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ON ESTIMATION OF PARAMETERS
IN THE BIVARIATE LINEAR

ERRORS-IN-VARIABLES MODEL

Abstract. We discuss some methods of estimation in bivariate errors-in-
variables linear models. We also suggest a method of constructing consistent
estimators in the case when the error disturbances have the normal distri-
bution with unknown parameters. It is based on the theory of estimating
variance components in linear models. A simulation study is presented which
compares this estimator with the maximum likelihood one.

1. Introduction. Simple linear regression models describe linear func-
tional relationships when there is an observation error in only the depen-
dent variable Y . The X (independent variable) is assumed to be mea-
sured precisely. The parameters in this model are estimated by the clas-
sical ordinary least squares (OLS) method, which gives unbiased estima-
tors.

In situations where both variables are subject to error the errors-in-
variables models are applied. We assume that the true linear relationship is
given by y = as+b. The actual observed values are X = s+ε and Y = y+δ,
where the symbols ε and δ denote the corresponding error disturbances. The
measurement error in X sometimes happens to be overlooked and the OLS
estimation of the parameters is chosen because of its familiarity and ease
of use. It is well known that in the errors-in-variables model, the simple
regression estimator (OLS) is inconsistent.

Cochran (1968) has given a general discussion of the consequences of
using the OLS estimator in errors-in-variables models. However, there exist
cases when this estimator has mean squared error smaller than other esti-
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mators described in the literature (Kettelapper (1983), Penev and Raykov
(1993)).

Different aspects, such as estimation, identifiability, robustness, asymp-
totic and small-sample properties in linear errors-in-variables models have
aroused considerable interest (e.g., Kendall and Stuart (1979), Fuller (1987),
Bunke and Bunke (1989)).

The parameters a and b are often not identifiable (Reiersol (1950)). For
example, they are not identifiable in the case where errors have a joint nor-
mal distribution with unknown variances. However, a has been shown to be
identifiable under various sets of assumptions, for example: the variance of
one disturbance is known or, more commonly, the variance ratio λ is known.
There are several methods of estimating a and b in such cases. From the
practical point of view, we are most interested in an approach which leads
to estimating the parameters in the case when all a, b, s, σ2

ε , σ2
δ have to be

considered as unknown. In that case, the replication of measurement of
each pair of observations (Xi, Yi) mi times overcomes the nonidentifiability
(Bunke and Bunke (1989)) and enables us to construct consistent estima-
tors.

In this paper an approach is proposed which enables us to obtain iden-
tifiability by repeating measurements of only one variable, for example Yi.
Useful estimators of regression slopes are constructed. The theory of es-
timation of variance components in linear models (Rao and Kleffe (1988),
Gnot (1991)) is applied. A simulation study is presented which compares
this estimator with the maximum likelihood one.

2. Methodology. Consider the model

(1) Xi = si + εi, Yij = asi + b + δij , i = 1, . . . , n, j = 1, . . . ,mi,

where n is the sample size. Assume that si is an unknown constant and
εi and δij are random variables with mean zero and variances σ2

ε and σ2
δ ,

respectively. We consider the situation when

εi ∼ N(0, σ2
ε), δij ∼ N(0, σ2

δ ).

2.1. The maximum likelihood estimator of â. In this model the obvious
method of estimating the unknown parameters is the maximum likelihood
procedure. This provides estimators which, under quite general regularity
conditions, are consistent, asymptotically efficient and asymptotically nor-
mal.

The likelihood method for model (1) requires finding a maximum for a
function of n + 4 variables.
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Let us describe the likelihood function. Let zij = (Xi, Yij)′ and

Σ =
[

σ2
ε 0
0 σ2

δ

]
.

Further, let

µi = (si, asi + b)′.

The log-likelihood function is then

l(a, b, s1, . . . , sn, Σ) = −m

2
log det[Σ]− 1

2

∑
i

∑
j

(zij − µi)′Σ−1(zij − µi).

This model is a particular case of the situation when both Xi and Yi are
repeated mi times. In this case zij = (Xij , Yij). The problem of finding
a maximum is hard both from the theoretical and computational point of
view. It was discussed by Cox (1976). In the more general case, i.e. when
both observables Xi, Yi are repeated mi times, the maximum is realized by
a solution of an equation of the fourth degree in a.

Let

WZ =
∑

i

∑
j

(zij − zi.)(zij − zi.)′

and

BZ =
∑

i

mi(zi. − z̄..)(zi. − z̄..)′.

Using the notations

WZ =
[

wx wxy

wxy wy

]
and BZ =

[
bx bxy

bxy by

]
we can write the equation for â as

(2) [awx(by − abxy)− wy(abx − bxy)]B(a)
−(by − abxy)(abxy)(by − a2bx) = 0

where B(a) = by − 2abxy + a2bx.
The estimator of b̂ is

b̂ = Ȳ.. − âX̄...

The form of â is not simple. If we consider the situation where Xij = Xi

for each j, we also have a cumbersome equation of the fourth degree in a.

2.2. Estimation of the parameters of linear regression using the variance
components estimation method. In this section we suggest another approach
to estimating the regression slopes.
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Consider a model (1),

Xi = si + εi, Yij = asi + b + δij .

To simplify the calculations we assume that mi = m for each i. By
substituting si in the last relation we obtain

(3) Yij = aXi + b + δij + γi

where γi = −aεi.
Replacement of the distribution of (X, Y ) by the conditional distribution

of Y with respect to X enables us to use a different model (treating Xi as
a constant) to estimate the same parameters a, b, σ2

ε , σ2
δ . The technique of

variance components can be applied for this purpose.
The general linear model with two variance components has the form

(4) Y = Xβ + U1Φ1 + U2Φ2,

where Y is a k-dimensional vector of observation, X is a known k×p matrix
with rank(X) = p, β is a vector of unknown constants, U1, U2 are known
matrices and Φ1, Φ2 are non-observable random vectors satisfying

E(Φi) = 0, E(ΦiΦ
′
j) = 0, E(ΦiΦ

′
i) = σ2

i Iti , i, j = 1, 2.

The expectation vector and the variance matrix of Y are

(5) E(Y ) = Xβ, Var(Y ) = σ2
1V1 + σ2

2V2, Vi = UiU
′
i , i = 1, 2.

In this section we are basing on the following theorems.
Let σ = (σ1, σ2) and f ′σ = f1σ

2
1 + f2σ

2
2 be a linear combination of

variance components and let A be a symmetric k×k matrix. The quadratic
form y′Ay is an unbiased estimator of f ′σ if

E(y′Ay) = f ′σ

for each β and σ.
Consider the situation when V2 in (5) is the k × k unit matrix. Let B

be a (k − p)× k matrix satisfying

BB′ = Ik−p,(6)
B′B = I −XX+ = M.(7)

Such a B always exists, although it is not unique.
Define a matrix W as

W = BV B′.
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Theorem 1. In the linear model with two variance components σ2
1 , σ2

2

all the functions f ′σ are invariantly estimated if the number of different
eigenvalues of W is greater than one.

A specially interesting case is when W has exactly two distinct eigenval-
ues and is singular. Then we have the following theorem:

Theorem 2. In the model with two components where the matrix W
has two different eigenvalues and W is singular the best local unbiased and
invariant estimator of f ′σ has the form

(8)
(

f1

α2
1ν1

− α1f2 − f1

α2
1ν2

)
Y ′MV MY +

α1f2 − f1

α1ν2
Y ′MY,

where α1 is the unique nonzero eigenvalue of W with multiplicity ν1 and
ν2 = k − p− ν1 is the multiplicity of the zero eigenvalue of W .

In particular, for the variance components σ2
1 and σ2

2 the uniformly best
estimators are

σ̂2
1 =

ν1 + ν2

α2
1ν1ν2

Y ′MV MY − 1
α1ν2

Y ′MY,

σ̂2
2 =

1
ν2

Y ′MY − 1
α1ν2

Y ′MV MY.

The proofs of these theorems are given by Gnot (1991).
In the model (3) we obtain two variance components:

(9) σ2
1 = a2σ2

ε , σ2
2 = σ2

δ .

The vector Y has the form

Y = [y′1, . . . , y
′
n]′, yi = [Yi1, . . . Yim]′,

and the matrix X is

X =

 X1 1
...

...
Xn 1

 ,

where each Xi is repeated m times.
The matrix U1 is

(10) U1 = In ⊗∆

where ∆′ is an m-dimensional vector of 1’s: ∆ = (1, . . . , 1). The matrix U2

is the nm× nm unit matrix, and

Φ1 = [γ1, . . . , γn]′, Φ2 = [φ∗′1 , . . . , φ∗′n ]′

where φ∗i = [δi1, . . . δim]′.



406 A. Czapkiewicz

From the considerations in the previous sections we have

E(Φi) = 0, E(ΦiΦ
′
j) = 0, E(ΦiΦ

′
i) = σ2

i Imn, i, j = 1, 2.

With the above notations, we have the following theorem.

Theorem 3. The best local , invariant , unbiased estimators of σ2
1 and

σ2
2 in (3) are

σ̂2
1 =

nm− 2
m2(n− 2)(m− 1)n

Y ′MV MY − 1
mn(m− 1)

Y ′MY,

σ̂2
2 =

1
n(m− 1)

Y ′MY − 1
mn(m− 1)

Y ′MV MY,

where
M = I −X(X ′X)−1X ′.

To prove this theorem we use the following simple lemmas:

Lemma 1. Let A and B be n×m and m×n matrices, respectively. Then
AB and BA have the same nonzero eingenvalues.

Lemma 2. Let A be a symmetric matrix. If A2 = mA, then m is a
unique nonzero eigenvalue of A.

Lemma 3. Let A and B be matrices such that AB and BA are symmet-
ric. If λ is a unique nonzero eigenvalue of AB, of multiplicity k, then λ is
an eigenvalue of BA of multiplicity k.

P r o o f. We can view the matrices A and B as linear maps A : Rm → Rn

and B : Rn → Rm. By assumption,

Rn = Vλ + V0

where Vλ and V0 are some subspaces and

ABv = λv, v ∈ Vλ,

ABv = 0, v ∈ V0.

Then Rm = B(Vλ) + B(V0) + B(Rn)⊥ and

BAw = λw, w ∈ B(Vλ),
BAw = 0, w ∈ B(V0).

If w ∈ B(Rn)⊥ then BT w = 0 and AT BT w = 0 so BAw = 0. This implies
that

BAw = λw if w ∈ B(Vλ),

BAw = 0 if w ∈ B(Vλ)⊥.

Let k′ be the dimension of B(Vλ). Then λ is a unique nonzero eigenvalue of
BA of multiplicity k′ and k′ ≤ k.
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We repeat this reasoning for AB and conclude that λ is an eigenvalue of
AB of multiplicity k′′ ≤ k′ ≤ k. But the assumption k′′ = k implies that
k′ = k.

Proof of Theorem 3. Let B be an (nm − 2) × nm matrix satisfying (6)
and (7), and let W = BV B′ and V = U1U

′
1 where U1 is given by (10). Then

W = BV B′ = BU1U
′
1B = BU1(BU1)′.

Let

W ∗ = (BU1)′BU1 = U ′1B
′BU1 = U ′1MU1.

Lemma 1 implies that W and W ∗ have the same nonzero eigenvalues.
Let X have the decomposition

(11) X = CΛD′

where Λ is a diagonal matrix, and C and D are matrices such that C ′C = I
and D′D = I (Rao (1973)). Let α1 and α2 be nonzero eigenvalues of XX ′.
From (11) and from the definition of the Moore–Penrose inverse matrix we
have XX+ = CC ′. The matrix C is formed by normalized eigenvectors
corresponding to α1 and α2.

It is easy to see that W ∗2 = mW ∗ (the proof is algebraic). From
Lemma 2 we know that m is a unique nonzero eigenvalue of W ∗. The
trace of W ∗ is m(n−2) so we have the multiplicity of m. From Lemma 3 we
see that m is a unique nonzero eigenvalue of W of multiplicity n− 2. So W
is singular and has two distinct eigenvalues: zero with multiplicity n(m− 1)
and m with multiplicity n− 2. The conditions of Theorem 2 are satisfied so
we have the desired formulas on the estimators of the variance components
σ2

1 and σ2
2 .

The expression for M follows from the fact that X has full rank.

Theorem 4. Let β = [a, b]. Then

β̃ = [X ′Z̃−1X]−1X ′Z̃−1Y

where Z̃ = σ̂2
1V + σ̂2

2Inm is an estimator of regression slopes consistent in
the quadratic mean.

P r o o f. Let us write the model (3) as

Yij = aXi + b + zij where zij = δij − aεi.

We note that the random variables zij are correlated. It is easy to notice
that the variance and covariance matrix has the form

Z = σ2
1V + σ2

2Inm.

Now, we can estimate the parameters a and b by
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(12) β̃ = [X ′Z−1X]−1X ′Z−1Y.

For Z we take the estimator Z̃ = σ̂2
1V + σ̂2

2Inm.

The estimators σ̂2
1 and σ̂2

2 , having minimal variance, are convergent in
the quadratic mean. The relation (12) can be approximated by a linear one.
Since σ̂2

1 and σ̂2
2 are convergent in the mean, so are linear functions of them.

So we have

lim
n,m→∞

E(|β − β̂|2) = 0.

The estimators of the variances σ2
ε and σ2

δ can be calculated from (9).

3. Simulation studies. Let ã be an estimator constructed using vari-
ance components theory (VCE) and â be a maximal likelihood estimator
(MLE). Simulation studies have been carried out to illustrate the properties
of ã by comparison with the mean squared errors of the above estimators.

We fix theoretical values of the regression coefficients a and b. Using a
standard simulator of normal distribution we have

εi ∼ N(0, σ2
ε), δij ∼ N(0, σ2

δ ).

These were used to generate the “observables” (Xi, Yij) according to (1). We
assumed that the values of si are some random real variables with values in
(i, i + 1), where i are successive natural numbers. Then ã is estimated as in
Theorem 4 (where β̃ = [ã, b̃]) and â is estimated as in (2).

Repeating the procedure 2000 times, we were able to generate 2000 values
for â and ã. Since the theoretical a is fixed and known we can find the
“exact” values of the mean squared error (MSE) of ã and â. Simulations
have been carried out for various variances of measurement errors, various
a and various n and m. The results are quite satisfactory. The following
general conclusions can be drawn:

(a) Both estimators have the same asymptotic variance.
(b) When the slope a is large, and other parameters are held fixed, the

maximum likelihood estimator (MLE) is to be preferred. On the contrary, if
a is smaller than 1 then the estimator based on variance components (VCE)
has smaller mean squared error.

(c) When σ2
ε is greater than σ2

δ then MLE is better. In the opposite
situation VCE is to be preferred.

(d) When the variances of both disturbances are equal and the regression
slopes a tend to 1 very small differences between the mean squared errors
occur.

In Table 1 we present some results of the simulations.
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TABLE 1. Comparison of mean squared errors for MLE and VCE

Preferred
n m σε σδ a MSE( ã ) MSE( â ) estimator

6 3 0.3 1 1 0.0230 0.0257 VCE

6 6 0.0151 0.0167

8 3 0.0096 0.0109

8 6 0.0062 0.0064

12 3 0.0031 0.0034

17 3 0.0011 0.0012

6 3 1 0.3 1 0.0654 0.0571 MLE

6 6 0.0612 0.0561

8 3 0.0300 0.0247

8 6 0.0296 0.0241

12 3 0.0097 0.0076

17 3 0.0033 0.0025

6 3 0.5 0.5 0.5 0.0082 0.0101 VCE

6 6 0.0059 0.0073

8 3 0.0033 0.0034

8 6 0.0025 0.0026

12 3 0.0010 0.0011

17 3 0.0004 0.0004

10 3 0.5 0.5 0.3 0.0013 0.0020

12 3 0.0007 0.0009

17 3 0.0003 0.0003

10 3 0.5 1 0.5 0.0042 0.0068

17 3 0.0008 0.0010

6 3 0.5 0.5 5 0.3799 0.3745 MLE

8 3 0.1573 0.1497

8 6 0.1518 0.1455

12 3 0.0444 0.0398

17 3 0.0161 0.0146

10 3 1 0.5 5 0.3976 0.3144

12 3 0.2211 0.1636

17 3 0.0857 0.0617

6 3 0.5 0.5 1 0.0188 0.0199 both

6 6 0.0182 0.0186

8 3 0.0088 0.0085

8 6 0.0070 0.0071

12 3 0.0025 0.0024

17 3 0.0008 0.0008
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