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REGULARITY OF THE MULTIDIMENSIONAL SCALING
FUNCTIONS: ESTIMATION OF THE
LP-SOBOLEV EXPONENT

Abstract. The relationship between the spectral properties of the transfer
operator corresponding to a wavelet refinement equation and the LP-Sobolev
regularity of solution for the equation is established.

1. Introduction.Let us consider the d-dimensional refinement equation

(1) fle) =24 o f (20 — k),

kezd

where z € R?, and

(2) Y a=1

kezd

Any solution ¢ of (1) is called a scaling function or refinable function.

One of the fundamental problems for the scaling function is to estimate
its regularity. For the one-dimensional case with a finite number of nonzero
coefficients ¢, k € Z, the estimations of Holder exponent were derived in
[13], [4, 5], [14], and the Sobolev and LP regularity was studied in [7], [16],
2], [8], [10], [12], [9]. But only [10] and [2] concern the case with an infinite
number of nonzero coefficients in (1).

For d = 2 the LP regularity for compactly supported scaling functions
was studied in [11]. In this article we adopt the methods of [2] for deriving the
estimation for the coefficient of LP-Sobolev regularity in the case d = 2. We
establish a connection between the LP-Sobolev exponent s, and the spectral
radius of the so called transfer operator corresponding to the equation (1).
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Beginning from Lemma 2.7, for clarity, we confine ourselves to the case
d=2.

2. The transfer operator. The following notations are used: A =
{(1y---»7a) : jx € {0,1}, k = 1,...,d}. For any function f € L'(R?) we
consider the Fourier transform

f© = | f@)e'S) du
Rd
and for any function from L?([—7,7]?) we consider the nth Fourier coeffi-
cient

o= ggr V S@Ede mezt

[_Wvﬂ]d
The LP-Sobolev exponent s, is defined by

Sp = sup {s : S |F(@)P(1+ |Jz|P)® do < oo}.
Rd

Let P denote the set of all continuous functions f : R? — C, 2n-periodic
with respect to each variable. Let w € P. Then the transfer operator
L, : P — P associated with w is defined by

(3) (Lof)(@) = w@ e +7e) f(27 2 + me).
ec/A

It is called the Perron—Frobenius operator.
The following lemmas concerning £, will be important in our further
considerations:

LEMMA 2.1. Let f,g € P and k € N. Then

| f@ctg@de= §  f@)] [[ee )]s ") de

[=m, 7] [—2Fkm,2k]d n=1

= odk S f(2k2) { lii[l w(2”x)] g(x)dx.

[—m,m]?
The proof is a straightforward generalization of the one-dimensional case
(see [2]).
LEMMA 2.2, Let f € P and n € N. Then

@ @@ =Y [TJe@ @+ 2mm)] f2 " + 27m)),

mel, j=1

where I, = {m € Z4¢ :m; € {=2""t +1,...,2" 71} i=1,...,d}.
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Proof (by induction). The first step is obvious. Suppose that (4) holds
for any k£ < n and let

Ln={meZ: m;e{-2""t+1,...,2"" 1}, i=1,...,d}.
Then
(5)  (LET ()
= Z w2 e +me) (L f) (27 e + Te)

eeA
n+1
= Z w27 (z + 2me)) Z { H w27 (x + 27 (e + 2m)))]
e€A mel,  j=2

X f(2_("+1)(x + 27(e + 2m)))

n+1

= Z Z w(2*1(x+27r(e+2m))[1_[w(2*j(x+27r(e+2m)))]

ecAmel, j=2

X f(27("+1)(x +2m(e +2m)))

- ¥ [ []we @+ 27Tm))} £ (2 + 27m)),

j=1
where
6) I y={meZ':mye{-2"+2,....2"+1}, i=1,...,d}.
Now consider the set

I={mel,, :thereexists i € {1,...,d} such that m; = 2" + 1}.
Then for each m € I such that

m=(my,...,mi—1,2" +1,miy1,...,mq),

by periodicity we have
w27 (x4 27mm)) = w2 (z + 2m(my, ..., mi_1, =2+ Lmigg, .., ma))),
and similarly

£ (@ 4 20m))

= 27D (@ 4 2n(my, . mi_1, =27+ 1, Mg, M)

Hence from (5), (6) we obtain our inductive claim.

REMARK 2.1. For any function f € P and n € 72,

(‘wa)n =27 Z wWon—k fr-

kezd
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For R 3 @ > 0 the function space
E, = {f eP: flx)= Z Fae™ 12 I = Z | f |22l < oo},
nezd nezd

is a Hilbert space of analytic functions (see Theorem A.4) with the inner
product

<fa g>a = Z fn§n62a”n”'

nezd
For each function f from E, we estimate

F@I< Y [l = 37 eloleg g felnle

nezd nezd
1/2 1/2
< < 3 6—2||n||a) < 3 |fn|2e2”"”a> ,
neza neza

Hence we have proved:

REMARK 2.2. We have ||f|re < Cullflla for f € E., where C, =
(> ez 6_20‘”"”)1/2 1 a universal constant.

REMARK 2.3. Let ey o(2) = e~ e=elnll yhere n € Z4. Then {ena}
is an orthonormal basis of E,.

LEMMA 2.3. Let w € P and suppose that o € (7,27) and |w,| < Ce~ 7"
for some C v > 0. Then:

(i) L, maps E, to E,.
(i1) L, is compact.
(iii) L, is a trace-class operator.

Proof. (i) ||£.f||? can be estimated as follows:

1ot =22 3 | 3 i il

ne€Zd keZd

<2225 S g IHla gy el ze2inla

neZd kezd

< 22dHin Z [ Z |W2n—k|26_2“k“a] 62||n||a

n€eZd keZd

< 22dHfH(2102 Z Z 672||k||0462||n||a62'y||2nfk||a

n€Z* keZ?

< 22dHfHZCQ[ 3 672||n||(27*a)] [ 3 efzni«n(afw)] < 0.

neZa keZa
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(ii) We must prove that £, (K) is relatively compact, where K = {f €
E, : ||flla <1}. One can immediately see that £, (K) is a bounded subset
in F,.

Now let (ex)72; be a basis of E, such that:

(a) for each n from Z? there exists exactly one k € N such that e, 4
= &k,

(b) for each k from N there exists exactly one n € Z? such that e,
= &k,

(c) for each n € Z¢ and k € N such that e, o, = &y, 2?21 In;| <k,

(d) for each n,m € Z% and k,l € N such that en,a = €ky €m,a = €
the following condition holds: if Z?Zl In;| = Zfil |m;| then k < [; if
S il < S5 mgl then k < 1.

Let Ry, : E, — span{ejy1,...} and f € K. Consider n° € Z%, k; € N
such that e, o, = €41 and k; = Z?Zl |n?| and set I(ky) = {m € Z% :
Z?Zl |m;| = k1 and for all l € N if ¢, = e, o then { < k+ 1}. Then
(M) N Re(Lof)lla

<| X @opme |+ DD Cufyuei

In | =1 €I(k1)

— (T eapale 1) (D [(Lapafree)

lIn]|>k1 nel(ky)

<Clfle(( X e—znnn(zw—a))l/%r( 3 e_QHHH(QW_Q))l/Q)’

lIn]| >k nel(k)

«

/2

where the last inequality is obtained as in the proof of (i).
From (7) we see that

sup || Rx (Lo f)l|o
feK

<o(( X “/’_2”””(2”_“))1/2+< > e_2||"||(27—0‘))1/2>—>0

lInll=k: nel(ky)

as k — oo. Hence applying Theorem A.1 we get the assertion.
(iii) Let us estimate the expression |(Ly€n. a5 €n.a)al.- After some calcu-
lations we see that

{Leoeh.or €n.a)al < 20Ce @Mkl g=Cr=c)lkl
Then
Z ’<£wek,a7en,a>a’ < Q.

n,kezd
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For any orthonormal basis (p;);cze of E, we see that

> HLwpispidal < D0 Wuehaeradal| D i exadal lerar @idal

i€Z4 k,lezd YA
S Z ’<£wek,a7el,a>a‘7
k,lezd

which yields that £, is a trace-class operator in F,, because of the following
theorem:

THEOREM (see [15, p. 219]). Let H be a separable complex Hilbert space
and T € L(H) a bounded operator. Suppose that for any orthonormal base
{@i}is1 the series Y oo (Tpi, i) is absolutely convergent. Then T is a
trace-class operator.

This concludes the proof of Lemma 2.3.
The fact that L, is a trace-class operator allows us to control the error
of the spectral radius of £, in E, in numerical calculations (see [2]).

LEMMA 2.4. Let w € P and suppose that there exist C,~v > 0 such that
for each n € 74, |w,| < Ce= "M, Then there exist v. € (0,7) and Coy > 0
such that for the Fourier coefficients (|w|?)n, n € Z% we have

(|W|2)n < CQB—VEIInII.
Proof. One can see that

(lw?)(z) = Z wnme” T

n,mezd
and hence
1 .
2\ § : — —i({n—m-+k,x)
(|W| )k - (27T)d WnpWm S € dx
n,mezd [—m,m]d
= g WnpWy, = E WnWntk-
n,meZ4, m—n=~k nezd

Then for any €,7; such that 0 < 26 <~y and v = v — ¢,
()l < Y Jwnl[@nyn] <02 e Inllemlintkl

nezd nezd
— 2 Z e~ n(Inll+lIntk|) o —e(lnll+n+kl)
neZad
<0? Y eIkl CInl=IkD < gye= (=22t
nezd

where we used the inequalities || k| < ||n|| + |n + k|, [|n|| — |&|| < |In + E||.
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Iterating Lemma 2.4 [ times we obtain:

LEMMA 2.5. Let w€P and suppose that |w,|<Ce " for each necz?
and some C,~v >0. Then for any |l €N there exist Co >0 and ' € (0,7)
such that for each n € Z4 the Fourier coefficients (|w|?!), satisfy the estimate

(Jw[?),, < Core= 7 Il
LEMMA 2.6. Let w satisfy the assumptions of Lemma 2.5 and w # 0 on

[0,27]¢. Then for any p € N there exist v1 in (0,7) and C, > 0 such that
the Fourier coefficients of |w|P satisfy the estimate

(Jw|P)n < Cpe*')/l”n”’ ne 7%

Proof. |w|? is an analytic function. We can extend |w|? to a function
of a complex variable for |Im z| < 7. Then there exists v, € (0,7) such that
lw2#0o0n Ry, ={2€C¥:e < |z <eM for k=1,...,d} and we can
define on R, an analytic function

|w|P = exp (g log \w[2>.
From the analyticity of |w|P and the form of R, we get the assertion.

To proceed with our considerations we recall the Cohen condition (see
3)).

A set K is called congruent to [—m, 7] (modulo 277Z4) if | K| = (27)? and
for all z € [, 71]¢ there exists 2’ € K such that z —2’ € 27Z%. We say that
a function w satisfies the Cohen condition if there exists a compact set K
congruent to [—, 7]¢ (modulo 27Z<) such that it contains a neighbourhood

of 0 and

inf |w(277z)| > 0.
j>1,zeK

We finish our preparatory considerations. From now on we assume d = 2.

LEMMA 2.7. Let w € P be real-valued and satisfy the following condi-
tions:

(i) there exist C > 0, v > 0 such that for each n € 72, |w,| < Ce "I,
(ii) w > 0, w(0) =1,
(iii) w satisfies the Cohen condition,
(iv) w(s,r) > 0 when r € [0,27],s =0 or s =, and w(2~"w,r) > 0 for
r € [0,7/2] and n € N.
If feE,\{0} (o € (v,27)) is a real-valued function such that f > 0,
then for each x € [—m,w]? there exists n € N such that (L f)(z) > 0.

Proof. Assume, on the contrary, that there exist a function 0 < f € E,,
and z° € R? such that (L7 f)(z") = 0 for any n > 1. We can assume that
29 = 0, because if 2" # 0 then by Lemma 2.2 for any p > 0 we can write
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(8) 0= (LL*f)(?)
-3 [H w(279 (20 + 2m7r))] (LP 1) (27" (2° + 2m)),
mel,, j=1

where I, = {(mq,m2) : m; € [-2""1 4+ 1,2"711NZ, j =1,2}.
By the Cohen condition there exist ¢ > 0 and a set K congruent to
[, m]? such that w(2772) > cxx () for any z € R?, j > 1. By (8),

(9) 0= (LLf)@%) =z e Y xx(2® + 2mm)(LLf) (27" (2° + 2mm)).

mel,

There exist m® € Z? and T € K such that 20 + 27m° = z. Now if 2"~ ! >
|m{|, i = 1,2, then by (9),

0= (LLPf)(a") = "(LLf)(27"T).
Hence by analyticity £P f vanishes on the line {y = tT} C R?, p > 0.

The next steps of the proof are as follows. First we show that

(10) @z (mg5m) =0

for any p >0 and [ € {0,1,...,27}, 5 > 1. Then we deduce that

o (o)) o

for each r € R. Hence we conclude that f = 0 by analyticity.
To prove (10) let us take into account (8). For 2° =0 and n > j — 1 we
derive

02 0=z > [ [Tutz-t2mm] @ (x 5n) 20
k=1

where m = (2", 2"=9=1) 1 € {0,1,...,27}. If k € {1,...,n — 1} then
w(27F2r(2n1 271 = w(2r, 2" i) = w(0,2"Fin) > 0,

and for k = n,
, l
w(27F2r(2n~t 2n I T1)) = w(w, 2_37T> > 0.

Hence by (12) we obtain (10).
To prove (11) it is necessary to show that the function f vanishes on
the line r(7r, %77), r € R, or equivalently that it vanishes at infinitely many

points having a point of accumulation. Once more rewrite (8) for p = 0 and
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— (c2) (557
= 3 [T ((mgm) +2m))]

p=1

(o) )

Then inserting m = 0 we observe that

(13) 0= (L"f) <7r —71') > Hw<2 p<7r —7T>>f<2"<77,%7r>> >0,

where the last inequality follows from (iv). Then by (13),

o)) -

for any n and hence we obtain (11). The set {2%77 7 >1,1=0,1,... ,27}
is dense in [0, 7] hence f vanishes on the triangle with vertices (0,0), (,0),
(m,7). So f =0 and we obtain a contradiction.

From the proof it is clear that (iv) can be replaced by another condition
given in the following:

REMARK 2.4. w(s,r) > 0 whenever s € [0,2x], » = 0 or r = 7, and
w(r,27"m) >0 for r € [0,7/2] and n € N.

Let us remark that the second part of (iv) (i.e. w(27"m,r) > 0 for
r € [0,7/2], n € N) concerns only a finite number of n € N, n € {1,...,ko},
where ko > 1 is such that the square [0,2 % 7]?2 C 27! K, K being the com-
pact set from the Cohen condition. We recall that for z € 271K, w(z) > 0.

It seems that the assumption (iv) in Lemma 2.7 is excessively strong,
and it is an open problem how to relax it.

In the case d = 1 assumptions (i)—(iii) suffice for proving the assertion
of Lemma 2.7 (see [2]).

3. Regularity of the refinable function. An operator 7' € L(X),
where X is a Banach space, is called positive with respect to the cone K C
X ifT(K) c K. If ItK # 0 we say that T is strictly positive when
T(K \ {0}) C Int K. We use r(T) for the spectral radius of 7" and B(z,r)
for the ball with center at x and radius r.

Define

E.r ={f € Ey: f(z) €R for all z € R%}.
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Then
Eo = Eop+iFag.
For E, r and F, the sets
E;F,R ={f€FEsr:f>0} and EI = E;R + iEiR
are cones.
LEMMA 3.1. Let f € E, r. Suppose that f > 0. Then

(i) B(f,as/(2Ca)) C EZ g, where min{f(z) : x € [-m, 7|} > ay >0
and C,, is as in Remark 2.2.
(ii) For each g € Eor we have g > 0 whenever g € B(f,as/(2C,)).

Proof. Let ay > 0 be such that f > ay and assume g € B(f,as/(2Cy)).
Then

9(x) = f(z) = [f(x) = g(@)| = a5 = |f = gllL= = a5 = Callf = glla > 0.
As a direct consequence of this lemma we get the following
REMARK 3.1. E;F,R and E} are cones with nonempty interior.

Let f be an integrable and normalized solution of the equation (1), i.e.
{ga f(x) dx = 1. Applying the Fourier transform to (1) one obtains

-~

(14) fl@) =m(2 '2)f(27 ),
where m(z) = Y, .72 cpe' ™).
From now on we assume that the function m can be factored as

(15) )= () (Y g,

where N, M € NU {0} and ¢ is a 27Z2-periodic function such that the
Fourier coefficients ¢,, satisfy the estimate

(16) |gn| < Ce™I7l

for some C,~ > 0.
We can rewrite (15) as

— N M i(k,x
() = g(a) 32 <N+M>(k )(k )< ),
kel 1 2

where I = {k € Z?:k; =0,1,...,N, ko = 0,1,..., M}. Then the Fourier
coefficients of m can be estimated as follows:

_ N\ (M
Cp = My = ZQ (N+M) <k > <k2>Qn+k,

kel 1
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and applying (16) we obtain

| < 2~V gl 3 <]]:7> <24> IFIL

kel 1 2
hence

(17) Imy| < Ce™ Pl for any n e 72
One sees that Hj’;l m(277z) and H;’;l q(277x) are uniformly convergent

on each compact subset K of R?, since using (2) and (17) it follows that

(18)  Ja@)| = [m(@)] < 1+ |m(x) 1] =1+ | 3 cue’™? = 3 e,

nez? nez?
1 — 1
<1+2 Z |cp | [sin §<n,x> <1+2 Z Ce= 2l §<n,x>
nez? nez?
<1+C Y e Mn| - Jlz]| <1+ Cill].
nez?

LEMMA 3.2. Assume that m,q satisfy (15), (16) and one of the following
conditions:

1. p>0 and q #0 on [—7,7]?,
2. p € 2N, m satisfy the Cohen condition and |q| satisfies the condition
(iv) of Lemma 2.7.

Let Lig» be the transfer operator associated with the function |q|P and
rp be the spectral radius of this operator on E, for any o € (v,2vy). Then:
(i) rp is an eigenvalue of Liq»,
(ii) the eigenfunction corresponding to 1, is strictly positive (i.e. is in
Ey),
(iii) rp, > 1.
Proof. For A > ||£4»| consider the operator

o0
(19) T = Z )fkﬁfq‘p acting on E,,.
k=1

T is compact and by Lemma 2.7 it is strongly positive. Then by Theorem
A3 its spectral radius r(T") > 0 is an eigenvalue of T'. Moreover, the cor-
responding eigenfunction F' is in Int Ef. Recall that for A > ||£4»|| the

resolvent R(A, Ly4») equals Y27 )\’(kH)Efq‘p. So we can write
(20) I+T = AR(X Lygp).

Because also F' is an eigenfunction of I + T corresponding to the eigenvalue
1+ 7(T), from (20) we derive

AR(A, Ligip)F = (1 +r(T))F.
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This immediately gives A\F' = (1+7(T))(AM — Lq»)F and therefore L» F' =
KF, k = 1++(T)T(T) > 0. So 1, > k > 0 where r, is the spectral radius of
L)g»- Now the Krein-Rutman Theorem (see Theorem A.2) applied to Ljq»
shows that r, is an eigenvalue of £,» and the corresponding eigenfunction
G isin EX. By (19), G is also an eigenfunction for 7" and

oo k
TG = (Z <%’> )G € Int 7.
k=1
Hence we obtain (i), (ii).
Now write

rpF(0) = (Ligp F)(0) = F(0) + Y [g(me)|"F(we), A" = A\{(0,0)}.

ec A’

The assumption imposed on g guarantees that |¢(0,7)| > 0. Hence the sum
on the right hand side of the latter formula is positive. Thus 7, > 1 and the
proof is finished.

Let
E, ={g:g(z) = |sin(2_1x1)|Np|sin(2_1x2)|Mpf(3:) and f € F,},

and for any g € E!, the norm of g is identified with the norm of the corre-
sponding f in Fi,.

LEMMA 3.3. Let Ligp (resp. Eim‘p) be the transfer operator associated
with |q? (resp. |m|P). For any o € (v,27), L{,,»
on the space Ey,. Moreover, if f is a continuous eigenfunction of Lq» with
eigenvalue X then g(z) = [sin(27 ay)|VP|sin(27 20)|MP f () is a continuous

etgenfunction of E"mlp with eigenvalue 2= N+Mp )

is a trace-class operator

Proof. As in the one-dimensional case (see [2]), it is enough to show
(Llpp9)(22) = Y [m(z + me)|Pg(x + me)
ecA
. T 1 . o X9
in [ — — in|— =
S 5 ) cos | 5 S 5 ) cos |5
X Z lg(z + me)|P f(x + me)

ec/
= 2~ (N+M)p i 41| NP)sin xg\Mp(EMpf)(Qx).

Np Mp

THEOREM 1. Assume that m,q satisfy (15), (16) and one of the condi-
tions of Lemma 3.2. Let Lq» be the transfer operator associated with the
function |q|P and r, be the spectral radius of this operator on E, for any
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a € (,2v). Then the LP-Sobolev exponent of the scaling function f satisfies
1

(21) sp =N+ M — —log,rp.
p

Proof. Applying (14) and (15) we see that

22 rﬂx)\:[ﬁrcosN@-k—lml)\][ﬁ\cos @] T et
k=1 k=1
H\q Fx)l.

2sin(271wy) |V
z1

2sin(2~ xg

For all # € [-2",2"7]? we obtain

(23) TT a0 < ¢, [T la " a)p,
k=1 k=1

where C,, = sup{|[[;—, ¢(27%z)|P : © € [-m, 7]} and C,, is finite by (18).
Using (23) we obtain

(24) [Tl

[—27m,27w]2 k=1

dz

<c, | H a2~ * )P do

[—2nm 2772 k=1
<G, S (Lgp)"1(xz)dz by Lemma 2.1
[=m,m]2
< (2m)°Cp{(Ligp)" 1, 1)a < (20)°CylILTy 0 -
For each € > 0 and n > ng(e) > 1 we have
|||£\q|p||1/n — 1yl <e.
Hence applying (24) we see that

(25) || TLae ")

[—27m,27 7?2 k=1
{ (2m)2Cp(rp + &)™ for n > ng(e) > 1,
(27)2Cy||Lige |l for 1 <n < ng(e).

dz

Consider the family of sets Ag = [ mo? Ay = =297, 297)? \ [—20 7,
27=17])2 for j > 1. Then using (22) and (25) we estlmate
V17 @)P A+ l|2|P)° da

R2

= | F@Pa+iz|p)> d$+z | 1@+ )y d

[—m,m]? j=lz€A;



444 J. Kotowicz

<G +CY reN=Mg, | H|q z)|Pdz by (22), (23)
7j=1 xEA k=1
no— 1
<O+ Gy Z oip(s=N=MD) | |l 4 Z 2PNy, 4 )
Jj=no

< C3 + 02 Z 2]'(17(5_N_M)+108§2(7’p+5))_
Jj=no
Then for any s such that j(p(s—N—M)+log, r,) < 0 the series is convergent
and hence the LP-Sobolev exponent s, is greater than or equal to N 4 M —
% logy 7.
Let K C R? be a compact set congruent to [—m, 7|> modulo 27Z? from
the Cohen condition. Define

L= | || NP f(2) P da
ze2n K

g:inf{‘ ﬁm@kx)‘p cx € K}

Then ¢ > 0 by the Cohen condition.
Let F be a strictly positive eigenfunction of Lj4» (see Lemma 3.2) cor-
responding to 7,. Define

S = sup{|F ()] : 2 € [-m, 7]},
g(x) = |sin(27 1z [VPlsin(2 7 ay)|MPF(z), G = S g(x) dzx.

and

[_ﬂ-vﬂ-]Q
We can estimate I,, as follows:
n o0
P
I, = S HxH(NJrM)p[H]m@_ x) } [H (2~ (k) g ]} dx
rxE2" K = k=1
p
>0 | \mNP\xQ\Mp[H m@ )| da
re2" K k=1
> g2(N+M)p(n+1) S ]sin(27(”+1)x1)]Np]sin(27("+1)x2)\Mp
re2" K

X { ﬁ Im(27 ") ]} " de

ZS—1Q2(N+M)p(n+1)‘ S 9(2—nx)[ﬁ|m(2—kx)|]pdx‘

re2" K k=1
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> 5! 92<N+M>p<n+1>‘ [ g [ ﬁ \m(z—kx)\]p dx‘
k=1

zE[—2" 7,27 7]?

= Sfng(NJrM)p("H)‘ S (Lpp)"9() dw‘ by Lemma 2.1
z€[—m,m|?
= |GloS~L2WNFMP(r )" by Lemma 3.3
= C(rp)".
Since K is compact there exists a finite L such that K C [-2Fx, 2E7]2.
Hence
(26) I, = | ||| NFMP| F()|P da > T, > C(r)™
[—277,2n7)2
Put
I = Tn - Tnfl = S |’xH(N+M)p‘f(x)’p dz.
An
Now we prove that r, > 0 and (26) gives
(27)  for each C > 0 and ¢ > 0 we have J,, > C(r,/2°)"
for infinitely many n > 1.

In fact, suppose not. Then there exist ng > 1,Cy > 0, and g > 0 such that
Jp < Co(rp/2%0)" for each n > ng. For n > ng this yields

(28) 0<C< () " Tu=(r) (T + 3 i)
k=no+1
= . n r n
< (rp) " Ing + Colrp)™ > (2—p> .
k=no+1

It is clear that for 7,/2°¢ < 1 the right hand side tends to zero as n tends
to infinity. Now we show that the same holds for r,/2°¢ > 1. Actually, in
this case we have

Y () <o {(2) @

k=no+1 no

_ ()™ [ " )
= ln 27;1:) 250 250 )
which gives the claim.

We thus get a contradiction, and therefore (27) is valid.
Let us write (27) in the form

(29) S ||| (N+Mp=loga ot F() P dg: > Oy > 0
An
for infinitely many n > 1. Now for
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{1+ [Py f ()P do > Z | 2l | F ()P da,

R2 n=0 A,
using (29) we see that when s > N = M — %logQ rp + =, the integral

§ge (1 + ||x\|p)s|f(:n)|p dx is divergent. Since € > 0 can be chosen arbitrarily
small we infer s, < N4+M —1—1) log, 7. This concludes the proof of Theorem 1.

From the first part of the proof we get

REMARK 3.2. If we impose on m,q only (15), (16), and the spectral
radius 7, of L)4» is greater than zero then

1
spZN—i—M—Z—QlogQrp for p € 2N.

4. Appendix. Let us recall three theorems which were used in the
article:

THEOREM A.1 (Proposition 7.4 of [6]). Let X be a Banach space with a
basis. Then B C X is relatively compact if and only if B is bounded and
sup{|Rpz| : © € B} — 0 as n — oo, where R, : X — span{e,41,...} are
projections and (£;)52, is a basis of X.

THEOREM A.2 (Theorem 19.2 of [6]). Let X be a Banach space, K C X

a total cone, and T € L(X) compact positive with r(T) > 0. Then r(T') is
an eigenvalue of T with positive eigenvector.

THEOREM A.3 (Theorem 19.3 of [6]). Let X be a Banach space, K C X
a cone with Int K # 0, and T € L(X) compact and strongly positive (i.e.
T(K\{0}) CInt K). Then:

(a) 7(T) > 0, r(T) is a simple eigenvalue with an eigenvector v € Int K
and there is no other eigenvalue with a positive eigenvector.

(b) [Nl < r(T) for all eigenvalues X # r(T).

(c) Fory > 0, the equation A\x—Tx = y has a unique solution x € Int K if
A > r(T) and no solution in K if X <r(T). The equation r(T)x—Tx = —y
also has no solution in K.

(d) If S € L(X) and Sx > Tz on K then r(S) > r(T), while r(S) >
r(T) if Sz —Tz € Int K for x > 0.

The next theorem is a generalization of a well-known theorem for func-
tions of one variable (see [1]):

THEOREM A.4. Let f € P, and suppose that f(z) = Y,z fre ™)
for each x € R%. Then the following conditions are equivalent:

(i) for some C,~ > 0 and each n € Z¢ we have |f,| < Ce "I,
(i) f is an analytic function.
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