points of least period n consists of the set

Pn(f) = {x ∈ Φ(fn)| if m < n then fm(x) 6= x}.

If x ∈ Pn(f) we write per(x) = n. Clearly Φ(fn) =
⋃
m|n Pm(f).

Example 1.1. Let f : S1 → S1 be defined by f(eiθ) = e3iθ. Then

Φ(fn) = {e2πik/(3n−1)|k = 0, 1, . . . , 3n − 2},
in particular #(Φ(fn)) = 3n − 1 (# denotes cardinality).

Note that n = 1, k = 1, and n = 2, k = 4, and n = 4, k = 40 determine the same
point eπi = −1, similarly n = 2, k = 1 and n = 4, k = 10 determine eπi/4. As an example
P4(f) = Φ(f4)− Φ(f2), and #(P4(f)) = 72.

Example 1.1 counts points. As with ordinary Nielsen theory we need to use Nielsen
classes. There are two approaches to this, the covering space approach, and the funda-
mental group approach. Since they determine the same partition of Φ(fn) we need only
one, and we choose the latter (see [20] for the covering space approach). Let x, y ∈ Φ(fn);
then x ∼ y iff there is a path c : x → y with c ' fn(c) rel end points. We say that x
is Nielsen equivalent to y, and denote the set of such Nielsen classes by Φ(fn)/∼ with
elements Fn. When n = 1 this is the usual Nielsen equivalence. In example 1.1 it is not
hard to see that each point is in its own class. We shall often refer to elements Fn of
Φ(fn)/∼ as geometric (as opposed to algebraic) classes.

As with the case n = 1, each element Fn ∈ Φ(fn)/∼ has an index (see for example
[1]). We denote the set of essential classes (classes with non-zero index) by E(fn). Note
that E(fn) ⊆ Φ(fn)/∼ and #(E(fn)) = N(fn).

For the case n = 1 we have that N(f) ≤ M(f). By analogy our aim is to define
numbers NΦn(f) and NPn(f) such that

NΦn(f) ≤MΦn(f) := min#{Φ(gn)|g ∼ f},

and

NPn(f) ≤MPn(f) := min#{Pn(g)|g ∼ f}.
Note, as we shall see in 1.1, MΦ4(f) = 80, and MP4(f) = 72.

The first attempts at calculating these lower bounds was given, on the Klein bottle K2,
in a widely circulated and influential (but unpublished) preprint by Benjamin Halpern
[4]. Formulae were also given in [4] for the numbers N(fn) for all possible maps of K2 (see
theorem 2.16 for the formulae, and [2] or [12; example 5.5] for the calculation of these
numbers). In his preprint Halpern implicitly equates MΦn(f) with N(fn). Of course
N(fn) is a lower bound for MΦn(f), but it can be quite inadequate as the next example
shows (see also 2.12).

Example 1.2. Let f : S1 → S1 be the flip map, i.e. the map of degree −1 given
by f(eiθ) = e−iθ. Let n = 2. Then f2 = id, where id denotes the identity map, and
L(f2) = χ(S1) = 0 so N(f2) = 0. However any map homotopic to f must have at least
two fixed points and in fact MΦ2(f) = 2 = N(f).
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To explain this, note that the number N(f2) is a lower bound for the least number of
fixed points for all maps k with k ∼ f2. Since f2 = id, then k could be a small irrational
rotation of S1, in which case the fixed point set of k is empty. The point is that we need
to consider the least number of periodic points of maps g that are homotopic to f , as
opposed to fixed points of maps k that are homotopic to fn which N(fn) measures. Even
if we restrict to maps k such that k is of the form gn for some g, we may still not get it
right. In this same example f2 ∼ id2 but f 6∼ id. The point is then that the homotopy
invariance is with respect to homotopies of f and not with respect to homotopies of
higher iterates.

Another way to see that N(fn) is not always a suitable candidate for NΦn(f) (see
also 1.16), is to notice that it does not take account of reducibility. That is that if m|n
and fm(x) = x then fn(x) = x also.

Definition 1.3. A periodic point x ∈ Φ(fn) is said to be reducible to m if fm(x) = x.
Similarly a periodic point class Fn in Φ(fn)/∼ is said to be reducible to m if Fn contains
a periodic point class Fm in Φ(fm)/∼.

Thus in 1.1, the 4-periodic point eiπ is reducible to 1, and eπi/4 is reducible to 2.
There is a function

γ = γm,n : Φ(fm)/∼ → Φ(fn)/∼

defined on classes Fm as follows: if x ∈ Fm, then γ(Fm) = Fn, where Fn is the class of
x in Φ(fn)/∼. It should be clear that if k|m|n then γk,n = γm,nγk,m.

Definition 1.4. If Fn ∈ Φ(fn)/∼, the smallest positive integer d = d(Fn) to which
Fn is reducible is called its depth. If d(Fn) = n, we say Fn is irreducible.

Clearly a class is irreducible if it is not in the image of γm,n for any m|n. In 1.2 for
example

γ1,2 : {F1
0,F

1
1} → {F2}.

where −1 ∈ F1
0, 1 ∈ F1

1, and where F2 is the single class of the identity at level 2. So F2

is reducible to either F1
0 or F1

1, and d(F2) = 1. Note by this example that γ need not be
injective.

At this point we might easily guess that NPn(f) should be equal to #(IEC(fn))
where IEC(fn) is the set of irreducible essential classes of E(fn) (in fact this was given
as a definition in Halpern’s unpublished works see [4] and [5]). This guess certainly
works for examples 1.1 and 1.2. In particular for 1.1, #(IEC(f4)) = 72 = MP4(f),
and for 1.2 NP2(f) = 0 = MP2(f), NP1(f) = N(f) = 2 = MP1(f). However the
number #(IEC(fn)), though it is clearly a lower bound for MPn(f), may also be very
inadequate! To see why note that if x ∈ X is a periodic point of least period n, then so
also are all the points in the orbit

Orb(x) := {x, f(x), f2(x), . . . , fn−1(x)}.

In other words if there is one periodic point of least period n then there are at least n of
them. On the other hand, because the elements of Orb(x) may not all belong to distinct
Nielsen classes, the number #(IEC(fn)) may turn out to be very much less than n.
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We will explain this more fully later, however for the moment let R(f) denote the
Reidemeister number of f (also defined later), and recall that #(π1(X)) ≥ R(f) ≥ N(f).
So in particular #(IEC(fn)) ≤ #(π1(X)).

In subsection 1.3 we will give an example (1.16) of a map f on RP 3 (real projective 3
space), and an infinite number of integers n > 2 for which there exists a single irreducible
essential class Fn. From the discussion above for each such Fn, there are at least n
periodic points of least period n, but #(IEC(fn)) < #π1(RP 3) = 2 < n. Thus the
number #(IEC(fn)) may be a very inadequate count of the number of periodic points.
The solution is to work with orbits, but since we work with classes rather than individual
points we need to formulate the concept of orbit for classes.

Definition 1.5. Let Fn ∈ Φ(fn)/∼ be a periodic point class. Then the orbit 〈Fn〉
of Fn is the set

〈Fn〉 = {Fn, f(Fn), f2(Fn), . . . , f `−1(Fn)},

where if x ∈ Fn, then f(Fn) is the class of f(x) etc., and where the length ` = `(〈Fn〉)
of Fn is the least integer ` such that f `(Fn) = Fn.

The length of the orbit of Fn is less than or equal to n, and the inequality can be
strict. In fact in 1.16 we will see an example where for any positive integer r and for
n = 2r there is an irreducible essential orbit Fn of length 1.

It is not hard to see that properties of ‘depth’, of being ‘irreducible’ or ‘essential’ are
properties of orbits ([20], [15]). If 〈Fn〉 is essential and d(〈Fn〉) = d, then the essentiality
of 〈Fn〉 may be detecting periodic points of any period m with d|m|n. We are assured
however that there are at least d of them. When d = n of course there is no confusion.
Thus:

Lemma 1.6. If the orbit 〈Fn〉 is essential then it detects at least d(〈Fn〉) periodic
points. If the orbit 〈Fn〉 is irreducible and essential then it detects at least n periodic
points of least period n.

We are ready to give the geometric definition of NPn(f).

Definition 1.7 (Geometric definition of NPn(f)). Let IEGOn(f) be the set of irre-
ducible essential geometric orbits of f at level n. Then

NPn(f) = n ·#(IEGOn).

For 1.1 it is straightforward (but perhaps a little tedious) to see that NP2(f) = 6,
and NP4(f) = 72.

Since Φ(fn) = ∪m|nPm(f), a second näıve guess for NΦn(f), is that NΦn(f) might
be given by the number

∑
m|nNPm(f). However as the next example shows this may

not reveal all orbits that are detectable.

Example 1.8. Consider the map f = g ∨ 1 : S3 ∨ S2 → S3 ∨ S2, where g : S3 → S3

is a map of degree 2, 1 : S2 → S2 is the identity, and ∨ is the one point union. The
Lefschetz number L(fm) of fm is 2− 2m so L(f) = 0, and for every m > 1, L(fm) 6= 0.
Now π = 0, so from standard Nielsen theory N(f) = 0, and if m > 1, then N(fm) = 1.

Consider the case n = 6; the simple connectivity of X and the fact that there are
fixed points at level 1 mean that there are unique non-empty classes F1, F2, F3 and F6
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at levels 1, 2, 3 and 6. The last three are essential and F1 is inessential. Again by the
simple connectivity of X all of the classes F2, F3 and F6 reduce to the inessential F1,
so
∑
m|nNPm(f) = 0. However since d(F2) = d(F3) = d(F6) = 1, each of these classes

is detecting 1 periodic point by lemma 1.6. Of course this may simply be a single fixed
point in the inessential F1. In any case MΦ6(f) ≥ 1, so the number

∑
m|nNPm(f) = 0

may fail to count periodic points detectable by index theory.

It should be clear that the above phenomenon complicates somewhat the definition
of NΦn(f). We invite the reader to see [18] for further motivation for this number. We
proceed now to a provisional definition.

Definition 1.9. A finite set of orbits S = {〈Fmi 〉 : i ∈ I} is said to be a set of
n-representatives if every essential orbit with m | n is reducible to some 〈Fmi 〉 ∈ S.

In the last example the two sets S = {〈F1〉} and S′ = {〈F2〉, 〈F3〉} are sets of
6-representatives.

The point of course, in considering sets of n-representatives, is that this gives us a
way to count all periodic points detectable by the fundamental lemma 1.6. We count by
taking the sum of the depths of the elements. However if we take the sum of the depths
of the set S′ in the example above, we see that we have counted too many periodic points
since both of the elements of S′ reduce to the orbit 〈F1〉. To make sure our count is
not too big, we require, in the following provisional definition, that the number be the
minimum taken over all possible sets of n-representatives.

Definition 1.10 (Provisional geometric definition).

NΦn(f) = min
{ ∑
〈Fm

i
〉∈S

d(〈Fmi 〉) : S = set of n-representatives
}
.

In the last example we would in fact have NΦ6(f) = d({F1}) = 1. In 1.1 the set
IEPO0 ∪ IEPO2 ∪ IEPO4 is a set of 4-representatives so NΦ4(f) = 80.

1.2. Algebraic definitions. The geometric definitions in the last subsection are not
practical when it comes to computation. In this subsection we give the algebraic ana-
logues of the definitions which are more suited to computation. In particular we discuss
a partition of the fundamental group π into Reidemeister classes and orbits etc. We also
relate the algebra and the geometry. As usual in Algebraic Topology the algebra reflects
the geometry, but not always exactly. We will see, for example, that we can only conclude
that algebraic depth is less than or equal to geometric depth.

There are two approaches to the partition of π mentioned above, however the two ap-
proaches determine exactly the same partition. For a self map f of X, in the fundamental
group approach one chooses a basepoint x0, and a path ω from x0 to f(x0). The covering
space approach selects a lift f̃ of f to the universal covering space X̃ of X. However f̃
is determined by, and itself determines, a basepoint x0 and a path ω from x0 to f(x0).
With this in hand the partitions determined on the one hand by f̃ , and by x0 and f(x0)
on the other are exactly the same partition of π (e.g. [6]).

We use the modified fundamental group approach used in [15] and [18], as opposed
to the covering space approach used in [20]. The modification refers to the assigning
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of an index to the Reidemeister classes ([7]) which gives exactly the same index as is
defined in the covering space approach. For simplicity of exposition in this survey we
make the (unnecessary) assumption that there is a fixed point x0 of f , so that fn∗ induces
a homomomorphism on π1(X,x0).

Definition 1.11. Let f : X → X and let n ≥ 1. We say that α ∼ β (Reidemeister
equivalent) if there exists δ ∈ π1(X,x0) with α = δβfn∗ (δ−1).

The Reidemeister class containing α will be denoted by [α]n. The set of all Reidemeis-
ter classes for fn∗ is denoted by R(fn∗ ). This replaces the notation Coker(1− fnx0

∗ ) used
in [15] and [18] (and elsewhere). The symbol R(fn) denotes the Reidemeister number
#R(fn∗ ) of fn (no ∗ in R(fn)). We refer to elements of R(fn∗ ) as algebraic (as opposed
to geometric) classes.

The following is an exact sequence of sets ([7]):

Fixfn∗
i∗→ π1(X)

1·f−n

→ π1(X)→ R(fn∗ ), (1)

where 1 · f−n is the function which takes an element α ∈ π1(X) to αfn∗ (α−1), Fixfn∗
is the subgroup {α ∈ π1(X)|fn∗ (α) = α} of π1(X), and the last arrow is the canonical
projection. When π1(X) is abelian, R(fn∗ ) has a canonical group structure (e.g. [20]). In
addition the sequence above becomes an exact sequence of groups and homomorphisms
which is isomorphic (using functions induced by the Hurewicz homomorphism) to the
following exact sequence of groups in homology (see [7]):

ker(1− fn∗ ) i∗→ H1(X)
1−fn

∗→ H1(X)→ Coker(1− fn∗ ). (2)

Thus in example 1.1 we see that R(f1
∗ ) ∼= Z2, R(f2

∗ ) ∼= Z8 and R(f4
∗ ) ∼= Z80.

The algebraic and geometric theory are related by an injective function

ρ = ρn : Φ(fn)/∼ → R(fn∗ ),

defined on a class Fn by selecting a representative x ∈ Fn, and a path c : x → x0 (the
basepoint) and defining ρ(Fn) = [fn(c−1)c]n. In example 1.1, taking x0 = ei0 as basepoint
and c as the shortest clockwise path from e2πik/(3n−1) to x0, we have ρ(e2πik/(3n−1)) =
[k]n.

We think of ρ as assigning a ‘coordinate’ to the geometric classes. As we have men-
tioned, the functions ρ are injective, but they are not always surjective. If a class [α]n is
not in the image of ρ, we will think of [α]n as the coordinate of an empty geometric class.
An index can be assigned to the Reidemeister classes in such a way that the index of the
possibly empty classes is zero. This is the heart of the modifications to the usual funda-
mental group approach mentioned above. The index i([α]n) is assigned to the algebraic
classes [α]n as follows.

i([α]n) =
{
ind(Fn) if [α]n = ρ(Fn),
0 otherwise.

As with the geometric classes, an algebraic class is essential provided it has non-zero
index. This should not appear too strange since this assigning of an index to a coordinate
is exactly what is done in Reidemeister trace theory. To relate this to the covering space
approach we note that if x0 ∈ Φ(f), then one chooses ‘coordinates’ by simply specifying
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the lift f̃n as that lift of fn that takes the constant path at x0 to itself (this requires that
we think of X̃ as equivalence classes of paths starting at x0). This automatically provides
f̃n as the coordinate of fn, and i([α]n) = ind(p(Φ(α−1 ◦ f̃n))).

The point of the definition is, of course, that the index of [α]n is the same as the
index of the geometric class (empty or not) that determines it. Since the periodic point
classes are in one to one correspondence with the coordinates we are in this way able to
deal with possibly empty classes without bringing in the machinery of covering spaces
([7], [15], [18]).

With this definition the function ρ is index preserving, and of course

N(fn) ≤ R(fn).

Corresponding to the geometric ‘boosting functions’ γm,n, we have ‘algebraic boosting
functions’ ιm,n : R(fm∗ )→ R(fn∗ ) defined by the rule

ιm,n([α]m) = [fn−m∗ (α)fn−2m
∗ (α) . . . fm∗ (α)α]n.

By analogy with the geometric case for k|m|n we have ιk,n = ιm,nιk,m.
An easy calculation shows that ιm,n([fm(c−1)c]m) = [fn(c−1)c]n, that is, that the left

hand diagram below is commutative for all m|n.

Φ(fm)/∼ ρ→ R(fm∗ ) Φ(fm)/∼ ρ→ R(fm∗ )

γm,n ↓ ιm,n ↓ f∗ ↓ f∗ ↓

Φ(fn)/∼ ρ→ R(fn∗ ) Φ(fm)/∼ ρ→ R(fm∗ )

It is not hard to see that the right hand diagram is also commutative for all m, where
f∗ : R(fm∗ ) → R(fm∗ ) is defined by f∗([α]m) = [f∗(α)]m. Note that f∗ is an index
preserving bijection ([15]). We are now ready to make the algebraic analogues of the
geometric definitions. For example:

Definition 1.12. Let f : X → X be a map. We say [α]n ∈ R(fn∗ ) is reducible to
[β]m ∈ R(fm∗ ) if ιm,n([β]m) = [α]n. We say that [α]n has depth d if d is the smallest
integer for which there is a class [δ]d to which [α]n reduces.

The point of the algebraic definitions is that many times it is only from the algebra
that we are able to detect the corresponding geometric classes.

We will not give all the algebraic analogues of the geometric definitions in detail. It
should be obvious for example that just as the function f defines orbits on the Nielsen
classes Φ(fn)/∼, f also induces orbits on the Reidemeister classes by the function f∗
defined above. From the injectivity of ρ, and the right hand diagram above, the geometric
length of orbit and the algebraic length coincide (see [15]). On the other hand from the left
hand diagram we can only deduce that algebraic depth is less than or equal to geometric
depth. However from 1.6 we do have:

Lemma 1.13. If the orbit 〈[α]n〉 is essential and has (algebraic) depth d then this orbit
detects at least d periodic points.

Obviously we do not always know the geometry, and so must rely on the algebra. It
is to make this formal that we now turn to
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Definition 1.14. We define the concepts of, reducible to m, sets of n-representatives
exactly as in the geometric definitions but with the corresponding geometric ingredients
replaced by their algebraic counterparts. In particular we have the fully fledged definitions
of NPn(f) and NΦn(f) as follows:

NPn(f) = n ·#(IEOn),

where IEOn(f) is the set of irreducible essential algebraic orbits of f at level n. Further-
more

NΦn(f) = min
{ ∑
〈[α]m

i
〉∈S

d(〈[α]mi 〉) : S = algebraic set of n-representatives
}
.

1.3. Two fundamental examples. We now illustrate the power of the algebraic def-
initions by giving two examples of calculations of NPn(f) and NΦn(f). The second
example will emphasize the advantage of the algebraic approach. For the first illustration
we simply rework example 1.1 in its algebraic form.

Example 1.15. Recall from above for the standard map of S1 of degree three (ex-
ample 1.1) that R(f1

∗ ) ∼= Z2, R(f2
∗ ) ∼= Z8 and R(f4

∗ ) ∼= Z80. Since we are working with
abelian groups we denote the binary operation by +. Note then that ι1,2(α) = f(α)+α =
3α+α, that is, ι1,2 is multiplication by 3+1 = 4. Similarly ι2,4 is multiplication by 32 +1
= 10, while ι1,4 is multiplication by 33 + 32 + 31 + 1 = 40. This is illustrated in the
diagram below:

⊆

E(f2) ⊆ Z8

@
@

@
@R

E(f) Z2

?

A
A
A
A
A
A
A
A
A
AU

E(f4) Z80⊆

×40

×4

×10

The fact that 4× 10 = 40 illustrates the relationship between the ι (ιk,n = ιm,nιk,m)
mentioned earlier. The inclusions are of course induced by the various ρ. Since S1 is a
Jiang space and L(f j) 6= 0 for all j, we see that the inclusions are in fact bijections, so
all the algebraic classes are essential in the sense defined above. Thus we need only deal
with the algebra.

Using the fact that on R(fn∗ ) the function f∗ is multiplication by 3, we see that at
level 4 there are 18 irreducible essential orbits, at level 2 there are three, and at level
1 just 2. It is not hard to see that this set is a minimal set of 4 representatives, and
NP1(f) = 2, NP2(f) = 6 and NP4(f) = 72. Also NΦ4(f) = 1 · 2 + 2 · 3 + 4 · 18 = 80.
Note in this example that NPn(f) = #(IECn(f)) (see 1.19(v)), and NΦn(f) = N(fn).

The next example formalizes the one on RP 3 hinted at earlier.
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Example 1.16 ([20], [15], [18]). Let S3 = {(r1e
iθ1 , r2e

iθ2)|r2
1 + r2

2 = 1}, and let f :
RP 3 → RP 3 be induced by the map f̃ : S3 → S3 defined by f̃(r1e

iθ1 , r2e
iθ2) =

(r1e
3iθ1 , r2e

3iθ2). Then π1(RP 3) = Z2, f∗ : π1(RP 3) → π1(RP 3) is the identity, and
L(fm) = 1 − 9m 6= 0 for all m. From the sequence in (1) R(fm∗ ) ∼= Z2 for each m, and
for each [α]m ∈ R(fm∗ ), 〈[α]m〉 = {[α]m}. That is since f∗ is the identity each orbit has
length 1. Now let n = 2r for some positive integer r. Since for any m|n the number n/m
must be even, it is not hard to see (compare 1.15) that ιm,n is multiplication by an even
integer, that is, it is the zero function on Z2. In particular the orbit 〈[1]n〉 is irreducible
and essential. From the definition NPn(f) = n = 2r.

Note (looking ahead slightly) in this example that NPn(f) = n · #(IECn(f)) (see
1.19(v)), and by 1.19, for r > 1 that

NΦn(f) ≥
∑
m|n

NPm(f) ≥ NPn(f) = n > N(fn).

We remark that in this example we needed to consider the algebra in order to de-
termine that the essential class represented by [α]n is irreducible. This is not detectable
from the geometry alone.

1.4. Properties and estimates of NΦn(f) and NPn(f). In this subsection we give
some properties of the periodic numbers. The ordinary Nielsen number N(f) is a homo-
topy invariant, homotopy type invariant etc. These are the usual properties one expects
of a Nielsen theory. Accordingly we have the following properties for the periodic Nielsen
numbers.

Theorem 1.17 ([20]). The numbers NPn(f) and NΦn(f)
(i) are homotopy invariants,
(ii) are homotopy type invariants for maps,
(iii) satisfy the commutative property of maps.

The next theorem is the expected lower bound property for our numbers.

Theorem 1.18 ([20]). NPn(f) ≤MPn(f) and NΦn(f) ≤MΦn(f).

Note that, in 1.1, f has NΦ4(f) = 80 = #(Φ(f4)), and NP4(f) = 72 = #(P4(f)).
Thus from theorem 1.18 we have that NΦ4(f) = MΦ4(f) and NP4(f) = MP4(f).

Next we have a number of estimates from various sources.

Theorem 1.19. (i) ([20]) NΦn(f) ≥ NΦm(f) for all m|n,
(ii) ([18]) NΦn(f) ≥ N(fm) for all m|n,
(iii) ([20]) NΦn(f) ≥ NΦm(fn/m) for all m|n,
(iv) ([20]) NΦn(f) ≥

∑
m/nNPm(f),

(v) ([28]) #(IECn(f)) ≤ NPn(f) ≤ n ·#(IECn(f)).

For any given inequality in theorem 1.19 an example may be given where the inequality
is strict, and another where the inequality is an equality (most such examples can be
found in [15] and [18]). For (v) the left hand bound is attained in example 1.15, and the
right hand one in 1.16. Necessary and sufficient conditions for any given inequality being
an equality are illusive. Sufficient conditions can form the substance of computational
theorems.
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2. Computational theorems and calculations. In this section we deal with the
question of the computation of NΦn(f) and NPn(f). This, as might be expected, is
even harder than the computational question for N(f). As with ordinary Nielsen theory
there are three fundamental tools, namely Jiang spaces, fibre space techniques, and the
Fox calculus for surfaces. We document the progress in the use of these tools for the
computation of NΦn(f) and NPn(f). In addition we also indicate something of how
equivariant fixed point theory has contributed to periodic point theory.

2.1. Jiang spaces. In ordinary Nielsen theory the concept of being a Jiang space is a
useful tool. We know for example that if X is a Jiang space then for any f : X → X

N(f) =
{

0 if L(f) = 0,
R(f) otherwise.

(3)

For periodic points the relationship is more subtle. The first result is due to Jiang.
Let k = #Coker(1− f∗) in homology (see sequence (2)).

Theorem 2.1 ([20]). Let X be a Jiang space, and f : X → X a map.
(i) If n has no prime factors other than those of k, and if L(fn) 6= 0 then NPn(f) ≥

kφ(n) where φ is the Euler function in number theory.
(ii) If k > 1 and L(fn) 6= 0 for all n, then f has an infinite number of periodic

points.

This theorem reflects Jiang’s interest in such question as the existence of an infinite
number of periodic points (see [21]). For this (ii) is clearly useful. However when we
restrict our interest to fixed n the lower bound given in (i) might not be too sharp!

Example 2.2. In example 1.15 we see that k = #(Coker(1− f∗)) = 2 and φ(4) = 2,
so kφ(4) = 4. While, as we have seen, NP4(f) = 72.

Part of the cause of the problem with the inadequacy of this estimation of NPn(f) is
to be found in the method of proof of 2.1 which used mod K versions of periodic point
numbers. Here K is the kernel of the composite of the function π1(X) → R(fn∗ ) with
the function R(fn∗ )→ Coker(1− fn∗ ) induced by the Hurewicz homomorphism. This has
the effect of coalescing a number of periodic points into a mod K class (or orbit) and
essentially counting the coalesced classes (orbits) as a single class (orbit).

2.2. Mainly for tori. In this subsection in order that we might give a smoother expo-
sition, the results are, at times, out of chronological order.

Definition 2.3 ([12]). We say that f is essentially reducible provided that for any
essential class [α]n of fn, if [α]n reduces to some class [β]m, then [β]m is also essential. If
for a given space X any self map is essentially reducible, then we say that X is essentially
reducible.

The maps in examples 1.15 and 1.16 are essentially reducible while the one in example
1.8 is not. If a map of a Jiang space (as in example 1.8) is to be essentially reducible, we
need that if L(fn) 6= 0, then L(fm) 6= 0 for any m|n, In particular by consideration of
roots of unity we have

Proposition 2.4 ([12; 4,3]). Tori are essentially reducible.
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Essential reducibility has a number of important consequences including

Theorem 2.5 ([18; 4.2]). If f is essentially reducible then

NΦn(f) =
∑
m|n

NPm(f).

The point is that in the presence of essential reducibility the number
∑
m|nNPm(f)

detects all periodic points detectable by current Nielsen theory. In other words, in terms of
the definition, for essentially reducible maps, the union of the sets of irreducible essential
orbits at each level m|n is a set of n representatives of f .

Example 2.6 (see [20], [15]). For f : RP 3 → RP 3 and n = 2r as in example 1.16 we
have

NΦn(f) =
r∑
t=1

NP2t(f) =
r∑
t=1

2t = 2r+1 = 2n.

Essential reducibility also enables us to use either the NΦn(f) or the NPm(f) to
determine the other, by Möbius inversion.

Corollary 2.7 ([18; 4.6]). Let f and n be given, and let p(n) denote the set of prime
divisors of n, and where n : τ = n

∏
p∈τ p

−1. If f is essentially reducible then

NPn(f) =
∑

τ⊂p(n)

(−1)#τNΦn:τ (f).

In order to motivate next the two main computational results from [15] and [18], we
turn back to example 1.15. We noted there that NΦn(f) = N(fn). We highlight some of
the ingredients which make this equality work. We list a number of properties, (P1) to
(P6), that were not in fact delineated like this until [12]. This labeling will also be useful
later.

The reader can hardly fail to have noticed in example 1.15 (unlike 1.16) that we get
the same number when we count n times the number of irreducible essential orbits, as
when we count irreducible essential classes. This is expressed in terms of length ` of an
orbit, and depth d of an orbit, as

(P1) For any [α]m, we have that `([α]m) = d([α]m).

For the second property we have (unlike example 1.16)

(P2) The functions ιk,m are injective for all k|m|n.

When all orbits are essential (P2) shows that orbits ‘down below’ may as well be
counted at level n. For the third property we have

(P3) The maps f are essentially reducible.
(P4) The map f is reducible to the GCD, that is, whenever a class [α]m of fm reduces

to classes [β]r at level r and to [δ]s at level s, then there is a class [σ](r,s) at level
(r, s) to which both [β]r and [δ]s reduce.

A root of a periodic point class [α]n is an irreducible periodic point class [β]m to which
[α]n reduces. Note that the next property holds for 1.1, but not for 1.2 or 1.16.

(P5) (Unique roots) Every class [α]m of fm has a unique root [β]r.
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Note that the injectivity of the ι does not insure unique roots since this only shows
that if the images of two roots from the same level are equal then they are the same root.
The next property holds for Jiang spaces.

(P6) For f : X → X we have either N(fm) = 0, or N(fm) = R(fm).

For spaces with abelian fundamental group (i.e. if X is a Jiang space) (P4) and (P5)
are automatic ([20; p. 66] and [8; 4.9]). In addition if π1 is abelian, the first two properties
(P1) and (P2) follow if Fixfn∗ ∼= ker(fn∗ − 1) ∼= 0 (see sequence (2) or [15; 3.5]). This
follows for tori if the matrix determined by f on the first homology group does not have
an mth root of unity for any m|n, i.e. if L(fm) 6= 0. In addition for tori all the other
necessary conditions are satisfied, so we have

Theorem 2.8 ([18; 4.12]). Suppose that X = T k is a k-torus. If L(fn) 6= 0 then

NΦn(f) = N(fn).

Example 2.9. Let f : T 24 → T 24 be a map of the 24, torus with characteristic
equation λ24 + 1 = 0 (it is not hard to find a matrix which will induce this map). Since
L(f24) 6= 0 we have from the theorem that NΦ24(f) = N(f24) = 224 (the last equality
follows from [15; 3.9]).

Combining 2.4 and 2.7 with the last theorem we get the following special case of one
of the main theorems of [15] proved there by combinatorial arguments. Note in contrast
to corollary 2.7 that the NPn(f) are defined in terms of the ordinary Nielsen numbers
N(fn:τ ) rather than the NΦn:τ (f)

Corollary 2.10 ([15; 3.7]). Suppose that X = T k is a k-torus, and let p(n) denote
the set of prime divisors of n. If L(fn) 6= 0 then

NPn(f) =
∑

τ⊂p(n)

(−1)#τN(fn:τ )

where n : τ = n
∏
p∈τ p

−1.

Example 2.11. For the map f in example 2.9, p(n) = {2, 3}, so we have

NP12(f) = N(f12)−N(f6)−N(f4) +N(f2) = 4020.

Here we use the formula N(fm) = 2(m,n) from [15; 3.9] for calculating the ordinary
Nielsen numbers.

We next show that the formula in corollary 2.10 is wrong if L(fn) = 0.

Example 2.12. In example 2.9 we have NP48(f) = 0 since L(f48) = N(f48) = 0.
On the other hand the right hand side of the formula in corollary 2.10 is 0 − N(f24) −
N(f16) +N(f12) which is negative!

The same phenomena can also be seen from 1.2. For tori an algorithm for this situation
was given in [18]. We need some notation. DefineM(f, n) byM(f, n) = {m|n |N(fm) 6= 0,
and if m|k|n with m 6= k, then N(fk) = 0}. In example 2.9 since N(f48) = 0 and
N(f24) 6= 0, we have M(f, 48) = {24}.



172 P. R. HEATH

Theorem 2.13 ([18; 4.7]). Let f : T k → T k be a map of the k-torus. Then

NΦn(f) =
∑

∅6=µ⊆M(f,n)

(−1)#µ−1N(fξ(µ)),

where ξ(µ) is the greatest common divisor of all elements of µ.

Example 2.14. In example 2.9, NΦ48(f) = N(f24) = 224, and in example 1.2,
NΦ2(f) = N(f) = 2.

Actually these results quoted above from [15] and [18] are a bit more general than
we have stated them here. However we are not aware of any significant class of spaces
for which the more general hypothesis in [15] and [18] are satisfied. Those hypotheses as
they stand are certainly not valid for the class of spaces discussed in the next subsection.

2.3. Nil and solvmanifolds. We mentioned earlier that the first results about lower
bounds for MΦn(f), and MPn(f) were suggested by Halpern in [4] for the Klein bottle.
The Klein bottle is an example of a solvmanifold (a homogeneous space of a solvable Lie
group). It seems worth while quoting his result here. We need first to define some maps
on the Klein bottle.

Example 2.15 (The Klein bottle). Let K2 denote the Klein bottle. We will think of
K2 as a quotient space of R2, its universal covering space. For the fundamental domain
[0, 1] × [0, 1] ⊆ R2 this results in the familiar identifications of (0, s) with (1, 1 − s) and
(t, 0) with (t, 1) (for more details see [14]). Given any pair of integers (r, q) for which r

is odd, or r is even and q = 0, the correspondence (s, t)→ (rs, qt) mod Z2 induces a well
defined map f of K2. We shall call this map f the standard (r, q) map on K2.

Halpern starts his preprint [4] by saying that the object of his paper is to determine
the minimum number of periodic points (i.e. MΦn(f)) for all maps of K2. He very quickly
goes on to state that his result is the following (when applied to the set of maps defined
above)

Theorem 2.16 ([4]). For n ≥ 1, the Nielsen numbers N(fn) for f the standard (r, q)
map on K2 are given by

N(fn) =
{
|qn(rn − 1)| if q 6= 0,
|(rn − 1)| if q = 0.

Thus Halpern implicitly equated MΦn(f) with N(fn). We saw in 1.2 that this can be
quite inadequate. Part of our aim in this subsection is to show what is true in equating
MΦn(f) with N(fn) for nil and solvmanifolds, and what is not.

2.3A. Equivariant fixed point theory and periodic points. The main tools concerning
nilmanifolds (homogeneous spaces of nilpotent Lie groups) and solvmanifolds (homoge-
neous spaces of solvable Lie groups) are fibre techniques (see the next subsection for
more details). However the first results about periodic points on nilmanifolds were given
by Peter Wong ([28]) using equivariant Nielsen theory, and in particular his inequality
#(IECn(f)) ≤ NPn(f) ≤ n ·#(IECn(f)) (see 1.19(iv)).

We sketch the connection between equivariant fixed point theory that enabled Wong
to give his results, and to discover the above inequality (see [27]). We use an example.
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Let f : X → X be given; we consider periodic points of period 3. The first step is to
construct the space X3 = X×X×X and the cyclic Z3 action which under the operation
by the first non-zero element takes a triple (x1, x2, x3) to (x3, x1, x2).

Consider next the Z3 map gf : X3→X3 given by gf (x1, x2, x3)=(f(x3), f(x1), f(x2)).
For (x1, x2, x3) to be a fixed point of gf we must have

(x1, x2, x3) = (f(x3), f(x1), f(x2)).

That is, f(x3) = x1, f(x1) = x2 and f(x2) = x3, or

f3(x1) = f2(x2) = f(x3) = x1.

In other words the set of periodic points of period 3 can be identified with the Z3 equivari-
ant fixed point set of gf on X3. More generally n-periodic point theory can be considered
as Zn equivariant fixed point theory on Xn, the n-fold product. Thus by applying the
machinery of equivariant fixed point theory to the spaces Xn, we obtain information
about periodic point theory.

As an example of what Wong proved we give the following very specific theorem for
nilmanifolds.

Theorem 2.17 ([28]). Let f : N → N be a map of a compact nilmanifold, p a prime
number, n = pr, and m = pr−1. Suppose that ιm,n is injective. If L(fn) ·L(fm) 6= 0, then

|L(fn)| − |L(fm)| ≤ NPn(f) ≤ n · (|L(fn)| − |L(fm)|).

With the extra requirement that f satisfies (P1), Wong shows that the equality can be
settled as the left hand value. As we see below this is proved (and generalized in several
ways) without hypotheses in [12].

2.3B. Fibre techniques on nil and solvmanifolds. The results of this (sub)-subsection
use fibre techniques, as do the computation of the ordinary Nielsen numbers of nil and
solvmanifolds. We report on two papers [12] and [13]. The first of these aims to show for
which maps of nilmanifolds and solvmanifolds one can generalize theorems 2.8, 2.10 and
2.13. The second aims to develop algorithms for the cases when these theorems cannot
be applied.

The properties of nil and solvmanifolds that make them amenable to the use of fibre
techniques is the toral decomposition that these spaces have. We will let K = ker i∗ :
π1(F )→ π1(E), and NK(fp(y)) be the mod K Nielsen number (e.g. [14]).

Definition 2.18 ([14]). A fibration F ↪→ E
p→ B is said to satisfy the näıve addition

conditions provided that for each fibre-preserving map f of p, and for all y in an essential
class of f we have that Fixf̄p(y)

∗ = p∗(Fixfy∗ ) and NK(fp(y)) = N(fp(y)).

Theorem 2.19 ([2]). Let N be a nilmanifold which is not a torus. Then there is a
sequence of orientable fibrations Tk ↪→ N → Nk, Tk−1 ↪→ Nk → Nk−1, . . . , T3 ↪→ N2 →
N1, T2 ↪→ N1 → T1, where N1, N2, . . . , Nk−1, Nk, Nk+1 = N are nilmanifolds and T1,
T2, . . . , Tk are tori. For solvmanifolds S, there is one more fibration Nk+1 → S → Tk+1

in the tower. All these fibrations satisfy the näıve addition conditions. Furthermore any
self map of N (or S) is homotopic to a map which is fibre preserving with respect to this
decomposition.
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See 2.26 for an example of a nilmanifold that is not a torus. We call the tower of
fibrations in 2.19 the toral decomposition of N or S. Note that for solvmanifolds the last
fibration may not be orientable (e.g. 2.15).

Let f : E → E be a fibre preserving self map of a fibration F
j
↪→ E

p→ B, with induced
map f̄ on the base B. Consider the following diagrams, where the base point x of E is an
element of Φ(fm), b = p(x), and (fm)b is the restriction of fm to the fibre F = p−1(b).

E((fm)b) ⊆ R((fm)b∗) R((fm)b∗)
ι→ R((fn)b∗)

j∗ ↓ j∗ ↓ j∗ ↓ j∗ ↓

E(fm) ⊆ R(fm∗ ) R(fm∗ ) ι→ R(fn∗ )

p∗ ↓ p∗ ↓ p∗ ↓ p∗ ↓

E(f̄m) ⊆ R(f̄m∗ ) R(f̄m∗ ) ι→ R(f̄n∗ )

Proposition 2.20. The diagrams above are commutative, and the vertical sequences
are exact in the sense that ker p∗ = Im j∗. In particular if [α]n ∈ R(fn∗ ) is such that
p∗([α]n) is the basepoint of R(f̄n∗ ), and [αb]n in the fibre is such that j∗([αb]n) = [α]n

then from the left hand diagram [α]n is essential if and only if the components p∗([α]n)
and [αb]n of [α]n are.

The commutativity follows by naturality considerations, the exactness from the longer
sequences from [7].

Proposition 2.21. Let f be a map of a nilmanifold or solvmanifold then (P3) holds,
i.e. f is essentially reducible; moreover properties (P1), (P2), (P4) and (P5) hold on
essential classes.

Perhaps the easiest property to understand is the essential version of (P1), that the ι
are injective on essential classes. By 2.19 we may assume all maps are fibre preserving and
we proceed by induction on the toral decomposition. The induction hypothesis is that
the ι are injective on essential classes in fibre and base (note the tower of fibrations in
2.19 starts with tori in both base and fibre). The inductive step for the essential version
of (P1) is proved by ‘five lemma’ type arguments. Note that the j∗ in 2.19 are not in
general injective. However since these fibrations satisfy the näıve addition conditions we
have from [14] that j∗ : R((fm)∗b)→ R(fn∗ ) is injective on essential classes. Observe that
there is also an extra difficultly in the proofs because we are dealing with exact sequences
of sets not groups!

If the reader will allow us to gloss over the existence of suitable base points (which
is far from trivial), we can also give the flavour of the proof of (P3). Here the induc-
tion hypothesis is that fibre and base are essentially reducible. Take an essential class
[α]n ∈ R(fn∗ ), and suppose it reduces to [β]m. By 2.20, p∗([α]n) is essential, and by the
commutativity of the bottom part of the diagram there, p∗([α]n) is reducible to p∗([β]m).
By the inductive hypothesis p∗([β]m) is essential and thus contains a point b ∈ Φ(f̄m).
This will act as a new basepoint for B, and ensure that the restriction (fm)b of fm to
p−1(b) is a self map of the fibre. By change of basepoint we can assume that p∗([β]m) is
the neutral element of R((f̄m))), so [β]m has a fibre component [βb]m in R((fm)b)). By
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commutativity of the diagrams in 2.20, ι([βb]m) is a fibre component of [α]n. Since [α]n

is essential, its components are essential by 2.20. By the inductive hypothesis the fibre
and base are essentially reducible and so the components of [β]m are essential. Again by
2.20, [β]m itself is essential as required.

Definition 2.22. If f : X → X has the property that N(fm) = 0, or N(fm) =
R(fm) then we call fm weakly Jiang . If for a given X every self map is weakly Jiang we
say that X itself is weakly Jiang .

The class of NR solvmanifolds is a large class of solvmanifolds that includes all
exponential solvmanifolds where the exponential map is onto.

Proposition 2.23. Any map of a nilmanifold or NR solvmanifold is weakly Jiang.
For a map f : S → S of an arbitrary solvmanifold, fm is weakly Jiang if and only
if for each b in an essential class of the induced map f̄m, we have N((fm)b) = 0, or
N((fm)b) 6= 0.

The last part of the proposition gives the clue to the proof that again uses the com-
mutative diagrams of the type of diagram found in 2.20. The discerning reader will note
that is it the fibre uniformity of nil and NR solvmanifolds that allow for them to be
weakly Jiang. As we see in the next example most (but not all) maps of the Klein bottle
are weakly Jiang (but not fibre uniform).

Example 2.24. Let K2 be the Klein bottle, and f the standard (r, q) map defined
in 2.15. Now K2 fibres over S1 as the fibration S1 ↪→ K2 p→ S1 where p is projection on
the second factor. Moreover with respect to this fibration the map f is fibre preserving.

For the iterates of f we have that fn is the standard (rn, qn) map with induced map
f̄n of degree rn on the base. We denote the fixed point set of the induced map f̄n on the
base by Φ(f̄n) = {xj : j = 0, 1, . . . , |rn − 1| − 1}, where x0 = {0, 1} in S1 = I/[0 ∼ 1],
and for j 6= 0 the points xj = j/|1 − rn| are equally spaced on the circle. The Nielsen
numbers on the various fibres are given by N(fnxj

) = |1 − (−1)jqn| (see [14]). Note that
if q 6= ±1 then these numbers are all non-zero for all j, and for all n, but if q = ±1 then
some of these numbers are zero and some not. Thus by 2.23 the map f is weakly Jiang
for all n if and only if q 6= ±1.

In conjunction with the condition that N(fm) = R(fm) we see that properties (P1)–
(P5) will hold on all classes. Thus we have the following generalization of 2.8 and 2.10.

Theorem 2.25 ([12; 1.2]). Suppose that f : X → X is an arbitrary map of a com-
pact nilmanifold or NR solvmanifold, or suppose f is an arbitrary map of a compact
solvmanifold and that fn is weakly Jiang. If N(fn) 6= 0 then

NΦn(f) = N(fn) and NPn(f) =
∑

τ⊂p(n)

(−1)#τN(fn:τ )

with the same notation as 2.10.

Theorem 2.13 can also be generalized (see [12]). Since for nil and NR solvmanifolds
N(fn) = |L(fn)| theorem 2.25 settles Wong’s inequality 2.17 as

NPn(f) = |L(fn)| − |L(fm)|.
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We give two examples of 2.25, the first is dubbed Baby Nil in [12] since it is the
smallest nilmanifold that is not a torus.

Example 2.26. Let G be the topological group that is represented by matrices over
the reals of the form (left hand matrix) 1 x y

0 1 z

0 0 1

 φ

 1 x y

0 1 z

0 0 1

 =

 1 2x 6y
0 1 3z
0 0 1

 .

The binary operation is matrix multiplication. Let Γ be the discrete subgroup consist-
ing of those elements of G with integer entries. Then M = G/Γ is a nilmanifold. There
is one fibration in the toral decomposition for M , namely S1 → M

p→ S1 × S1, where p
is induced by the projection on the “x” and “z” factors.

Let φ : G → G be defined as displayed above. Note that φ is a homomorphism and
that φ takes Γ to itself. Thus φ induces a map f : M → M , and it is naturally fibre
preserving. Since p is orientable and satisfies the näıve addition conditions we have the
product formula N(fn) = N(fn0 )N(f̄n) for the ordinary Nielsen number N(fn). Thus
by 2.25

NΦn(f) = N(fn) = |(1− 6n)(1− 2n)(1− 3n)|.
As a special case, for n = 12, we also have from theorem 2.25 that

NP12(f) = N(f12)−N(f6)−N(f4) +N(f2)

= 4, 737, 215, 588, 698, 939, 920.

Example 2.27 (The Klein bottle). Let K2 be the Klein bottle, and f the standard
map of type (r, q) (see 2.15). For q 6= ±1 we have from 2.25 and 2.24

NΦn(f) = N(fn) =
{
|qn(rn − 1)| if q 6= 0
|(rn − 1)| if q = 0.

Thus modulo the periodic Wecken question on the Klein bottle, Halpern’s suggestion
that the formula above gives MΦn(f) is correct except for the case q 6= ±1 (see 2.24).

The next result from [13] also uses fibre techniques, and is useful for maps on solv-
manifolds when fn is not weakly Jiang.

Theorem 2.28 ([11], [13]). Let E be a solvmanifold, and f : E → B be a fibre pre-
serving map of the minimal Mostow fibration for E. Suppose furthermore that #(Φ(f̄n))
= N(f̄n). Then

NPn(f) =
∑

b∈Φ(f̄n)

NPn/per(b)(f
per(b)
b ).

Our example of 2.28 (repeated below from [13]) shows that for the Klein bottle with
q = ±1 it is NPm(f) that is equal to N(fm), rather than NΦn(f) as might have been ex-
pected (see [13] and its announcement [11] and Halpern’s claim in [4] and at the beginning
of this subsection).

Example 2.29. Let K2 denote the Klein bottle, let r be odd, we consider the stan-
dard (r,−1) map f of K2. The induced map f̄n of the nth iterate on the base of the
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standard fibration S1 ↪→ K2 p→ S1 is the standard map of degree rn. Thus as in 2.27,
Φ(f̄n) = {xj |j = 0, 1, . . . , |rn − 1| − 1}. From 2.15 the maps on the fibre alternate with
degree +1 on even indices, and −1 on odd indices. We calculate NPn(f) for n = 2k for
all positive integers k.

On S1 maps of degree ±1 have the following NP numbers:

NPn(1S1) = N(1S1) = 0, and NPn(−1S1) =
{

1 if n = 1
0 otherwise.

Now all reducible points of f̄n have even indices, and those that do not have the NP
numbers equal to 0, so

NPn(f) =
∑
j odd

NP1((fn)xj
) =

∑
xj∈Φ(f̄n)

NP1((fn)xj
) =

∑
xj∈Φ(f̄n)

N((fn)xj
) = N(fn).

The second step is because over the even indices NP1((fn)xj
) is zero, the third by def-

inition, and the fourth by the näıve addition formula [14, 24]. We note that in this case
N(fn) = N(f̄n) = |1− rn|.

Thus for n = 2k we get the perhaps surprising result that NPn(f) (rather than
NΦn(f)) is equal to N(fn).

This example shows that Halpern’s suggestion that N(fn) gives the formula for
MΦn(f) is incorrect in the case q = ±1.

2.4. The Fadell-Husseini method and the Fox calculus. The final method of calcula-
tion of the Nielsen number that we mention is the so called Fadell-Husseini method for
surfaces. It employs the Fox calculus together with a number of other techniques, and uses
the Reidemeister trace R(f, f̃) of a self map f of a closed, non-simply connected surface
X. For the periodic point numbers we report on recent work of Hart and Keppelmann
in [6], mainly on the double torus or handcuff space T 2#T 2. This work uses and extends
(to the periodic point numbers) an improvement on these methods given by Davey, Hart
and Trapp ([2]).

The computational results in ordinary Nielsen theory in this area consist mainly of
examples, and refinements of the method. In other words computational theorems are
sparse, and individual calculations are made using a variety of techniques (for example
abelianization). Accordingly one would not expect deep computational theorems in the
extension of these methods to periodic point theory. The explorations mentioned in the
title of the work on which we are reporting ([6]) examine the properties (P1) through
(P6), show that in the general case we cannot expect the type of theorem found for nil
and solvmanifolds, but exhibit an example of a homeomorphism where, though not all
of the essential versions of (P1) through (P6) hold, nevertheless NΦn(f) = N(fn) and
NΦn(f) =

∑
m|nNPm(f) for all n.

We introduce the necessary machinery only for T 2#T 2. Let π = π1(T 2#T 2) =
〈a, b, c, d : R〉 , with R = aba−1b−1cdc−1d−1. Because T 2#T 2 is a K(π, 1) every en-
domorphism φ : π → π is induced by a self map f on T 2#T 2. Thus we may consider
endomorphisms of π, rather than continuous maps.

The Reidemeister trace of fn is described as follows (the f̃n in the notation denotes
a chosen lift of fn, which as remarked in section 1.2 is for us equivalent to choosing a
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base point in X).

R(fn, f̃n) = τn

(
1− ∂φn(a)

∂a
− ∂φn(b)

∂b
− ∂φn(c)

∂c
− ∂φn(d)

∂d
+An

)
,

where τn : Z[π] → Z(R(fn∗ )) is defined by extending linearly the function that for each
α ∈ π is given by τn(α) := [α]n; and where the derivatives are those of the Fox calculus
which provides a partial derivative for each generator of π as

∂xi
∂xj

= δi,j ,
∂1
∂xj

= 0,

and for u, v ∈ F,
∂uv

∂xj
=

∂u

∂xj
+ u

∂v

∂xj
,

and whereAn is defined by the following algorithm. Write φ(R) in the form
∏r
i=1 yiR

λiy−1
i

for r ∈ Z+, λi ∈ Z, and yi ∈ π for each i. Then An =
∑
i(λiyi) ∈ Z[π]. (We ask the

experts’ indulgence for the oversimplification we have made by ignoring the fact that the
Fox calculus is defined on the free group F = 〈a, b, c, d〉, rather than π).

The Reidemeister trace of fn incorporates information about both the Nielsen classes
and their indices, into an algebraic object. When R(fn, f̃n) has been reduced so that each
Reidemeister class appears at most once, then the coefficient of each Reidemeister class
is its index. Thus the essential classes are exactly the classes with non-zero coefficients
in the reduced form, and N(fn) is the number of such terms.

The main difficulty in the calculation of N(fn) by this method is in the reduction
of the Reidemeister trace. A similar difficulty appears in calculating the periodic num-
bers. A number of tools are available none of which is algorithmic. One such tool is
abelianization This employs the function θ : R(fn∗ ) → Coker(1 − fn∗ ) induced by the
Hurewicz homomorphism (see sequence (2) in section 1). From sequence (2) we see that
Coker(1− fn∗ ) ∼= Z4/Im(fn∗ − 1). The subgroup Im(fn∗ − 1) can be described in terms of
a matrix. The image under θ is the coset of a 4-tuple whose coordinates are the sums of
the exponents of the generators. For example θ(b−3a2b2a−1) is the coset of (1,−1, 0, 0).
In example 2.31 below we see by abelianization, that θ([1]2) and θ([b3]2) determine the
same coset of Im(fn∗ − 1) (use the matrix of fn∗ − 1). This shows that [1]2 and [b3]2

may determine the same Reidemeister class. A word search reveals they do (see 2.31).
Abelianization shows that [1]2, [b]2 and [b2]2 are distinct. For the periodic point numbers
we consider the diagram below (note that there is a technical difficulty which for the sake
of a smooth exposition we will ignore, and that is that in [6] the boosting functions are
backwards from ours).

R(fm∗ )
ιm,n−→ R(fn∗ )

θ ↓ θ ↓

Z4/Im(fm∗ − 1)
ῑm,n→ Z4/Im(fn∗ − 1).

There is also a similar diagram involving θ, and the maps induced by f on R(fn∗ ) and
Z4/Im(fn∗ −1). The next proposition is an easy consequence of the commutativity of the
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diagram above. The concepts of abelian length and abelian depth are just the obvious
ones on Z4/Im(fn∗ − 1).

Proposition 2.30 ([6]). The diagrams mentioned above are commutative, and more-
over (abelian) depth ≤ (ordinary) depth, and (abelian) length ≤ (ordinary) length.

We give first an example where f is neither essentially reducible, nor weakly Jiang,
nevertheless at least for some n, NΦn(f) = N(fn).

Example 2.31 ([6]). Let φ be the endomorphism given by φ(a) = ab−1c, φ(b) = b−2,
φ(c) = b−2 and φ(d) = ab−1c. Then A1 = 0 and

R(f, f̃) = τ1(1− 1 + b−1 + b−2) = 0[1]1 + [b−1]1 + [b−2]1.

The classes [b−1]1 and [b−2]1 are distinct and different from [1]1 by abelianization. At
level 2, A2 = 0, and because [b3]2 = [φ2(b)b−1]2 = [1]2,

R(f2, f̃2 ) = −[1]2 − [b]2 − [b2]2 − [b3]2 = −2[1]2 − [b]2 − [b2]2.

The last expression is in reduced form by abelianization. Note that [ι1,2(1)]2 = [1]2,
[ι1,2(b−1)]2 = [b]2, and [ι1,2(b−2)]2 = [b2]2. So the class [1]2 is essential and reduces to the
inessential class [1]1. Thus T 2#T 2 does not satisfy property (P3), essential reducibility.
In particular 3 = NΦ2(f) 6= NP1(f) +NP2(f) = 2 + 0 (see 2.5).

Since N(f) = 2, and [1]1 is inessential, f is not weakly Jiang (P6), nevertheless at
least for n = 2, we do get that NΦ2(f) = 3 = N(f2).

A similar but more involved example is given ([6; example 3]) where properties of the
essential versions of (P2) and (P5) are not satisfied, i.e. T 2#T 2 does not have unique
roots and the ι are not always injective on essential classes. In this case a hands on
argument shows that NΦ2(f) 6= N(f2). Finally the authors give the following example
of an automorphism of π which we may assume is induced by a homeomorphism:

Example 2.32 ([6]). Let φ be the automorphism given by φ(a) = b−1a−1, φ(b) = ab2,
φ(c) = d, and φ(d) = c. It turns out for any homeomorphism inducing φ that the Nielsen
numbers are very closely related to the Lucas numbers, and that essential classes ‘boost’ to
essential classes. Among other properties, we note that each essential class has exactly one
essential root, but may have inessential roots. Interestingly although fn is never weakly
Jiang, nevertheless there are enough properties around to allow the authors to deduce that
NΦn(f) = N(fn). This is a highly technical, case specific proof. It depends very heavily
on being able to write the Reidemeister classes in terms of products of φj(a) for different
powers j. In this example essential reducibility also holds, so NΦn(f) =

∑
m|nNPn(f).

Example 2.32 is interesting for a number of reasons. Firstly because it is proved
without requiring, as is the case for nil and solvmanifolds, that all the “essential versions”
of axioms (P1) through (P6) in section 2.2 are satisfied. In fact not all these axioms
hold since as pointed out already, for no n is the map fn weakly Jiang. In other words
conditions (P1) to (P6) are sufficient, but neither they nor the essential versions of them
given in [12] are necessary. Secondly the example shows that homeomorphisms, as in the
fixed point case, may be a species of their own. Such thoughts led the authors to a more
technical version the following conjecture:
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Conjecture 2.33. Let f : M → M be a homeomorphism on a surface M of non-
positive Euler characteristic. Then NΦn(f) =

∑
m|nNPn(f)s, and when N(fn) 6= 0,

then NΦn(f) = N(fn).

3. Restricted classes. In this section we report on two theories of restricted classes
of periodic points. The first concerns a relative theory which parallels relative fixed point
theory which originated with Schirmer [25]. The second is fibred periodic point theory
which parallels the fibred fixed point theory given for ordinary Nielsen theory introduced
in [8], and generalized to the non-fibre uniform situation in [14].

3.1. Relative periodic point numbers. The definition of the ordinary relative Nielsen
number N(f ;X,A) of a self map f : (X,A)→ (X,A) combines the fixed point classes of
f and its restriction. It is

N(f ;X,A) = N(fA) +N(f)−N(f ; fA),

where fA is the restriction of f : X → X to the subspace A, and where N(f ; fA) is the
number of essential fixed point classes of f that contain an essential fixed point class of
fA. This number N(f ;X,A) was introduced to give a more accurate lower bound for the
number of fixed points on the restricted class of maps (and homotopies of such) that are
invariant on the subspace A. Such a number was needed because the ordinary Nielsen
number may be a poor lower bound for the restricted class of maps of pairs of spaces.
Not surprisingly the same phenomena occur with periodic points.

In relative theory we are often considering manifolds with nonconnected boundary as
the subspace. We give an example of a pair of spaces (with disconnected subspace) where
we might want to know the minimum number of periodic points. This example is dubbed
the Banana example in [17] and [16] from which the results of this subsection are taken.

Example 3.1. Let X be the solid torus X = S1 ×D2. A self map f of X is defined
by describing first its restriction to the ‘core’ S1 × {0} of X. This restriction, which will
have the same homotopy type as a map to the whole space, is the standard map of degree
3 (see 1.1). The points ejπi/4 × {0} for j = 0, 1, . . . , 7 are fixed points of the restriction
of f2 to the core, and each point is in its own Nielsen class. For j = 0, 4 the classes are
reducible. All the rest are irreducible, and all classes are essential.

Let A = A0 ∪A1 ∪A2 ∪ . . . ∪A7 be the subspace of X = S1 ×D2 in which Aj is the
boundary circles of the disks {ejπi/4} ×D2, with j = 0, 1, . . . , 7. Integers dj are selected
as follows: d0 = 1; d1 = 1, d3 = 5; d2 = 2, d6 = 2; d4 = 2; d5 = 7, d7 = 1. We define
the restriction fj : Aj → A3j (3j is taken mod 8) of f as follows. The map fj is the
standard map of degree dj on S1 for j = 0, 1, . . . , 7. In other words fA maps each circle
of A to another circle of A in a fashion compatible with the map f . Next we extend f

to the whole space to obtain a map f : (X,A) → (X,A) by defining f on each of the
eight pieces {eiθ ×D2 : jπ/4 ≤ θ ≤ (j + 1)π/4} of X. Each such piece is shaped like a
piece of a banana, and the map f maps each piece into the union of three pieces so that
each piece is stretched according to the map f on the core, and ‘twisted’ according to
the map fA until a continuous map f : (X,A)→ (X,A) (determined up to homotopy) is
obtained.
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For a given map f : (X,A)→ (X,A) we define Â to be the union of the components
of A that are mapped back into themselves by fkA for some integer k. For each Ai ∈ Â
we define the cycle length c(i) of Ai to be the least integer k for which fkA(Ai) ⊆ Ai.
This divides Â into equivalence classes called cycles. In example 3.1 the fA-cycles of A
are [A0] = {A0}, [A1] = {A1, A3}, [A2] = {A2, A6}, [A4] = {A4} and [A5] = {A5, A7}.

For the relative Nielsen number N(f ;X,A) the extension of Nielsen theory to a non-
connected space A presents no problem. For periodic points the situation is not quite so
simple. In example 3.1 if i 6= 0 or 4 unless the period of fn is even, then fnA(Ai)|Ai is not
even a self map of Ai, We use fkj to denote the restriction of fkA to Aj . In 3.1

Φ(f2n
A ) = Φ((f0)2n) ∪ Φ((f2

1 )n) ∪ . . . ∪ Φ((f4)2n) ∪ . . . ∪ Φ((f2
7 )n).

The point being that for j 6= 0, 4, fj is not a self map of Aj , but f2
j is. It should be clear

that

NΦ2n(fA) = NΦ2n(f0) +NΦn((f2
1 )) + . . .+NΦ2n(f4) + . . .+NΦn((f2

7 ))

is a lower bound for the number or periodic points on A of all periods less than or equal
to n. Thus a reasonable definition for NPn(fA) and NΦn(fA) on a non-path-connected
space A would be as follows:

Definition 3.2.

NPn(fA) =
∑
j

NPn/c(j)(f
c(j)
k ) and NΦn(fA) =

∑
j

NΦn/c(j)(f
c(j)
k )

where the sums are taken over those j for which Aj ∈ Â, and c(j)|n.

The numbers NΦn(fA) and NPn(fA) satisfy all the same properties NPn(f) and
NΦn(f) satisfy on connected spaces (see section 1.4).

Example 3.3. In 3.1 by the commutative law N(f2
1 ) = N(f2

3 ), N(f2
2 ) = N(f2

6 ) and
N(f2

5 ) = N(f2
7 ). Thus we see for example using 2.8 that

NΦ2(fA) = N((f0)2) + 2N(f2
1 ) + 2N(f2

2 ) +N((f4)2) + 2N(f2
5 )

= 0 + 2|1− 5|+ 2|1− 4|+ |1− 22|+ 2|1− 7| = 29,

and similarly NΦ1(fA) = 1, NΦ3(fA) = 7, and NΦ6(fA) = 1121.
In 3.1 by the nonconnected version of 2.10 we also have for example from above that

NP2(f) = 29− 1 = 28, and

NP6(fA) = NΦ6(fA)−NΦ3(fA)−NΦ2(fA) +NΦ1(fA)

= 1121− 7− 29 + 1 = 1086.

For a self map f : (X,A) → (X,A), let NPn(f, fA) be the number of irreducible
essential orbits of f that contain an essential orbit of fA.

Definition 3.4. Let f : (X,A)→ (X,A) be a map of a pair of compact ANR’s. The
relative Nielsen type number of period n is

NPn(f ;X,A) = NPn(fA) +NPn(f)−NPn(f, fA).
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Example 3.5. Consider 3.1. For n = 2 we get

NP2(f ;X,A) = NP2(fA) +NP2(f)−NP2(f, fA)
= 28 + 6− 6 = 28.

To see that NP2(f, fA) = 6, we use the definition and notice that for j = 1, 2, 3, 5, 6 and
7 the map f2

j has at least one fixed point which is Nielsen equivalent to the 2-periodic
point of f : X → X which corresponds to ejπi/4.

For n = 6 there are no common essential irreducible orbits of f and fA, and so
NP6(f, fA) = 0. Thus (also using 2.10)

NP6(f ;X,A) = NP6(fA) +NP6(f)−NP6(f, fA)

= 1086 + |1− 36| − |1− 33| − |1− 32|+ |1− 3| − 0 = 1782.

By analogy with the ordinary Nielsen type number NΦn(f), the definition of the
relative Nielsen type number NΦn(f ;X,A) requires of us that we generalize the idea of
a set of n-representatives. Such a set interconnects the orbits of f and those of fA at
various levels. It is not written quite so easily as NPn(f ;X,A). We do not give the full
definition of NΦn(f ;X,A) but observe that it has many of the properties of the ordinary
periodic Nielsen numbers, for example

Theorem 3.6. NΦn(f ;X,A) ≥
∑
m|nNPm(f ;X,A), and if f and f

c(j)
j are essen-

tially reducible for all j, then equality holds.

Let MPn(f ;X,A) and MΦn(f ;X,A) be the obvious minimum numbers. Then

NPn(f ;X,A) ≤MPn(f ;X,A), and NΦn(f ;X,A) ≤MΦn(f ;X,A).

Also NPn(f ;X,A) ≥ NPn(fA) and NΦn(f ;X,A) ≥ NΦn(fA), and

NPn(f ;X,A) ≥ NPn(f) and NΦn(f ;X,A) ≥ NΦn(f) etc.

Our final result gives conditions under which the relative Nielsen number for the nth
iterate of a map of pairs f : (X,A) → (X,A) equals the relative Nielsen number of fn.
These conditions are clearly satisfied in example 3.1.

Theorem 3.7. If f : (X,A)→ (X,A) is a self map, then

NΦn(f ;X,A) ≥ N(fn;X,A).

Furthermore, if f and f c(j)j satisfies properties (P1) through (P6), then equality holds.

In [17] an example is given where the inequality in 3.7 is strict. This example called the
‘projective banana’, essentially mirrors 3.1 except that it has a subspace A that consists
of eight copies of RP 3 (cf. example 1.16).

There are a great many extensions and refinements of relative Nielsen theory (see the
survey article [26]). Potentially this is also true of relative periodic point theory. One such
refinement in the fixed point case was introduced by Zhao [31], and concerns the location
of fixed points. This can be illustrated by the relative map f of the pair (D2, S1), in
which f is a small irrational rotation. There is a single fixed point of f which happens to
lie in D2 − S1. This is detected by the relative Nielsen number of f which is 1. However
this fixed point may be moved to S1 by a relative homotopy. That is, the fixed point may
be located in either A or the complement X − A. This example shows that the relative
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Nielsen number of a self map f of a pair (X,A) gives no information about location
of fixed points, and in particular it gives no information on the minimum number of
fixed points on the complement. Zhao’s work in [31] refines relative theory by considering
weakly common fixed point classes. Taking our gross oversimplification of the existence of
fixed points of a map even further, let us further assume (again for expositional reasons)
that there is a fixed point x0 of f in A (this oversimplification will be untenable when A
has more than one component). Then there is a function i∗ : R(fA∗) → R(f∗) induced
by the inclusion i : A → X. A class is said to be weakly common if it is in the image of
i∗. Zhao’s number N(f ;X − A) is the number of essential classes of f on X which are
not weakly common. In the proper technical version of this, the single fixed point class of
f and fS1 in the illustration is essential weakly common. This demonstrates that weakly
common fixed point classes may have empty intersection. The number N(f ;X − A) is
shown in [31] to be a lower bound for the number of fixed points on X − A (and is
0 in the example). The bound is sharp under the usual dimensional restrictions, when
paths with endpoints in X−A can be pulled off A by relative homotopies (the bypassing
condition). We illustrate briefly a generalization of all this to periodic point theory. The
reference for the generalization is [19] which also discusses briefly the scope and difficulty
of other generalizations and extensions of relative fixed point theory. The example is the
following:

Example 3.8. Let X = S1 × S1 = {(eθi, eφi)|0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 2π}, and let
A = ∆S1 = {(eθi, eφi)|θ = φ} be the diagonal of X. We define a relative map f : (X,A)→
(X,A) by f(eθi, eφi) = (e2φi, e2θi). For n odd the periodic points for this map on X are
given by

Φ(fn) =
{

(eiθ, eiφ)|θ =
2jπ

22n − 1
, φ =

2n+1jπ

22n − 1
, j = 0, 1, . . . , 22n − 2

}
,

and for n even

Φ(fn) =
{

(eiθ, eiφ)|θ =
2j1π

2n − 1
, φ =

2j2π
2n − 1

, j1, j2 = 0, 1, . . . , 2n − 2
}
.

The name of the game, for this example for a given n, is to give a sharp lower bound for
the numbersMΦ(fn;X−A) = min#((X−A)∩{Φ(gn))|g ∼A f}) (the minimum numbers
of periodic points of all periods dividing n of maps g that are homotopic to f as a map of
pairs, and that lie in X −A), and for MPn(f ;X −A) = min#((X −A) ∩ {Pn(g))|g ∼A
f} (the minimum numbers of periodic points of period exactly n of maps g that are
homotopic to f as a map of pairs, and that lie in X − A). Note that homotopies must
be both relative homotopies (that is homotopies of pairs), and homotopies of f rather
than fn. The challenge in this, and similar examples, is not to determine which points
might or might not be combined under relative homotopies of f , for this follows from
existing Nielsen theory. The challenge is to determine which period point classes (or more
precisely orbits) may be moved from X − A to A under such relative homotopies. The
numbers defined in [19] are denoted by NΦn(f ;X −A) and NPn(f ;X −A). We will not
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attempt to define them here. However in [19] it is shown for 3.8 that

NΦn(f ;X −A) = MΦn(f ;X −A) =
{

22n − 3 · 2n + 2 if n is even,
22n − 2n otherwise.

FurthermoreMPm(f ;X−A) = NPm(f ;X−A), and these latter numbers can be obtained
by (now familiar) Möbius type inversion formulae. Some insight for the even case can
be gleaned for the facts that X and A are Jiang spaces; that for examples like this,
NΦn(f ;X − A) = N(fn;X − A); that N(fn) = R(fn) = #(Z2n−1 × Z2n−1); that
i∗ : R(fnS1∗) → R(fn∗ ) is injective; and finally that R(fnS1) = #(Z2n−1) = 2n − 1. For
insight into why NΦn(f) = MΦn(f) see theorem 4.1.

3.2. Fibred periodic point numbers. We briefly review fibred fixed point theory. Let
f : E → E be a fibre preserving map of a fibration p : E → B with induced map f̄ on
the base. If b ∈ B is a fixed point of f̄ then f restricts to a give a self map fb of the fibre
Fb = p−1(b). The fibred Nielsen number of f (introduced in [8] and generalized to the
non-fibre uniform situation in [14]) is defined to be

NF (f, p) =
∑
b∈χ

N(fb),

where χ consists of a representative of each essential class of f̄ (or later of f̄n). The
number NF (f, p) has the property that

N(f) ≤ NF (f, p) ≤MF (f, p),

where MF (f, p) is the minimum number of fixed points within the fibre homotopy class of
f . The point is that the first inequality may be strict (see 3.14), and under mild conditions
equality holds in the second.

Let Fχ = p−1(χ) ⊂ E, and note that it is a disjoint union of fibres, i.e.

Fχ =
⋃
b∈χ

Fb.

Thus f can be considered as a self map of the pair (E,Fχ), i.e. f : (E,Fχ)→ (E,Fχ).
The next theorem relates the fibred Nielsen number and the relative Nielsen numbers.

Theorem 3.9. NF (f, p) = N(f ;E,Fχ) = Σb∈χN(fb), and NF (f, p) = N(f) if and
only if f satisfies the näıve addition conditions (see 2.18).

In words the second part shows that under the näıve addition conditions the relative
and the fibred and the ordinary Nielsen numbers of a fibre preserving map coincide, and
these numbers can be calculated as a simple addition formula. The aim of this subsection
is to do something similar for the periodic numbers. This work was reported in [9]. As
an application an alternative proof of a theorem from [13] is given. For ease of exposition
for the rest of this subsection, we will make the following oversimplification:

#(χ) = #(Φ(f̄n)) = N(f̄n).

Motivated by 3.9 we make the following definition.

Definition 3.10. Let B be essentially reducible. Then

NPFn (f, p) = NPn(f ;E,Fχ).
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Let MPFn (f, p) be the minimum number of periodic points within the fibre homotopy
class of f . The point of the definition, as with all Nielsen theories, is the lower bound
property.

Theorem 3.11. Let f : E → E be a fibre preserving map with B essentially reducible.
Then MPFn (f, p) ≥ NPFn (f, p).

The equation N(f ;E,Fχ) =
∑
b∈χN(fb) for the fixed point case in 3.9 depends on

the fact that every fixed point class of f contains a fixed point class of the fibre (i.e.
N(f) = N(f, fχ), where fχ = f |p−1(χ)). There is a similar identification in the periodic
point case which allows the next theorem in which NPn(fχ) is the periodic point number
on the non-connected space Fχ (see definition 3.2). We need to understand what the f
cycles are here, but this is easy because c(Fb), the length of the cycle of Fb, is simply
per(b), the period of b.

Theorem 3.12. If f is a fibre preserving map with B essentially reducible then
NPn(f) = NPn(f, fχ), so

NPFn (f, p) = NPn(fχ) =
∑
b∈χ

NPn/per(b)(f
per(b)
j ).

The reader will recognize the formula from 2.28 in 3.12. By 3.2 and by analogy with
3.9 we expect more periodic points from our fibred periodic point number. The first part
of the next result is a simple consequence of properties of the relative periodic point
numbers (see section 3.1).

Theorem 3.13. If f : E → B is a fibre preserving map with B essentially reducible
then

NPFn (f, p) ≥ NPn(f),
and if fm satisfies the näıve addition conditions for appropriate m then

NPn(f) = NPFn (f, p) =
∑
b∈χ

NPn/per(b)(f
per(b)
j ).

Thus under the näıve addition conditions we can calculate NPn(f) by the above
addition formula. Not all fibre preserving maps satisfy the näıve addition conditions of
course. The Hopf fibration gives a simple example where the inequality in 3.13 is strict.

Example 3.14. Let S1 ↪→ S3 p→ S2 be the Hopf fibration, and let f̄ = d : S2 → S2

be a map of degree d where d 6= ±1, and d 6= 2. There is no obstruction to lifting f̄ to
a fibre preserving map f : S3 → S3 over f̄ . Since N(f̄) = N(f̄n) = 1, f̄n has only one
point which must be a fixed point (by our oversimplification). We denote this point by
b (= χ). Then f induces, by restriction, a map fb : S1 → S1 also of degree d. Clearly
per(b) = 1, and by 3.13 and 2.1 (compare 1.15)

NPFn (f, p) = NPn(fb) ≥ |1− d|φ(n) > NPn(f),

where φ is the Euler function in number theory. The inequality holds since π1(S3) = 0,
so NP1(f) = N(f) = 1, and for n > 1, NPn(f) = 0.

We see next and finally that theorem 2.28 is a corollary of 3.13. The proof indicated
here (which of course depends on 3.13) is more intuitive than the proof given in [13]
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(which came first). In fact the motivation for the work on fibre techniques in [12] and
[13] came from an earlier version of 3.13 while it was still a conjecture (cf. [10] where a
inadequate prototype for NPFn (f, p) was given).

Corollary 3.15 ([11], [13]). Let E be a solvmanifold, and f : E → B be a fibre pre-
serving map of the minimal Mostow fibration for E, and suppose that #(χ) = #(Φ(f̄n)) =
N(f̄n). Then NPn(f) =

∑
b∈χNPn/per(b)(f

per(b)
j ).

4. Periodic Wecken properties. For the ordinary Nielsen number we have that
N(f) ≤M(f), and the (ordinary) Wecken question asks under what conditions is there a
map g homotopic to f with #(Φ(g)) = N(f), i.e. when is N(f) = M(f)? For the periodic
numbers we have seen (1.18) that

NΦn(f) ≤MΦn(f), and NPn(f) ≤MPn(f).

The periodic Wecken question then asks when these inequalities are actual equalities. In
Jiang’s book ([20; p. 71]) we have the following statement (as a theorem):

If X is a compact connected differentiable manifold of dimension ≥ 5, then NΦn(f) =
MΦn(f), and NPn(f) = MPn(f).

This result, which is attributed to Halpern, was put there on the strength of a private
conversation that took place between Jiang and Halpern. No proof is given. This is a
little worrying because Halpern had the wrong definition (the first näıve suggestion for
NPn(f)—see section 1.1).

Wong in [28] has given a sketch proof of Halpern’s ‘theorem’. The basic idea is that
there are Wecken theorems for equivariant fixed point theory and using the spaces Xn (see
section 2.3A) periodic point theory is a special case of the equivariant Wecken theorems.

Wong’s sketch seems to need more details. Given the Wecken theorems for equivariant
fixed point theory it is clear that for a self map f , of X, there is an equivariant map k

for which there is an equivariant homotopy gf ∼= k (see section 2.3A for the notation).
However the details of why k should be of the form g` for some ` are missing from the
sketch, as is any indication of why, given the existence of such an `, the given homotopy
should be induced by a homotopy f ∼= `.

We do however have the following theorem due to Chengye You [29, 30].

Theorem 4.1 (You [29]). Let f : T k → T k be a map of the k-torus. Then NΦn(f) =
MΦn(f) and NPn(f) = MPn(f).

Apart from the above there is no significant progress on these questions. In particular
no relative or fibred versions of the periodic Wecken question are forthcoming. In the
fibred case an easy proof of ordinary (fixed point) Wecken properties of nil and solvman-
ifolds was given in [14]. This is based on the fact that for fixed points fibred and ordinary
Wecken properties coincide under the näıve addition conditions. However generalization
to the periodic Wecken situation is not straightforward and to date no progress has been
made.
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5. Concluding comments. We conclude this survey by showing the relevance of
the consideration of orbits (on which the definitions of NΦn(f) and NPn(f) are based)
to the study of periodic points with all periods taken together. The following theorem is
due to Halpern.

Theorem 5.1 ([3]). If f : T k → T k is a map of the k-torus, then every map homo-
topic to f has an infinite number of periodic points if and only if the sequence of Nielsen
numbers {N(fn)} is unbounded.

In seeking to generalize such a theorem to other spaces, the existence of a close
connection of NΦn(f) and NPm(f) with the various N(fm) plays a significant role
(compare the results of [22] with those of section 2.3). In general however the boundedness
of {N(fn)} implies neither the boundedness of NΦn(f) or of NPn(f), nor that f is
homotopic to a map with finitely many periodic points.

Example 5.2. Let f : RP 3 → RP 3 be the map given in example 1.16. Then the
sequence {N(fn)} is bounded, but the numbers {NPn(f)} are unbounded. So any map
which is homotopic to f must have an infinite number of periodic points.

Thus any study of all periods taken together must take into account the NΦn(f) and
the NPn(f) numbers. In particular the study must deal at times with orbits rather than
just with periodic point classes (see [21]).
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