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The study of fixed points of continuous self-maps of compact manifolds involves ge-
ometric topology in a significant way in topological fixed point theory. This survey will
discuss some of the questions that have arisen in this study and indicate our present state
of knowledge, and ignorance, of the answers to them. We will limit ourselves to the state-
ment of facts, without any indication of proof. Thus the reader will have to consult the
references to find out how geometric topology has contributed to our knowledge in this
area. But we hope this overview can supply a framework for a more detailed investigation
of this important and, as we shall see, very active branch of fixed point theory.

Let X be a compact connected topological manifold, possibly with boundary, and let
f :X → X be a map. The fixed point set of f is Fix(f) = {x ∈ X: f(x) = x}. The prin-
cipal object of study in topological fixed point theory, denoted MF [f ], is the minimum
number of fixed points among all maps homotopic to f . Thus, for instance, MF [f ] = 0
means that there is a map g homotopic to f such that g(x) 6= x for all x ∈ X.

In principle, to calculate MF [f ] we would have to examine the fixed point sets of
every map homotopic to f . Fixed point theory makes use of a homotopy invariant, called
the Nielsen number of f , the computation of which requires only a knowlege of the map
f itself. There are many detailed presentations of the Nielsen number; the standard texts
are [3], [13] and [24]. The definition of the Nielsen number requires two concepts, the
first of which is easy to describe. Define an equivalence relation on Fix(f) by declaring
x, x′ ∈ Fix(f) equivalent if there is a path, call it α, in X from x to x′ such that α is ho-
motopic to f(α) by a homotopy keeping the endpoints fixed. The equivalence classes are
called fixed point classes, often abbreviated fpc, and a fpc is represented by the symbol
F. There are only a finite number of fpc for a map of a compact manifold.

The second concept required for the definition of the Nielsen number is more difficult
to describe precisely, so we will limit ourselves here to an informal approach that we hope
will offer some insight into how a fixed point theorist might think about this concept. A
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mathematically rigorous presentation can be found, for instance, in Chapter IV of [3]. Let
F be a fpc of the map f :X → X, then there is an open subset U of X containing F such
that the closure of U intersects Fix(f) only in F. For n large enough, we may embed X

in a euclidean space Rn. For each point x ∈ U −F, consider the vector in Rn from x to
f(x). Roughly speaking, if all those vectors point in more or less the same direction, we
can modify the definition of f on F to move all those points in the direction indicated by
the vectors, thus producing a map homotopic to f , and identical to f outside of U , that
has no fixed points on U . Since the fpc F can be eliminated in this way, F is said to be
inessential. On the other hand, if the vectors do not all point in somewhat the same direc-
tion, the vector field on U −F can be thought of as “winding around” the set F so that it
is not possible to modify f by a homotopy in order to eliminate F. Consequently, in this
case, the fpc F is said to be essential. In a rigorous development, the amount of “winding
around” of the vector field is measured by an integer, called the index of the fpc F and
denoted by i(F). Thus, the fpc F is inessential if i(F) = 0 and it is essential if i(F) 6= 0.

The Nielsen number N(f) is defined to be the number of essential fpc of f . It can be
shown that N(f) is a homotopy invariant, from which it is easy to see that we must have
the inequality N(f) ≤MF [f ].

The purpose of the Nielsen number N(f), which is defined in terms of the single
map f , is to obtain information about the minimum number MF [f ] that concerns the
entire homotopy class of f . Certainly N(f) is an effective tool for this purpose when
N(f) = MF [f ]. Thus, we next survey what is known about the hypotheses under which
the equation N(f) = MF [f ] does and does not hold. We will see that it does hold, that
is the Nielsen number does calculate MF [f ], in general, but there are important and
interesting exceptions. The present survey is an updating of [4].

Since N(f) usually does calculate MF [f ], fixed point theorists are well-motivated to
discover procedures for actually calculating N(f) itself. The definition sketched above
does not offer much help for this task, and a rigorous presentation of the concept of essen-
tiality does not make computation easier. However, there has been considerable progress
in developing methods for computing N(f) for maps of manifolds and we will survey the
present state of this difficult art in the final part of the paper. For an earlier survey of
the computation of the Nielsen number, see [25].

A preliminary version of this paper elicited much information and many helpful com-
ments, and I take this opportunity to thank everyone for their contributions. I particularly
thank Ross Geoghegan for his many suggestions.

I. Wecken properties

(a) Maps in general. Although the Nielsen number was first introduced by Nielsen in
1927 [26], its success in calculating MF [f ] was not demonstrated until somewhat later.
In 1942, Wecken [32] proved that if X is a compact, connected manifold, with or without
boundary, of dimension dim(X) ≥ 3 and f :X → X is any map, then N(f) = MF [f ].
Consequently, a manifold X such that N(f) = MF [f ] for all maps f :X → X is said
to have the Wecken property and Wecken’s theorem states that a manifold X has the
Wecken property if dim(X) ≥ 3.
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The natural question of whether surfaces also possess the Wecken property was not
settled until long after Wecken’s paper was published. In 1985, Jiang [14] proved that if
X is a compact, connected manifold, with or without boundary, such that dim(X) = 2,
then X has the Wecken property if and only if the Euler characteristic χ(X) of X is
non-negative. Since there are only six surfaces X for which χ(X) ≥ 0, almost all sur-
faces fail to have the Wecken property. Subsequent research demonstrated that, in this
setting, the Wecken property fails for most surfaces in a very strong sense. A manifold
X is totally non-Wecken if, given m ≥ 1, there exists a map fm:X → X such that
MF [fm] − N(fm) ≥ m. A result of Jiang [15], extending earlier work of Kelly [18],
states that if X is a compact, connected manifold, with or without boundary, such that
dim(X) = 2 and χ(X) < 0, then X is totally non-Wecken.

The reader will note that, unlike the previously-mentioned results, we do not mention
a date for the work of Jiang and Kelly on the totally non-Wecken property. For recently
published and as-yet-unpublished papers, it is difficult to assign a date in a consistent
manner; moreover, in contrast to the dating of earlier publications, such a date contributes
little to the reader’s understanding of the development of the subject. Consequently, if, as
in this case, no date is given, the reader may assume that the result is recent, specifically
published since 1990 or not yet published. Of course more detailed information can be
found in the list of references at the end of the paper.

The theorems of Wecken, Jiang and Kelly that we have quoted describe the Wecken
property for all manifolds. (The two one-dimensional manifolds are trivially Wecken.)
However, even though forX a surface with χ(X) < 0 there are maps fm:X → X such that
MF [fm]−N(fm) ≥ m, it could be that the maps fm are exceptional and, for the other
maps f :X → X, the Nielsen number N(f) does calculate MF [f ], and thus the statement
“X is totally non-Wecken” is in this sense misleading. In any case, if there are significant
classes of maps on two-dimensional manifolds for which N(f) calculates MF [f ], it would
be useful to the development of fixed point theory to know what these classes are. A map
f :X → X for which N(f) = MF [f ] is called a Wecken map. Thus, given a Wecken map
f , there is a map g homotopic to f such that g has exactly N(f) fixed points.

The investigation of Wecken maps is just getting under way; in fact, there is only one
surface for which information is available. The surface obtained by deleting k disjoint
open discs from the two-dimensional sphere will be denoted by ∆k. The surface ∆3 is
often called the pants surface because it is homeomorphic to a pair of pants, with one
boundary circle corresponding to the waistband of the pants and the other two to the cuffs.
In 1987, Kelly [17] determined MF [f ] for all maps of the pants surface using, for this pur-
pose, a classification of these maps into five classes. Wagner [30] has shown that all the
maps in three of the classes of the Kelly classification are Wecken whereas the other two
classes contain non-Wecken maps. A natural step in the investigation of Wecken maps of
surfaces would be to determine whether there are Wecken classes in some sense analogous
to those three Wecken classes on the other surfaces of negative Euler characteristic.

(b) Boundary-preserving maps. For this topic, we will restrict ourselves to manifolds
X with nonempty boundary ∂X. By a boundary-preserving map of X we mean a map
f :X → X that takes ∂X into itself. Thus, a boundary-preserving map is a map of pairs
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f : (X, ∂X) → (X, ∂X). The minimum number in the setting of boundary-preserving
maps is denoted by MF∂ [f ] and it is defined to be the minimum number of fixed points
of all boundary-preserving maps of X homotopic to f by a boundary-preserving ho-
motopy. That is, we consider maps g: (X, ∂X) → (X, ∂X) such that there is a map
H: (X × I, ∂X × I)→ (X, ∂X) with H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

Given a boundary-preserving map f : (X, ∂X) → (X, ∂X), let f̄ : ∂X → ∂X denote
the restriction of f . If X is a compact, connected n-dimensional manifold, then ∂X is a
compact, but not necessarily connected, (n − 1)-dimensional manifold. If a component
∂Xk of ∂X is mapped into itself, there is a corresponding Nielsen number N(f̄k) of the
restriction f̄k: ∂Xk → ∂Xk, that is, the number of essential fpc of f̄k. Of course if ∂Xk

is not mapped into itself by f̄ , then f̄k has no fpc.
A boundary-preserving map f : (X, ∂X)→ (X, ∂X), considered just as a map f :X →

X, has a Nielsen number N(f) defined as before: it is the number of essential fpc. Ev-
ery fpc of some f̄k is contained in some fpc of f :X → X. Define the relative Nielsen
number N∂(f) of f : (X, ∂X) → (X, ∂X) to be the number of essential fpc of all the f̄k
plus the number of essential fpc of f :X → X that do not contain an essential fpc of
any f̄k. In 1986, Schirmer [28] introduced the relative Nielsen number and proved that
the inequality N∂(f) ≤ MF∂ [f ] always holds. Furthermore, she proved that if X is a
manifold with nonempty boundary such that dim(X) ≥ 4 and f : (X, ∂X) → (X, ∂X) is
a boundary-preserving map, then N∂(f) = MF∂ [f ].

A manifold with boundary X is said to be boundary-Wecken if N∂(f) = MF∂ [f ] for
every map f : (X, ∂X) → (X, ∂X). Schirmer’s theorem states that all n-manifolds with
nonempty boundary are boundary-Wecken if n ≥ 4. So, in this setting, the possible
exceptions can occur in two dimensions: 2 and 3.

We next discuss what is known about the boundary-Wecken property when dim(X) =
2, that is, for boundary-preserving maps of surfaces with nonempty boundary. Combining
results of Brown-Sanderson [5] and Kelly [19] shows that the disc ∆1, the annulus ∆2

and the Möbius band are boundary-Wecken whereas the pants surface ∆3 is not but it
is “almost” boundary-Wecken because MF∂ [f ]−N∂(f) ≤ 1 for all maps f : ∆3 → ∆3.

A manifold X is said to be totally non-boundary-Wecken if, given m ≥ 1, there ex-
ists a map fm: (X, ∂X) → (X, ∂X) such that MF∂ [f ] − N∂(f) ≥ m. Nolan [27] proved
that the punctured spheres ∆k are totally non-boundary-Wecken for all k ≥ 4. Moreover,
Brown-Sanderson [5] and Kelly [19] established the following result. Let X be the surface
with boundary obtained by deleting one or more disjoint open discs from a closed surface
K. If K is not the two-dimensional sphere or the projective plane, then X is totally
non-boundary-Wecken.

We have seen that all surfaces have been classified with regard to the Wecken property,
but the same is not true with regard to the boundary-Wecken property for surfaces with
boundary. Let Πk denote the projective plane with k open discs deleted. We know that
Π1, the Möbius band, is boundary-Wecken, but nothing is known about Πk for k ≥ 2.
It seems reasonable to conjecture that Π2 is “almost” boundary-Wecken, like the pants
surface ∆3 (which has the same homotopy type), and that, otherwise, the Πk are totally
non-boundary Wecken.
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Just as the failure of the Wecken property on surfaces leads to the study of Wecken
maps, there is a corresponding notion for boundary-preserving maps. A class of maps on
a surface X is a boundary-Wecken class if N∂(f) = MF∂ [f ] for every map f : (X, ∂X)→
(X, ∂X) in the class. The behavior of maps of the pants surface also suggests the definition
of a class of maps f : (X, ∂X)→ (X, ∂X) to be an almost boundary-Wecken class if there
is an integer B > 0 such that MF∂ [f ] − N∂(f) ≤ B for all maps f in the class. Nolan
[27] has investigated boundary-Wecken and almost boundary-Wecken classes on the ∆k

for k ≥ 4 and is presently extending that investigation to other orientable surfaces with
boundary.

The extent of our knowlege of the boundary-Wecken property of a manifold X when
dim(X) = 3 is described by two theorems. In 1986, Schirmer [28] proved that if X is a 3-
manifold with nonempty boundary ∂X such that χ(∂Xk) ≥ 0 for every component ∂Xk of
∂X, then X is boundary-Wecken. Jiang, [15] proved that if X is an orientable 3-manifold
with nonempty boundary ∂X such that χ(∂Xk) < 0 for some component ∂Xk of ∂X,
then X is totally non-boundary-Wecken. It is not known if nonorientable 3-manifolds X
with χ(∂Xk) < 0 for some component ∂Xk of ∂X are also totally non-boundary-Wecken,
but it seems reasonable to expect that they are.

(c) Homeomorphisms. We return to the setting in which X is a compact, connected
manifold that may or may not have a boundary, but now we restrict ourselves to homeo-
morphisms f :X → X. Since a homeomorphism of a manifold with nonempty boundary
must map that boundary to itself, this can be viewed as a special case of the previous
topic. However, for the definition of appropriate minimum number for this case, denoted
MFh[f ], we take the mimimum number of fixed points of all homeomorphisms that are
isotopic, and not just homotopic, to the homeomorphism f . A manifold X is said to have
the Wecken property for homeomorphisms if N∂(f) = MFh[f ] for all homeomorphisms
f :X → X, where N∂(f) is defined just as before. If X has empty boundary, the condition
can be stated in terms of the classical Nielsen number, that is, N(f) = MFh[f ].

A striking fact about the Wecken property for homeomorphisms is that it holds for all
surfaces, in contrast to the usual Wecken property. According to Jiang-Guo [16], if X is
a compact, connected manifold, with or without boundary, such that dim(X) = 2, then
X has the Wecken property for homeomorphisms. In common with the usual Wecken
property, this property also holds in sufficiently high dimensions. Kelly [20] proved that
if X is a compact, connected manifold without boundary such that dim(X) ≥ 5, then
X has the Wecken property for homeomorphisms. The methods of [20] do not apply to
homeomorphisms of manifolds with boundary though it seems reasonable to expect that,
in high dimensions, these would also have the Wecken property for homeomorphisms. As
is often the case in geometric topology, dimensions 3 and 4 pose the greatest challenge.
However, work in progress by Jiang, Wang, and Wu is establishing the Wecken property
for homeomorphisms for a fairly general class of 3-manifolds.

(d) Homotopies. The two previous topics extended the fixed point theory of maps
f :X → X on manifolds by restricting the type of map. Now we extend the setting from
maps to homotopies. That is, consider maps H:X × I → X and define a fixed point
of a homotopy to be a solution of the equation H(x, t) = x for some t ∈ I. The set of
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fixed points is denoted by Fix(H). A homotopy can be thought of as the one-parameter
family of maps ht:X → X defined by ht(x) = H(x, t), so this type of fixed point theory
generally goes by the name one-parameter fixed point theory.

Let P :X×I → X be the projection P (x, t) = x. Fixed points (x, t) and (x′, t′) are said
to be equivalent if there is a path α in X×I such that the paths H(α) and P (α) are homo-
topic in X by a homotopy keeping the endpoints fixed. The equivalence classes will still be
called fixed point classes (fpc) and denoted F. In work of Geoghegan and Nicas [10], fixed
points at the ”ends” of the homotopy H:X×I → X, that is, the fixed points of h0 and h1,
must be treated differently than the other fixed points. Let Fix{0,1}(H) denote the subset
of Fix(H) consisting of those fixed points of H that are not in the same fpc as any fixed
point of h0 or h1. Furthermore, homotopies of the given homotopy H are restricted to
those relative to the ends, that is, the maps h0 and h1 do not change during the homotopy.

Since X×I is a manifold of one dimension greater than X, we would expect the fixed
point set of a homotopy H:X × I → X to be infinite, so the minimum number we are
concerned with is not the number of fixed points but rather the number of components
of the fixed point set Fix(H). That is, MF{0,1}[H] is defined to be the minimum number
of components of Fix{0,1}(G) for all homotopies G:X × I → X that are homotopic to H
relative to the ends.

To define the appropriate Nielsen number, H is homotoped relative to the ends so
that Fix{0,1}(H) consists of isolated transverse circles. Note that if one point of a circle is
in some fpc, then the entire circle is contained in that fpc. Dimovski [7] extended earlier
joint work with Geoghegan [8] to define an integer homology index ind1(F) and an integer
mod 2 index ind2(F) for any fpc F. Denote by N1(H) the number of fpc of Fix{0.1}(H)
with nonzero ind1, by N2(H) the number of fpc with zero ind1 but nonzero ind2, and
define the Nielsen number to be their sum, that is, N(H) = N1(H) +N2(H). The work
of Dimovski in [7] gives an analogue of Wecken’s theorem for homotopies as follows. If
X is a compact piecewise-linear n-manifold embedded in euclidean n-space, with n ≥ 4,
and H:X × I → X is a homotopy, then N(H) = MF{0,1}[H].

(e) Equivariant maps. We now assume some further structure for the manifold X,
namely, it is a smooth manifold and there is a compact Lie group G acting smoothly on
it. Correspondingly, we restrict attention to maps that preserve the action, that is, to
G-maps f :X → X. We also specify some subgroup H of G such that the Weyl group
of H is finite. There are two submanifolds of X that we associate with the subgroup H.
The first, denoted XH , is the set of x ∈ X that are fixed by all h ∈ H, that is, hx = x.
The second, denoted XH , consists of all x ∈ X such that hx = x if, and only if, h ∈ H.
The restriction fH of f to XH is a map fH :XH → XH . It is the fixed point theory of
this map that concerns us in the sense that we wish to determine MFG[fH ], defined to
be the minimum number of fixed points among all maps kH :XH → XH for k:X → X a
G-map that is G-homotopic to f .

Wong [33] defined an appropriate G-Nielsen number, denoted NG(fH), and proved the
following form of Wecken’s theorem. If X is a smooth G-manifold where G is a compact
Lie group, H is a subgroup of G with finite Weyl group such that XH is connected,
dim(XH) ≥ 3 and dimXH − dim(XH −XH) ≥ 2, then NG(fH) = MFG[fH ].
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II. Computing N(f)

(a) Convenient manifolds. In 1964, Jiang [12] demonstrated that there are important
classes of manifolds with the property that, if X is a manifold in one of these classes
and f :X → X is any map, then the Nielsen number N(f) can be calculated by means
of a simple procedure. The only information about the map f that is required is a
description of the homomorphism fπ that f induces on the fundamental group of X
and the homomorphisms f∗,k:Hk(X)→ Hk(X) that f induces on the rational homology
of X. The latter homomorphisms determine the Lefshchetz number L(f) = Tr(f∗,0) −
Tr(f∗,1) + . . . + (−1)nTr(f∗,n) where Tr denotes the trace and n = dim(X). In all the
classes covered by Jiang’s result, the fundamental group π1(X) is abelian, so the image
of 1 − fπ:π1(X) → π1(X) defined by (1 − fπ)[ω] = [ω] − fπ[ω] is a normal subgroup of
π1(X) and therefore the cokernel Coker(1 − fπ) = π1(X)/(1 − fπ)(π1(X)) is a group.
Jiang proved that if X is a manifold of one of the following types (1) X = G/G0 where G
is a compact Lie group and G0 is a closed, connected subgroup (2) X admits an H-space
structure (see [11] for the definition and examples) or (3) X = S2n+1/Zp is a generalized
lens space (see [29], page 88), then L(f) = 0 implies N(f) = 0 and L(f) 6= 0 implies that
N(f) is the order of the group Coker(1− fπ).

In 1985, Anosov [1] proved that for some manifolds it was even easier to calculate
N(f). Suppose that f :X→X is any map where X is a compact nilmanifold, that is, the
quotient of a connected, simply-connected nilpotent Lie group by a cocompact discrete
torsion free subgroup, then Anosov showed that N(f) = |L(f)|.

Keppelmann-McCord [23] extended Anosov’s result to a class of solvmanifolds that
includes the exponential solvmanifolds. Thus, if f :X → X is a map where X is the
quotient of a connected, simply-connected solvable Lie group which is exponential (the
exponential map from its Lie algrebra is onto) by a cocompact discrete subgroup, then
the formula N(f) = |L(f)| still holds.

The Reidemeister number R(f) of a map f :X → X is the number of equivalence
classes of lifts of f to the universal covering space of X under the equivalence relation
of conjugacy by covering transformations. It is generally easier to compute R(f) than
it is to compute the Nielsen number, so it is useful to know when the two numbers
are equal. In his 1964 paper [12], Jiang considered spaces X with finite fundamental
groups and found conditions on them such that if f :X → X is any map, then L(f) = 0
implies N(f) = 0 and L(f) 6= 0 implies N(f) = R(f). These formulas are valid, for in-
stance, if X is the quotient manifold of a finite group acting freely on an odd-dimensional
sphere or if X is a closed 3-manifold with finite fundamental group. Recently, Wong
[34] has shown that these same formulas apply when X is an orientable manifold which
is the quotient space of a compact Lie group by a closed, not necessarily connected,
subgroup.

There are some classes of manifolds for which there is no known formula for calculating
Nielsen numbers of their selfmaps, but there are algorithms available that can, at least in
prinicipal, make these calculations. There is such an algorithm for maps on any manifold
with a finite fundamental group, based on techniques from [12], that is due to McCord
[25] (in fact it applies to a class of spaces considerably more general than just manifolds).
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McCord also presented in [25] an algorithm for computing Nielsen numbers of maps of
infrasolvmanifolds, that is, manifolds that are finitely covered by solvmanifolds.

In [21], Kelly describes two algorithms that can be used to compute the Nielsen
numbers of homeomorphisms of certain 3-manifolds. One of the algorithms applies to
3-manifolds that are Seifert fiber spaces. The other can be used for homeomorphisms of
certain aspherical 3-manifolds.

(b) Surfaces. We have seen in the first part of this survey that the fixed point theory
of maps of compact surfaces is quite different from that of manifolds of higher dimension,
so fixed point theorists are particularly concerned with finding the Nielsen numbers of
such maps. McCord argues in [25] that, to a considerable extent, the level of difficulty
in calculating Nielsen numbers depends on the structure of the fundamantal group of
the space involved, and that the problem is particularly challenging if the group is free,
or is nearly so in the sense that there is a presentation of the group with relatively
few relations compared to the number of generators. Thus, from this point of view, the
computation of Nielsen numbers of maps of surfaces is an especially daunting task because
the fundamental group is either free or has a single relation.

On the other hand, there are tools available for studying maps of surfaces that cannot
be applied to higher-dimensional manifolds. One of these tools is the Fox calculus, which
Fadell-Husseini used in 1983 [9] as an aid in calculating N(f) for a map f :X → X of
any compact surface. Their procedure is not an algorithm, but it can be quite useful for
some classes of examples. If X is a closed and orientable surface, Davey-Hart-Trapp [6]
have found an improvement of the Fadell-Husseini method that it is almost an algorithm;
there is just one step in the process which cannot be carried out by a general rule, and
even for this step there are techniques that work in many cases.

The work of Jiang-Guo [16] discussed above shows that the computation of the Nielsen
numbers of homeomorphisms of surfaces tells us the minimum number of fixed points
of homeomorphisms in the same isotopy class. Kelly [22] has found an algorithm for
computing such Nielsen numbers. His algorithm is based on part of an algorithm of
Bestvina-Handel [2] and is essentially geometric in nature.

An algebraic algorithm has been developed by Wagner [31] that applies only to sur-
faces with boundary, but is not restricted to homeomorphisms. However, there are other,
algebraic, restrictions on the maps to which the algorithm can be applied, so the general
problem of calculating the Nielsen number of any map of a surface remains open.
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