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REGULARITY OF THE MULTIDIMENSIONAL SCALING

FUNCTIONS: ESTIMATION OF THE

Lp-SOBOLEV EXPONENT

Abstract. The relationship between the spectral properties of the transfer
operator corresponding to a wavelet refinement equation and the Lp-Sobolev
regularity of solution for the equation is established.

1. Introduction.Let us consider the d-dimensional refinement equation

(1) f(x) = 2d
∑

k∈Zd

ckf(2x− k),

where x ∈ R
d, and

(2)
∑

k∈Zd

ck = 1.

Any solution ϕ of (1) is called a scaling function or refinable function.

One of the fundamental problems for the scaling function is to estimate
its regularity. For the one-dimensional case with a finite number of nonzero
coefficients ck, k ∈ Z, the estimations of Hölder exponent were derived in
[13], [4, 5], [14], and the Sobolev and Lp regularity was studied in [7], [16],
[2], [8], [10], [12], [9]. But only [10] and [2] concern the case with an infinite
number of nonzero coefficients in (1).

For d = 2 the Lp regularity for compactly supported scaling functions
was studied in [11]. In this article we adopt the methods of [2] for deriving the
estimation for the coefficient of Lp-Sobolev regularity in the case d = 2. We
establish a connection between the Lp-Sobolev exponent sp and the spectral
radius of the so called transfer operator corresponding to the equation (1).
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Beginning from Lemma 2.7, for clarity, we confine ourselves to the case
d = 2.

2. The transfer operator. The following notations are used: Λ =
{(j1, . . . , jd) : jk ∈ {0, 1}, k = 1, . . . , d}. For any function f ∈ L1(Rd) we
consider the Fourier transform

f̂(ξ) =
\
Rd

f(x)ei〈x,ξ〉 dx

and for any function from L2([−π, π]d) we consider the nth Fourier coeffi-
cient

fn =
1

(2π)d

\
[−π,π]d

f(x)ei〈n,x〉 dx, n ∈ Z
d.

The Lp-Sobolev exponent sp is defined by

sp = sup
{
s :
\
Rd

|f̂(x)|p(1 + ‖x‖p)s dx < ∞
}
.

Let P denote the set of all continuous functions f : Rd → C, 2π-periodic
with respect to each variable. Let ω ∈ P. Then the transfer operator

Lω : P → P associated with ω is defined by

(3) (Lωf)(x) =
∑

e∈Λ

ω(2−1x + πe)f(2−1x + πe).

It is called the Perron–Frobenius operator.
The following lemmas concerning Lω will be important in our further

considerations:

Lemma 2.1. Let f, g ∈ P and k ∈ N. Then\
[−π,π]d

f(x)(Lk
ωg)(x) dx =

\
[−2kπ,2kπ]d

f(x)
[ k∏

n=1

ω(2−nx)
]
g(2−kx) dx

= 2dk
\

[−π,π]d

f(2kx)
[ k−1∏

n=0

ω(2nx)
]
g(x) dx.

The proof is a straightforward generalization of the one-dimensional case
(see [2]).

Lemma 2.2. Let f ∈ P and n ∈ N. Then

(4) (Ln
ωf)(x) =

∑

m∈In

[ n∏

j=1

ω(2−j(x + 2πm))
]
f(2−n(x + 2πm)),

where In = {m ∈ Z
d : mi ∈ {−2n−1 + 1, . . . , 2n−1}, i = 1, . . . , d}.
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P r o o f (by induction). The first step is obvious. Suppose that (4) holds
for any k ≤ n and let

In = {m ∈ Z
d : mi ∈ {−2n−1 + 1, . . . , 2n−1}, i = 1, . . . , d}.

Then

(5) (Ln+1
ω f)(x)

=
∑

e∈Λ

ω(2−1x + πe)(Ln
ωf)(2−1x + πe)

=
∑

e∈Λ

ω(2−1(x + 2πe))
∑

m∈In

[ n+1∏

j=2

ω(2−j(x + 2π(e + 2m)))
]

× f(2−(n+1)(x + 2π(e + 2m)))

=
∑

e∈Λ

∑

m∈In

ω(2−1(x + 2π(e + 2m))
[ n+1∏

j=2

ω(2−j(x + 2π(e + 2m)))
]

× f(2−(n+1)(x + 2π(e + 2m)))

=
∑

m∈I′

n+1

[ n+1∏

j=1

ω(2−j(x + 2πm))
]
f(2−(n+1)(x + 2πm)),

where

(6) I ′n+1 = {m ∈ Z
d : mi ∈ {−2n + 2, . . . , 2n + 1}, i = 1, . . . , d}.

Now consider the set

I = {m ∈ I ′n+1 : there exists i ∈ {1, . . . , d} such that mi = 2n + 1}.

Then for each m ∈ I such that

m = (m1, . . . ,mi−1, 2
n + 1,mi+1, . . . ,md),

by periodicity we have

ω(2−j(x + 2πm)) = ω(2−j(x + 2π(m1, . . . ,mi−1,−2n + 1,mi+1, . . . ,md))),

and similarly

f(2−(n+1)(x + 2πm))

= f(2−(n+1)(x + 2π(m1, . . . ,mi−1,−2n + 1,mi+1, . . . ,md))).

Hence from (5), (6) we obtain our inductive claim.

Remark 2.1. For any function f ∈ P and n ∈ Z
d,

(Lωf)n = 2d
∑

k∈Zd

ω2n−kfk.
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For R ∋ α > 0 the function space

Eα =
{
f ∈ P : f(x) =

∑

n∈Zd

fne
−i〈n,x〉, ‖f‖2α =

∑

n∈Zd

|fn|
2e2‖n‖α < ∞

}
,

is a Hilbert space of analytic functions (see Theorem A.4) with the inner
product

〈f, g〉α =
∑

n∈Zd

fngne
2α‖n‖.

For each function f from Eα we estimate

|f(x)| ≤
∑

n∈Zd

|fn| =
∑

n∈Zd

e−‖n‖α|fn|e
‖n‖α

≤
( ∑

n∈Zd

e−2‖n‖α
)1/2( ∑

n∈Zd

|fn|
2e2‖n‖α

)1/2

.

Hence we have proved:

Remark 2.2. We have ‖f‖L∞ ≤ Cα‖f‖α for f ∈ Eα, where Cα =
(
∑

n∈Zd e−2α‖n‖)1/2 is a universal constant.

Remark 2.3. Let en,α(x) = e−i〈n,x〉e−α‖n‖, where n ∈ Z
d. Then {en,α}

is an orthonormal basis of Eα.

Lemma 2.3. Let ω ∈ P and suppose that α ∈ (γ, 2γ) and |ωn| ≤ Ce−γ‖n‖

for some C, γ > 0. Then:

(i) Lω maps Eα to Eα.

(ii) Lω is compact.

(iii) Lω is a trace-class operator.

P r o o f. (i) ‖Lωf‖
2
α can be estimated as follows:

‖Lωf‖
2
α = 22d

∑

n∈Zd

∣∣∣
∑

k∈Zd

ω2n−kfk

∣∣∣
2

e2‖n‖α

≤ 22d
∑

n∈Zd

∑

k∈Zd

|ω2n−ke
−‖k‖αfke

‖k‖α|2e2‖n‖α

≤ 22d‖f‖2α
∑

n∈Zd

[ ∑

k∈Zd

|ω2n−k|
2e−2‖k‖α

]
e2‖n‖α

≤ 22d‖f‖2αC
2
∑

n∈Zd

∑

k∈Zd

e−2‖k‖αe2‖n‖αe2γ‖2n−k‖α

≤ 22d‖f‖2αC
2
[ ∑

n∈Zd

e−2‖n‖(2γ−α)
][ ∑

k∈Zd

e−2‖k‖(α−γ)
]
< ∞.
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(ii) We must prove that Lω(K) is relatively compact, where K = {f ∈
Eα : ‖f‖α ≤ 1}. One can immediately see that Lω(K) is a bounded subset
in Eα.

Now let (εk)∞k=1 be a basis of Eα such that:

(a) for each n from Z
d there exists exactly one k ∈ N such that en,α

= εk,

(b) for each k from N there exists exactly one n ∈ Z
d such that en,α

= εk,

(c) for each n ∈ Z
d and k ∈ N such that en,α = εk,

∑d
i=1 |ni| ≤ k,

(d) for each n,m ∈ Z
d and k, l ∈ N such that en,α = εk, em,α = εl

the following condition holds: if
∑d

i=1 |ni| =
∑d

i=1 |mi| then k ≤ l; if∑d
i=1 |ni| <

∑d
i=1 |mi| then k < l.

Let Rk : Eα → span{εk+1, . . .} and f ∈ K. Consider n0 ∈ Z
d, k1 ∈ N

such that en0,α = εk+1 and k1 =
∑d

i=1 |n
0
i | and set I(k1) = {m ∈ Z

d :∑d
i=1 |mi| = k1 and for all l ∈ N if εl = em,α then l < k + 1}. Then

(7) ‖Rk(Lωf)‖α

≤
∥∥∥

∑

‖n‖≥k1

(Lωf)ne
−i〈n,·〉

∥∥∥
α

+
∥∥∥

∑

n∈I(k1)

(Lωf)ne
−i〈n,·〉

∥∥∥
α

=
( ∑

‖n‖≥k1

|(Lωf)n|
2e2‖n‖α

)1/2

+
( ∑

n∈I(k1)

|(Lωf)n|
2e2‖n‖α

)1/2

≤ C‖f‖α
(( ∑

‖n‖≥k1

e−2‖n‖(2γ−α)
)1/2

+
( ∑

n∈I(k1)

e−2‖n‖(2γ−α)
)1/2)

,

where the last inequality is obtained as in the proof of (i).

From (7) we see that

sup
f∈K

‖Rk(Lωf)‖α

≤ C
(( ∑

‖n‖≥k1

e−2‖n‖(2γ−α)
)1/2

+
( ∑

n∈I(k1)

e−2‖n‖(2γ−α)
)1/2)

→ 0

as k → ∞. Hence applying Theorem A.1 we get the assertion.

(iii) Let us estimate the expression |〈Lωen,α, en,α〉α|. After some calcu-
lations we see that

|〈Lωek,α, en,α〉α| ≤ 2dCe−(α−γ)‖k‖e−(2γ−α)‖k‖.

Then ∑

n,k∈Zd

|〈Lωek,α, en,α〉α| < ∞.
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For any orthonormal basis (ϕi)i∈Zd of Eα we see that
∑

i∈Zd

|〈Lωϕi, ϕi〉α| ≤
∑

k,l∈Zd

|〈Lωek,α, el,α〉α|
[ ∑

i∈Zd

|〈ϕi, ek,α〉α||〈el,α, ϕi〉α|
]

≤
∑

k,l∈Zd

|〈Lωek,α, el,α〉α|,

which yields that Lω is a trace-class operator in Eα because of the following
theorem:

Theorem (see [15, p. 219]). Let H be a separable complex Hilbert space

and T ∈ L(H) a bounded operator. Suppose that for any orthonormal base

{ϕi}i≥1 the series
∑∞

i=1〈Tϕi, ϕi〉 is absolutely convergent. Then T is a

trace-class operator.

This concludes the proof of Lemma 2.3.

The fact that Lω is a trace-class operator allows us to control the error
of the spectral radius of Lω in Eα in numerical calculations (see [2]).

Lemma 2.4. Let ω ∈ P and suppose that there exist C, γ > 0 such that

for each n ∈ Z
d, |ωn| ≤ Ce−γ‖n‖. Then there exist γε ∈ (0, γ) and C2 > 0

such that for the Fourier coefficients (|ω|2)n, n ∈ Z
d we have

(|ω|2)n ≤ C2e
−γε‖n‖.

P r o o f. One can see that

(|ω|2)(x) =
∑

n,m∈Zd

ωnωme−i〈n−m,x〉,

and hence

(|ω|2)k =
1

(2π)d

∑

n,m∈Zd

ωnωm

\
[−π,π]d

e−i〈n−m+k,x〉 dx

=
∑

n,m∈Zd,m−n=k

ωnωm =
∑

n∈Zd

ωnωn+k.

Then for any ε, γ1 such that 0 < 2ε < γ and γ1 = γ − ε,

|(|ω|2)k| ≤
∑

n∈Zd

|ωn||ωn+k| ≤ C2
∑

n∈Zd

e−γ‖n‖e−γ‖n+k‖

= C2
∑

n∈Zd

e−γ1(‖n‖+‖n+k‖)e−ε(‖n‖+‖n+k‖)

≤ C2
∑

n∈Zd

e−γ1‖k‖e−ε(2‖n‖−‖k‖) ≤ C2e
−(γ−2ε)‖k‖,

where we used the inequalities ‖k‖ ≤ ‖n‖ + ‖n + k‖, ‖n‖ − ‖k‖ ≤ ‖n + k‖.
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Iterating Lemma 2.4 l times we obtain:

Lemma 2.5. Let ω∈P and suppose that |ωn|≤Ce−γ‖n‖ for each n∈Z
d

and some C, γ > 0. Then for any l ∈N there exist C2l > 0 and γ′ ∈ (0, γ)
such that for each n∈Z

d the Fourier coefficients (|ω|2l)n satisfy the estimate

(|ω|2l)n ≤ C2le
−γ′‖n‖.

Lemma 2.6. Let ω satisfy the assumptions of Lemma 2.5 and ω 6= 0 on

[0, 2π]d. Then for any p ∈ N there exist γ1 in (0, γ) and Cp > 0 such that

the Fourier coefficients of |ω|p satisfy the estimate

(|ω|p)n ≤ Cpe
−γ1‖n‖, n ∈ Z

d.

P r o o f. |ω|2 is an analytic function. We can extend |ω|2 to a function
of a complex variable for |Im z| < γ. Then there exists γ1 ∈ (0, γ) such that
|ω|2 6= 0 on Rγ1

= {z ∈ C
d : e−γ1 ≤ |zk| ≤ eγ1 for k = 1, . . . , d} and we can

define on Rγ1
an analytic function

|ω|p = exp

(
p

2
log |ω|2

)
.

From the analyticity of |ω|p and the form of Rγ1
we get the assertion.

To proceed with our considerations we recall the Cohen condition (see
[3]).

A set K is called congruent to [−π, π]d (modulo 2πZd) if |K| = (2π)d and
for all x ∈ [−π, π]d there exists x′ ∈ K such that x−x′ ∈ 2πZd. We say that
a function ω satisfies the Cohen condition if there exists a compact set K
congruent to [−π, π]d (modulo 2πZd) such that it contains a neighbourhood
of 0 and

inf
j≥1, x∈K

|ω(2−jx)| > 0.

We finish our preparatory considerations. From now on we assume d = 2.

Lemma 2.7. Let ω ∈ P be real-valued and satisfy the following condi-

tions:

(i) there exist C > 0, γ > 0 such that for each n ∈ Z
2, |ωn| ≤ Ce−γ‖n‖,

(ii) ω ≥ 0, ω(0) = 1,
(iii) ω satisfies the Cohen condition,
(iv) ω(s, r) > 0 when r ∈ [0, 2π], s = 0 or s = π, and ω(2−nπ, r) > 0 for

r ∈ [0, π/2] and n ∈ N.

If f ∈ Eα \ {0} (α ∈ (γ, 2γ)) is a real-valued function such that f ≥ 0,
then for each x ∈ [−π, π]2 there exists n ∈ N such that (Ln

ωf)(x) > 0.

P r o o f. Assume, on the contrary, that there exist a function 0 ≤ f ∈ Eα

and x0 ∈ R
2 such that (Ln

ωf)(x0) = 0 for any n ≥ 1. We can assume that
x0 = 0, because if x0 6= 0 then by Lemma 2.2 for any p ≥ 0 we can write
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0 = (Ln+p
ω f)(x0)(8)

=
∑

m∈In

[ n∏

j=1

ω(2−j(x0 + 2mπ))
]
(Lp

ωf)(2−n(x0 + 2mπ)),

where In = {(m1,m2) : mj ∈ [−2n−1 + 1, 2n−1] ∩ Z, j = 1, 2}.

By the Cohen condition there exist c > 0 and a set K congruent to
[−π, π]2 such that ω(2−jx) ≥ cχK(x) for any x ∈ R

2, j ≥ 1. By (8),

(9) 0 = (Ln+p
ω f)(x0) ≥ cn

∑

m∈In

χK(x0 + 2mπ)(Lp
ωf)(2−n(x0 + 2mπ)).

There exist m0 ∈ Z
2 and x ∈ K such that x0 + 2πm0 = x. Now if 2n−1 >

|m0
i |, i = 1, 2, then by (9),

0 = (Ln+p
ω f)(x0) ≥ cn(Lp

ωf)(2−nx).

Hence by analyticity Lp
ωf vanishes on the line {y = tx} ⊆ R

2, p ≥ 0.

The next steps of the proof are as follows. First we show that

(10) (Lp
ωf)

(
π,

l

2j
π

)
= 0

for any p ≥ 0 and l ∈ {0, 1, . . . , 2j}, j ≥ 1. Then we deduce that

(11) f

(
r

(
π,

l

2j
π

))
= 0

for each r ∈ R. Hence we conclude that f ≡ 0 by analyticity.

To prove (10) let us take into account (8). For x0 = 0 and n ≥ j − 1 we
derive

(12) 0 = (Ln+p
ω f)(0) ≥

[ n∏

k=1

ω(2−k2mπ)
]
(Lp

ωf)

(
π,

l

2j
π

)
≥ 0,

where m = (2n−1, 2n−j−1l), l ∈ {0, 1, . . . , 2j}. If k ∈ {1, . . . , n− 1} then

ω(2−k2π(2n−1, 2n−j−1l)) = ω(2π, 2n−k−j lπ) = ω(0, 2n−k−jlπ) > 0,

and for k = n,

ω(2−k2π(2n−1, 2n−j−1l)) = ω

(
π,

l

2j
π

)
> 0.

Hence by (12) we obtain (10).

To prove (11) it is necessary to show that the function f vanishes on
the line r

(
π, l

2j π
)
, r ∈ R, or equivalently that it vanishes at infinitely many

points having a point of accumulation. Once more rewrite (8) for p = 0 and
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x =
(
π, l

2j π
)
:

0 = (Ln
ωf)

(
π,

l

2j
π

)

=
∑

m∈In

[ n∏

p=1

ω

(
2−p

((
π,

l

2j
π

)
+ 2mπ

))]

× f

(
2−n

((
π,

l

2j
π

)
+ 2mπ

))
.

Then inserting m = 0 we observe that

(13) 0 = (Ln
ωf)

(
π,

l

2j
π

)
≥

n∏

p=1

ω

(
2−p

(
π,

l

2j
π

))
f

(
2−n

(
π,

l

2j
π

))
≥ 0,

where the last inequality follows from (iv). Then by (13),

f

(
2−n

(
π,

l

2j
π

))
= 0

for any n and hence we obtain (11). The set
{

l
2j π : j ≥ 1, l = 0, 1, . . . , 2j

}

is dense in [0, π] hence f vanishes on the triangle with vertices (0, 0), (π, 0),
(π, π). So f ≡ 0 and we obtain a contradiction.

From the proof it is clear that (iv) can be replaced by another condition
given in the following:

Remark 2.4. ω(s, r) > 0 whenever s ∈ [0, 2π], r = 0 or r = π, and
ω(r, 2−nπ) > 0 for r ∈ [0, π/2] and n ∈ N.

Let us remark that the second part of (iv) (i.e. ω(2−nπ, r) > 0 for
r ∈ [0, π/2], n ∈ N) concerns only a finite number of n ∈ N, n ∈ {1, . . . , k0},
where k0 ≥ 1 is such that the square [0, 2−k0π]2 ⊆ 2−1K, K being the com-
pact set from the Cohen condition. We recall that for x ∈ 2−1K, w(x) > 0.

It seems that the assumption (iv) in Lemma 2.7 is excessively strong,
and it is an open problem how to relax it.

In the case d = 1 assumptions (i)–(iii) suffice for proving the assertion
of Lemma 2.7 (see [2]).

3. Regularity of the refinable function. An operator T ∈ L(X),
where X is a Banach space, is called positive with respect to the cone K ⊂
X if T (K) ⊂ K. If IntK 6= ∅ we say that T is strictly positive when
T (K \ {0}) ⊆ IntK. We use r(T ) for the spectral radius of T and B(x, r)
for the ball with center at x and radius r.

Define

Eα,R = {f ∈ Eα : f(x) ∈ R for all x ∈ R
d}.
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Then

Eα = Eα,R + iEα,R.

For Eα,R and Eα the sets

E+
α,R = {f ∈ Eα,R : f ≥ 0} and E+

α = E+
α,R + iE+

α,R

are cones.

Lemma 3.1. Let f ∈ Eα,R. Suppose that f > 0. Then

(i) B(f, af/(2Cα)) ⊂ E+
α,R, where min{f(x) : x ∈ [−π, π]d} > af > 0

and Cα is as in Remark 2.2.

(ii) For each g ∈ Eα,R we have g > 0 whenever g ∈ B(f, af/(2Cα)).

P r o o f. Let af > 0 be such that f > af and assume g ∈ B(f, af/(2Cα)).
Then

g(x) ≥ f(x) − |f(x) − g(x)| ≥ af − ‖f − g‖L∞ ≥ af − Cα‖f − g‖α > 0.

As a direct consequence of this lemma we get the following

Remark 3.1. E+
α,R and E+

α are cones with nonempty interior.

Let f be an integrable and normalized solution of the equation (1), i.e.T
Rd f(x) dx = 1. Applying the Fourier transform to (1) one obtains

(14) f̂(x) = m(2−1x)f̂(2−1x),

where m(x) =
∑

n∈Z2 cne
i〈n,x〉.

From now on we assume that the function m can be factored as

(15) m(x) =

(
1 + eix1

2

)N(
1 + eix2

2

)M

q(x),

where N,M ∈ N ∪ {0} and q is a 2πZ2-periodic function such that the
Fourier coefficients qn satisfy the estimate

(16) |qn| ≤ Ce−γ‖n‖

for some C, γ > 0.

We can rewrite (15) as

m(x) = q(x)
∑

k∈I

2−(N+M)

(
N

k1

)(
M

k2

)
ei〈k,x〉,

where I = {k ∈ Z
2 : k1 = 0, 1, . . . , N , k2 = 0, 1, . . . ,M}. Then the Fourier

coefficients of m can be estimated as follows:

cn = mn =
∑

k∈I

2−(N+M)

(
N

k1

)(
M

k2

)
qn+k,
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and applying (16) we obtain

|mn| ≤ 2−(N+M)Ce−γ‖n‖
∑

k∈I

(
N

k1

)(
M

k2

)
eγ‖k‖,

hence

(17) |mn| ≤ Ce−γ‖n‖ for any n ∈ Z
2.

One sees that
∏∞

j=1m(2−jx) and
∏∞

j=1 q(2−jx) are uniformly convergent

on each compact subset K of R2, since using (2) and (17) it follows that

|q(x)| = |m(x)| ≤ 1 + |m(x) − 1| = 1 +
∣∣∣
∑

n∈Z2

cne
i〈n,x〉 −

∑

n∈Z2

cn

∣∣∣(18)

≤ 1 + 2
∑

n∈Z2

|cn|

∣∣∣∣sin
1

2
〈n, x〉

∣∣∣∣ ≤ 1 + 2
∑

n∈Z2

Ce−2γ‖n‖

∣∣∣∣
1

2
〈n, x〉

∣∣∣∣

≤ 1 + C
∑

n∈Z2

e−2γ‖n‖‖n‖ · ‖x‖ ≤ 1 + C1‖x‖.

Lemma 3.2. Assume that m, q satisfy (15), (16) and one of the following

conditions:

1. p > 0 and q 6= 0 on [−π, π]2,
2. p ∈ 2N, m satisfy the Cohen condition and |q| satisfies the condition

(iv) of Lemma 2.7.

Let L|q|p be the transfer operator associated with the function |q|p and

rp be the spectral radius of this operator on Eα for any α ∈ (γ, 2γ). Then:

(i) rp is an eigenvalue of L|q|p ,
(ii) the eigenfunction corresponding to rp is strictly positive (i.e. is in

E+
α ),

(iii) rp > 1.

P r o o f. For λ > ‖L|q|p‖ consider the operator

(19) T =
∞∑

k=1

λ−kLk
|q|p acting on Eα.

T is compact and by Lemma 2.7 it is strongly positive. Then by Theorem
A.3 its spectral radius r(T ) > 0 is an eigenvalue of T . Moreover, the cor-
responding eigenfunction F is in IntE+

α . Recall that for λ > ‖L|q|p‖ the

resolvent R(λ,L|q|p) equals
∑∞

k=0 λ
−(k+1)Lk

|q|p . So we can write

(20) I + T = λR(λ,L|q|p).

Because also F is an eigenfunction of I +T corresponding to the eigenvalue
1 + r(T ), from (20) we derive

λR(λ,L|q|p)F = (1 + r(T ))F.
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This immediately gives λF = (1+r(T ))(λI−L|q|p)F and therefore L|q|pF =

κF , κ ≡ λ
1+r(T )

r(T ) > 0. So rp ≥ κ > 0 where rp is the spectral radius of

L|q|p . Now the Krein–Rutman Theorem (see Theorem A.2) applied to L|q|p

shows that rp is an eigenvalue of L|q|p and the corresponding eigenfunction
G is in E+

α . By (19), G is also an eigenfunction for T and

TG =

( ∞∑

k=1

(
rp
λ

)k)
G ∈ IntE+

α .

Hence we obtain (i), (ii).

Now write

rpF (0) = (L|q|pF )(0) = F (0) +
∑

e∈Λ′

|q(πe)|pF (πe), Λ′ = Λ \ {(0, 0)}.

The assumption imposed on q guarantees that |q(0, π)| > 0. Hence the sum
on the right hand side of the latter formula is positive. Thus rp > 1 and the
proof is finished.

Let

E′
α = {g : g(x) = |sin(2−1x1)|Np|sin(2−1x2)|Mpf(x) and f ∈ Eα},

and for any g ∈ E′
α the norm of g is identified with the norm of the corre-

sponding f in Eα.

Lemma 3.3. Let L|q|p (resp. L′
|m|p) be the transfer operator associated

with |q|p (resp. |m|p). For any α ∈ (γ, 2γ), L′
|m|p is a trace-class operator

on the space E′
α. Moreover , if f is a continuous eigenfunction of L|q|p with

eigenvalue λ then g(x) = |sin(2−1x1)|Np|sin(2−1x2)|Mpf(x) is a continuous

eigenfunction of L′
|m|p with eigenvalue 2−(N+M)pλ.

P r o o f. As in the one-dimensional case (see [2]), it is enough to show

(L′
|m|pg)(2x) =

∑

e∈Λ

|m(x + πe)|pg(x + πe)

=

∣∣∣∣sin
(
x1

2

)
cos

(
x1

2

)∣∣∣∣
Np∣∣∣∣sin

(
x2

2

)
cos

(
x2

2

)∣∣∣∣
Mp

×
∑

e∈Λ

|q(x + πe)|pf(x + πe)

= 2−(N+M)p|sinx1|
Np|sinx2|

Mp(L|q|pf)(2x).

Theorem 1. Assume that m, q satisfy (15), (16) and one of the condi-

tions of Lemma 3.2. Let L|q|p be the transfer operator associated with the

function |q|p and rp be the spectral radius of this operator on Eα for any
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α ∈ (γ, 2γ). Then the Lp-Sobolev exponent of the scaling function f satisfies

(21) sp = N + M −
1

p
log2 rp.

P r o o f. Applying (14) and (15) we see that

|f̂(x)| =
[ ∞∏

k=1

|cosN (2−k−1x1)|
][ ∞∏

k=1

|cosM (2−k−1x2)|
] ∞∏

k=1

|q(2−kx)|(22)

=

∣∣∣∣
2 sin(2−1x1)

x1

∣∣∣∣
N ∣∣∣∣

2 sin(2−1x2)

x2

∣∣∣∣
M ∞∏

k=1

|q(2−kx)|.

For all x ∈ [−2nπ, 2nπ]2 we obtain

(23)
∣∣∣

∞∏

k=1

q(2−kx)
∣∣∣
p

≤ Cp

n∏

k=1

|q(2−kx)|p,

where Cp = sup{|
∏∞

k=1 q(2−kx)|p : x ∈ [−π, π]2} and Cp is finite by (18).
Using (23) we obtain

(24)
\

[−2nπ,2nπ]2

∣∣∣
∞∏

k=1

q(2−kx)
∣∣∣
p

dx

≤ Cp

\
[−2nπ,2nπ]2

n∏

k=1

|q(2−kx)|p dx

≤ Cp

\
[−π,π]2

(L|q|p)n1(x) dx by Lemma 2.1

≤ (2π)2Cp〈(L|q|p)n1, 1〉α ≤ (2π)2Cp‖L
n
|q|p‖.

For each ε > 0 and n ≥ n0(ε) ≥ 1 we have

|‖Ln
|q|p‖

1/n − rp| < ε.

Hence applying (24) we see that

(25)
\

[−2nπ,2nπ]2

∣∣∣
∞∏

k=1

q(2−kx)
∣∣∣
p

dx

≤

{
(2π)2Cp(rp + ε)n for n ≥ n0(ε) ≥ 1,
(2π)2Cp‖L|q|p‖

n for 1 ≤ n < n0(ε).

Consider the family of sets A0 = [−π, π]2, Aj = [−2jπ, 2jπ]2 \ [−2j−1π,
2j−1π]2 for j ≥ 1. Then using (22) and (25) we estimate\
R2

|f̂(x)|p(1 + ‖x‖p)s dx

=
\

[−π,π]2

|f̂(x)|p(1 + ‖x‖p)s dx +
∞∑

j=1

\
x∈Aj

|f̂(x)|p(1 + ‖x‖p)s dx



444 J. Kotowicz

≤ C1 + C

∞∑

j=1

2jp(s−N−M)Cp

\
x∈Aj

j∏

k=1

|q(2−kx)|p dx by (22), (23)

≤ C1 + C2

( n0−1∑

j=1

2jp(s−N−M)‖L|q|p‖
j +

∞∑

j=n0

2jp(s−N−M)(rp + ε)j
)

≤ C3 + C2

∞∑

j=n0

2j(p(s−N−M)+log2(rp+ε)).

Then for any s such that j(p(s−N−M)+log2 rp) < 0 the series is convergent
and hence the Lp-Sobolev exponent sp is greater than or equal to N +M −
1
p

log2 rp.

Let K ⊆ R
2 be a compact set congruent to [−π, π]2 modulo 2πZ2 from

the Cohen condition. Define

In =
\

x∈2nK

‖x‖(N+M)p|f̂(x)|p dx

and

̺ = inf
{∣∣∣

∞∏

k=1

m(2−kx)
∣∣∣
p

: x ∈ K
}
.

Then ̺ > 0 by the Cohen condition.

Let F be a strictly positive eigenfunction of L|q|p (see Lemma 3.2) cor-
responding to rp. Define

S = sup{|F (x)| : x ∈ [−π, π]2},

g(x) = |sin(2−1x1)|Np|sin(2−1x2)|MpF (x), G =
\

[−π,π]2

g(x) dx.

We can estimate In as follows:

In =
\

x∈2nK

‖x‖(N+M)p
[ n∏

k=1

|m(2−kx)|
]p[ ∞∏

k=1

|m(2−(k+n)x)|
]p

dx

≥ ̺
\

x∈2nK

|x1|
Np|x2|

Mp
[ n∏

k=1

|m(2−kx)|
]p

dx

≥ ̺2(N+M)p(n+1)
\

x∈2nK

|sin(2−(n+1)x1)|Np|sin(2−(n+1)x2)|Mp

×
[ n∏

k=1

|m(2−kx)|
]p

dx

≥ S−1̺2(N+M)p(n+1)
∣∣∣
\

x∈2nK

g(2−nx)
[ n∏

k=1

|m(2−kx)|
]p

dx
∣∣∣
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≥ S−1̺2(N+M)p(n+1)
∣∣∣

\
x∈[−2nπ,2nπ]2

g(2−nx)
[ n∏

k=1

|m(2−kx)|
]p

dx
∣∣∣

= S−1̺2(N+M)p(n+1)
∣∣∣

\
x∈[−π,π]2

(L′
|m|p)ng(x) dx

∣∣∣ by Lemma 2.1

= |G|̺S−12(N+M)p(rp)n by Lemma 3.3

= C(rp)n.

Since K is compact there exists a finite L such that K ⊆ [−2Lπ, 2Lπ]2.
Hence

(26) In =
\

[−2nπ,2nπ]2

‖x‖(N+M)p|f̂(x)|p dx ≥ In−L ≥ C(rp)n.

Put

Jn = In − In−1 =
\

An

‖x‖(N+M)p|f̂(x)|p dx.

Now we prove that rp > 0 and (26) gives

(27) for each C > 0 and ε > 0 we have Jn ≥ C(rp/2ε)n

for infinitely many n ≥ 1.

In fact, suppose not. Then there exist n0 ≥ 1, C0 > 0, and ε0 > 0 such that
Jn < C0(rp/2ε0 )n for each n ≥ n0. For n > n0 this yields

0 < C ≤ (rp)−nIn = (rp)−n
(
In0

+
n∑

k=n0+1

Jk

)
(28)

< (rp)−nIn0
+ C0(rp)−n

n∑

k=n0+1

(
rp
2ε0

)n

.

It is clear that for rp/2ε0 ≤ 1 the right hand side tends to zero as n tends
to infinity. Now we show that the same holds for rp/2ε0 > 1. Actually, in
this case we have

(rp)−n
n∑

k=n0+1

(
rp
2ε0

)n

≤ (rp)−n
n\
n0

(
rp
2ε0

)x

dx

=
(rp)−n

ln
rp
2ε0

[(
rp
2ε0

)n

−

(
rp
2ε0

)n0
]
,

which gives the claim.
We thus get a contradiction, and therefore (27) is valid.
Let us write (27) in the form

(29)
\

An

‖x‖(N+M)p−log2 rp+ε|f̂(x)|p dx ≥ C1 > 0

for infinitely many n ≥ 1. Now for
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R2

(1 + ‖x‖p)s|f̂(x)|p dx ≥
∞∑

n=0

\
An

‖x‖ps|f̂(x)|p dx,

using (29) we see that when s > N = M − 1
p

log2 rp + ε
p
, the integralT

R2(1 + ‖x‖p)s|f̂(x)|p dx is divergent. Since ε > 0 can be chosen arbitrarily

small we infer sp ≤ N+M− 1
p log2 rp. This concludes the proof of Theorem 1.

From the first part of the proof we get

Remark 3.2. If we impose on m, q only (15), (16), and the spectral
radius rp of L|q|p is greater than zero then

sp ≥ N + M −
1

p
log2 rp for p ∈ 2N.

4. Appendix. Let us recall three theorems which were used in the
article:

Theorem A.1 (Proposition 7.4 of [6]). Let X be a Banach space with a

basis. Then B ⊆ X is relatively compact if and only if B is bounded and

sup{|Rnx| : x ∈ B} → 0 as n → ∞, where Rn : X → span{εn+1, . . .} are

projections and (εi)
∞
i=1 is a basis of X.

Theorem A.2 (Theorem 19.2 of [6]). Let X be a Banach space, K ⊂ X
a total cone, and T ∈ L(X) compact positive with r(T ) > 0. Then r(T ) is

an eigenvalue of T with positive eigenvector.

Theorem A.3 (Theorem 19.3 of [6]). Let X be a Banach space, K ⊂ X
a cone with IntK 6= ∅, and T ∈ L(X) compact and strongly positive (i.e.
T (K \ {0}) ⊆ IntK). Then:

(a) r(T ) > 0, r(T ) is a simple eigenvalue with an eigenvector v ∈ IntK
and there is no other eigenvalue with a positive eigenvector.

(b) |λ| < r(T ) for all eigenvalues λ 6= r(T ).
(c) For y > 0, the equation λx−Tx = y has a unique solution x ∈ IntK if

λ > r(T ) and no solution in K if λ ≤ r(T ). The equation r(T )x−Tx = −y
also has no solution in K.

(d) If S ∈ L(X) and Sx ≥ Tx on K then r(S) ≥ r(T ), while r(S) >
r(T ) if Sx− Tx ∈ IntK for x > 0.

The next theorem is a generalization of a well-known theorem for func-
tions of one variable (see [1]):

Theorem A.4. Let f ∈ P, and suppose that f(x) =
∑

n∈Zd fne
−i〈n,x〉

for each x ∈ R
d. Then the following conditions are equivalent :

(i) for some C, γ > 0 and each n ∈ Z
d we have |fn| ≤ Ce−γ‖n‖,

(ii) f is an analytic function.
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